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1 Introduction

The mean curvature flow in higher codimension was studied extensively in the last few years
(cf. [7, 8, 11, 16, 19, 20, 22, 23]). In this paper, we consider the Lagrangian mean curvature
flow in the pseudo-Euclidean space.

Let R?" be the 2n-dimensional pseudo-Euclidean space with index n. The indefinite flat

metric on R2" (cf. [24]) is defined by
1 n
2 _ i,
ds® = 5 .E,l dz'dy’.

The logarithmic Monge-Ampere flow (cf. [21]) can be written as

ou 1 5 "
at—nlndetD u=0, t>0, xeR" (1.1)
u = up(x), t=0, z € R".

By Proposition 2.1, there exists a family of diffeomorphisms
et R™ — R™,
such that
F(x,t) = (r¢, Du(r, t)) C R*"
is a solution to the mean curvature flow in the pseudo-Euclidean space

dF —=
=H
dt ’
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Here H is the mean curvature vector of the space-like submanifold F(x,t) C R2" and

Fy(z) = (z, Dug(x)).

Definition 1.1 Assume that uo(z) € C*(R™). We call uo(z) satisfying
(i) (Condition A) if
uo(Rx)

p2 VR >0;

ug(x) =

(ii) (Condition B) if
AI > D?ug(z) > M\, z €R",

where A, X\ are positive constants and I is the identity matriz.
We now state the main theorems of this paper.

Theorem 1.1 Let ug: R® — R be a C? function satisfying condition B. Then there exists
a unique strictly convex solution of (1.1) such that

u(x,t) € C(R"™ x (0,+00)) NC(R™ x [0, +00)), (1.3)
where u( -, t) satisfies condition B. More generally, for | = {3,4,5,---} and ¢y > 0, there holds
sup |D'u(x,t)] < C, VYt € (e, +00), (1.4)

rcR”

1
Y€

where C' depends only on n, \, A

The existence results are based in a prior estimates on u. P. L. Lions and M. Musiela [15]
introduced a class of fully nonlinear parabolic equations where the convexity properties of the
solutions are preserved. So we are able to derive a positive lower bound and an upper bound for
the eigenvalues of D?u. By the Krylov-Safonov Theorem, we obtain the C* norm of D?u. But
it seems difficult to get the bound of D?u only using interior Schauder estimates without the

assumption of sup |Dug| < +00. To overcome the difficulty, we will use the blow-up argument
xeR?L
to prove

sup |D3u| < 400,
z€R™
and further establish (1.4) by interior Schauder estimates. Here we do not need the gradient
bound of ug.
Consider the following Monge-Ampere type equation:

det D?u = exp {n(u— ;f:xlgg)} (1.5)
i=1 ‘

According to the definition in [9], we can show that an entire solution to (1.5) is a self-expanding
solution to Lagrangian mean curvature flow in the pseudo-Euclidean space.

The following theorem shows that we can obtain the self-expanding solutions by the loga-
rithmic Monge-Ampere flow.

Theorem 1.2 Let ug : R® — R be a C? function which satisfies condition B. Assume that

lim 7 2ug(rz) = Up(x) (1.6)

T——+00
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for some Uy(z) € C*(R™). Let u(x,t) and U(x,t) be two solutions to (1.1) with initial values
uo(x) and Ugy(z) respectively. Then

lim ¢t~ 'u(Vtx,t) = Uz, 1). (1.7)

t——+o0

Here the convergence is uniform and smooth in any compact subset of R™, and U(z,1) is a
smooth self-expanding solution of (1.2).

To describe the asymptotic behavior of Lagrangian mean curvature flow (1.2), we will prove
the following theorem.

Theorem 1.3 Suppose that ug is a smooth function which satisfies condition B and

sup |Dug(z)|? < +oo0.

rcR”™
Then the evolution equation of the mean curvature flow (1.2) has a long-time smooth solution
and the graph (z, Du(x,t)) converges to a plane in R?™ as t goes to infinity. If additionally
|Dug(z)| — 0 as |x| — oo, then the graph (x, Du(z,t)) converges smoothly on any compact sets
to the coordinate plane (x,0) in R2".

This paper is organized as follows. In Section 2, we show that the mean curvature flow (1.2)
is equivalent to logarithmic Monge-Ampere flow and then Theorem 1.1 is proved. By Theorem
1.1, we can present the proof of Theorem 1.2. In Section 3, we obtain the convergence results
by the decay estimates of the logarithmic Monge-Ampere flow.

2 Logarithmic Monge-Ampere Flow

Throughout the following Einstein’s convention of summation over repeated indices will be
adopted.

Let (z%,---, 2™y, .-+ ,y™) be null coordinates in R?". Then the indefinite metric (cf. [24])
is defined by

1 L
ds? = 2dat:zdyz. (2.1)
Suppose that u is a smooth convex function. The graph M of Vu can be written as

T )

Corl T gan
Then the induced Riemannian metric on M is defined by

82

2 _ u iy
ds* = OO dz'dx’.
Choose a tangent frame field {e1,--- ,e,} along M, where
0 Pu 0
€; =

- 0t + Oxi0xI Oyi
We use (-, -) to denote the inner product induced from (2.1). Then
0?%u

feir e5) = Ozridxs”
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Let {m1, - ,mn} be the normal frame field of M in R2" defined by

0 Pu 0
M gpi T Qridwi oyl
with
(i, 3 = — 0%u
Mo N30 =7 i

The mean curvature vector of M is given by

1 99

-
H = 9" Nk

 2ng Ozt
where g = det D?u.
Suppose that u(z,t) is a strictly convex smooth function in R", and

Fa(t)t) = (a2, 2

) ;81‘17”' O
satisfies (1.2). Then

dz’ 1 09 ;,;  duj 1 99 , 0%u .
= - lg ) = lg k ] 17]:1725"'771’
dt 2ng Ox dt 2ng Ox 0xFoxI

where u; = 9% [gi;] = D?u, [9"] = [g;5]7. However,

du; Ouj  Ouy daF .
= —1.2... n.
at oot Togk a4 J T hE

So
ouj 1 dg 4, 0%u N 1 99 ;. *u
ot _2ng8xlg OxkOxi 2ng@xlg Oxkdxi
1 99

Lo 1 ) =1,2
;= Ing, =1,2,---,n.
ng Ox! N A AN
Then u(z,t) satisfies (1.1).
Conversely, if u(z, t) is a strictly convex smooth function in R™, then we define in the obvious
way

ﬁ(x,t):(xlv.. n, OU 3u).

. 7x ; 8x1 5 ... 5 8xn
Let r : R™ x (0,7) — R™ be the solution of the following systems of ordinary differential
equations:

dz’ 1 99 5

= _ i=1.2. ...
dt 2ng8xlg Y 1 ) Y 7n7
2(0) = a°, i=1,2,--,n.

Then ry is a family of diffeomorphisms R” — R" and F(z,t) = F(r(z,t),t) is a solution to
(1.2).
In summary, by the regularity theory of parabolic equations, we have the following results.

Proposition 2.1 Let ug : R® — R be a strictly conver C? function. Then (1.1) admits
a strictly convex smooth solution on R™ x (0,T) with initial value u(zx,0) = uo(x) if and only
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if (1.2) admits a smooth solution F(x,t) on R™ x (0,T) with strictly convex potential and with
initial condition F(x,0) = (x, Vuo(z)). In particular, there exists a family of diffeomorphisms
r(z,t) : R — R™ fort € (0,T) such that F(x,t) = (r(z,t), Vu(r(z,t),t)) solves (1.2) on
R™ x (0,T).

A solution F(-,t) to (1.2) is called self-expanding if it has the form

M; =VtM, forallt>0, (2.2)

where M, = F(-,t).
Assume that F'(z,t) is a self-expanding solution to (1.2). Following Proposition 2.1 , u(z,t)

satisfies
0 1
Y ndet D?u = 0, t>0, xeR". (2.3)
ot n
Hence,
x
D(u x,t —tu( ,1)) =0,
@t -t( 5,
ie.,

X

Vi

Thus combining (2.3), (2.4) and letting ¢t = 1, we can verify that u(x, 1) satisfies (1.5).
We want to use the method of continuity and finite approximation to prove the solvability
of (1.1).

u(a:,t)ztu( ,1), t>0. (2.4)

Definition 2.1 Given anyT >0, R> 0,1 > «a > 1 and set

Br=A{z]||z|] <R, z€R"}, Brr={x||z|] <R,zecR"} x(0,7T),
PBrr =Br x {t=0}UdBg x (0,T).

Let 7 € [0,1]. We say u € 5" (Bg x (0,T)) N C(Bgr x [0,T)) is a solution to (*,) if u
satisfies

ou T

-1 D?*u—(1=7)Au= B
5 " n ndet D*u— (1 —7)Au=0, (z,t) € Bgrr, (2.5)
u = ug(x), (x,t) € PBRr.

Clearly, there exists a unique solution u(x,t) which satisfies (2.5) with 7 = 0. Let
I={7€]0,1] : (*;) has a solution}.

The long time existence of the flow (1.2) holds if I is both closed and open and R = +o0. To
prove that the classical solutions to (1.1) must be strictly convex, we need the following lemma
which is proved by P. L. Lions, M. Musiela (cf. [15, Theorem 3.1]).

Lemma 2.1 Let u: Brr — R be a classical solution of a fully nonlinear equation of the
form

ou

= F(D?
8t ( U),
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where F is a C? function defined on the cone I' of definite symmetric matrices, which is mono-
tone increasing (that is, F(A) < F(A + B) whenever B is a positive definite matriz), and the
Sfunction

is concave on I'y of positive definite symmetric matrices. If D*u > 0 for (z,t) € PBrr, then
D*u >0 for (z,t) € Brr.

By making use of Lemma 2.1, we obtain the following result.

Corollary 2.1 Suppose that w : Brr — R is a classical solution of a fully nonlinear
equation of the form

ou 9
o = F(D?u),

where F' satisfies the conditions in Lemma 2.1 and F is concave on the cone I'y. If A <
D?*u < AI for (x,t) € PBrr, then X < D*u < AI for (x,t) € Brr.

Proof Step 1 We will show that D?u > M for (z,t) € Br,r. In fact, B. Andrews proved
the conclusions (cf. Theorem 3.3 in [1]). Here we present another proof.
Set u = u — 3|z[%. Then u satisfies

ou
ot

with D?u > 0 for (x,t) € PBr . Define

= F(D*u + M)

F(D?*u) = F(D*u+ \I),
F'(A) = —F(A™' + ),
F*()‘laAQa"' 7An):_F(A;1+A’A51+A7 7/\7_11+)‘)a

Y={M>0,A>0,---,A, >0}

It follows from [2] that F"(A) is concave on I'y if and only if F (Ay, Ao, - -+, An) is concave on
3. Note that for all £ € R™,

O*F" 2
i = —Fii&&5 — 2R
onon, & = ~Futi€; — 2FE]
where §; = §2 Since F*(A) = —F(A™1) is concave on I';, we have

2
—Fi€:€ =0 — 230 [x=0 < 0.

Replace A; by 1+)‘)’f/\i. So
Ai 2
_Fijfifj < 2Fi1 _‘_z/\/\ifi-

Clearly,
O*F"
ONiON;
Therefore D?u > 0 for (z,t) € Bgrr by Lemma 2.1.

i

2 2
s — 208 <0.
1o, S & =0

2
§i&j = —Fi;§;€; — 2FN& < 2F;

Step 2 We prove that D?u < AT for (z,t) € Brr.
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Introduce the Legendre transformation of u

. Ou ) . "L du
T:ta yz:axi7 Z:1727"'7na u(yla"'7yn) ::szaxi_u(m)'
=1

In terms of 7, y',--- ,y™, u*(y',--- ,y™, 7), one can easily check that

ou* ou 0%u* _{ 0%u }*1

or —ot’ Oyioy  Loxiow

Then u* is a solution of the form
ou*

or
Since F** = F is concave on the cone I'y, using the conclusions of Step 1, we arrive at
D2u* > /1\I for (z,t) € Br,r and this yields our desired result.

= F*(D*u*).

Given zg € R™, k > 0, define

R R R
QRzy = 7|z — 20| < R} X [k, + R), Qg,%:{m‘Ix—onS 2}>< [m+ K+ 2),

4
R R 5R
Qrqy = {x‘ |z — 20| < 3} X |:I<L+ 3,/<;+ 12), Br.a, = {|lz — zo| < R}.
The following two lemmas which will be mentioned below may be used repeatedly (cf. [14]).

Lemma 2.2 (cf. [3, Lemma 14.6]) Let u : R" x [0,T) — R be a classical solution of a fully
nonlinear equation of the form

9
81: — F(D%u) =0, t>0, z€R",
u = up(x), t=0, x € R,

where F is a C? concave function defined on the cone T of definite symmetric matrices, which
s monotone increasing with

OF _ 1.

A <
= ory

Then there exists 0 < oo < 1 such that

2 2
[D U]Cu"g(Q%;wo) é C|D u|CO(Q1:wO)’

where o, C' are positive constants depending only on n, \, A, }g

Lemma 2.3 (cf. [3, Theorem 4.9]) Let v : R® x [0,T) — R be a classical solution of a
linear parabolic equation of the form

9 N
8:—&”1)1‘]‘:0, t>0, xR,
v =g (x), t=0, v €R",

where there exists a positive constant C' such that

M <a? <AL [0]gag, <C
270
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Then there holds
Delcogy )+ 1P%leogy ) T [D*0lges @) S Bllenay,.,)

where C3 is a positive constant depending only on n,\, A and C, R, Ii

According to problem (2.5), we have the following lemma.

Lemma 2.4 1 is closed.

Proof Suppose that u is a solution of (x,). For A € 'y, set

F(A) = 77; Indet A+ (1 — 7)Tr A.
Let A1, A2, -, A, be the eigenvalues of A. Define
FOw Az, A) = F(A) = " Indidg - A+ (L= )0 + Ao + o+ A),
PO A2y An) = F*(A) = Tln)\l)\2-~)\n—(1—7')< Lo )
n A1 A An

One can verify that D?f, D?f* are negative in a cone ¥ = {\; > 0,\y > 0,---, A\, > 0}.
By [2], we deduce that F, F'* are smooth concave functions defined on the cone I'y, which are
monotone increasing.

It follows from Corollary 2.1 that if ug(z) satisfies condition B then u(xz,t) does so. For
T>5>0,R>¢€>0,define

BRfe,T = .BR,6 X (O,T), BRfe(T, S) = BR,6 X (S,T).
Furthermore, combining Lemma 2.2 with Lemma 2.3, we have

HuHCZ'l(BR—e,T) = C, Hu”c“‘*’zzu (Br-e(T)s)) < Gy, (26)

where 0 < «a < 1, Cy is a positive constant depending only on ug, R, T and C5 relies
on ug, \,A,R, T, ! i By (2.6), a diagonal sequence argument and the regularity theory of

) e

parabolic equations imply that I is closed.
To prove that I is open we need the following lemma (cf. [10, Theorem 17.6]).

Lemma 2.5 Let B1,B> and X be Banach spaces and G be a mapping from an open subset
of By x X into Ba. Let (u,T) be a point in By x X satisfying that

(i) Glu,7]=0,

(ii) G is continuously differentiable at (u,T),

(iii) the partial Fréchet derivative L = G%ﬂ’;) is invertible.
Then there exists a neighbourhood N of T in X, such that the equation Gu, 7| = 0 is solvable
for each T € N with solution v = u, € By.

By the implicit function theorem, we have the next lemma.
Lemma 2.6 1 is open.
Proof Define the Banach spaces

X =R,

B =C* " (B,

By = C*% (Bry) x C*** 3" (PBg.1)
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and a differentiable map from By x X into Bs,

G:(u,7)— [8u

T 2
Y nlndetDu (1 =7)Au,u uo}.

We take an open set of By x X:
A 9 3A
@—{u‘2I<Du(m,t)< 2I,u631}><(0,1).

Suppose that (u,7) € ©. Then the partial Fréchet derivative L = G%u ) is invertible if and
only if the following Cauchy-Dirichlet problem is solvable:

ow T .. 0w

7w Y A Aw = B
ot~ n" Oxidw (I-7)Aw=f, (z,t) € Brr,
w:gy ($7t)€PBR,T7

where (f,g) € B2. Using the theory of the linear parabolic equations (cf. [14, Chapter V,
Theorem 5.6]) we can do it.
Thereby applying Lemma 2.5 and using approximate methods, we deduce that I is open.

Lemma 2.7 Let ug : R — R be a C? function which satisfies condition B. Then there
exists a unique strictly convez solution of (1.1) such that u(x,t) satisfies condition B and (1.3).

Proof For N € Z*, T > 0, consider the Cauchy-Dirichlet problem

ou 1 2
or o ndetD*u=0, (w.t) € By, (2.7)
u = uo, (z,t) € PBN 7.

By Lemmas 2.4 and 2.6, there exists a unique strictly convex solution of (2.7). We denote it
by un(z,t). Corollary 2.1 tells us that un(z,t) satisfies condition B. For Qg o, CC By 1, by
Lemmas 2.2 and 2.3, there exists a positive constant C' independent of N such that

[DQUN] S C

"2 @r )

By condition B, there exists a positive constant C independent of N and i such that
) -
unleo@y ) T1PuNlcoq, ) 1P unlcoq, ) < C-
37 3" 3"

A diagonal sequence argument and the regularity theory of parabolic equations imply that we
obtain the desired results.

Proof of Theorem 1.1 Using Lemma 2.7, there exists a unique strictly convex solution
to (1.1) satisfying (1.3) and condition B.
By Lemma 2.2, we get

[D?u] <, (2.8)

2 Q) —

where C' is a positive constant depending only on n, A\, A and i
We will derive higher order estimates (1.4) via the blow up argument for [ = 3. To do so,
by [1], we employ a parabolic scaling now. The remaining proof is routine. Define

y=p(x—x0), s=p’(t—to),
u,(y, 8) = pP[u(z, t) — u(wo, to) — Du(wo, to) - (x — x0)].



196 R. L. Huang

It is easy to see that
0 0

887.14“ = u

2 2
Dju, = Dyu, Py

and
D;uu = u*>"'Dlu

for all nonnegative integers . By computing, u,(y, s) satisfies

0 1

U _ 1ndetD2uH:O7 5>0, yeR",
ds n
Up = uu(y,5)|t:t0, s=0,yeR"

with
1,,(0,0) = Du,(0,0) = 0. (2.9)

Suppose that |D3u|? is not bounded on R™ x [eg, +00). By [12, Lemma 3.5], there would be a
sequence {tx} (tx > €o) and Ry — —+o0, such that

20p := sup |D3u(x,t)]* — 400 (2.10)
IEBRk,xO
and
sup | D3u(z,t)]? < 2pp. (2.11)
TEBR,, g
t<tp

Then there exists x such that
|D3u(zy, tr)|*> > pp — 400, as k — 4o0. (2.12)

Let (y, Duy, (y,s)) be a parabolic scaling of (z, Du(z,t)) by i = (pi)? at (zy, ty) for each k.
Thus u,, (y, s) is a solution of a fully nonlinear parabolic equation

Quy

Os
Combining (2.10)—(2.12) and (2.8), we arrive at

1
— Indet D*u,, =0, 0<s<pity, y€R" (2.13)
n

M < Diuy, =Diu <AL (y,s) € R" x [0, +00); (2.14)

for all y1,y2 € R", y1 = pr(x1 — 20), y2 = pu(r2 — x0),

|D12}1uﬂk _Diguuk| :M—Q|D§1U_D§2u| <M—(yc_)0
ly1 — y2|® k |z1 — x| T k ’
and
|D3uy, |? = p,?|D3u)* <2, VyeR, (2.15)

| Dy, (0,0)] > 1.
For each i, set w = D iuy, . From (2.13), w satisfies

ow 1ui]

os T 0-
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Using (2.15) and Lemma 2.2, there exists a constant C' depending only on n, A\, A, ! | such that

’en?
we derive

(D3] oo @, ) <C VYyeR™ (2.16)

390

Combining (2.9) and (2.14)(2.16) together, a diagonal sequence argument shows that u,,
converges subsequentially and uniformly on any compact subsets in R™ x [0, +00) to a smooth
function us, with

[Djusclcas, =0, Y(y,5) ER" x [0,+00)
390

and
|D3uac (0,0)] > 1.

It is a contradiction. So sup |D3u(x,t)| < C. From equation (1.1), using the interior Schauder

ZER™
t>e€o

estimates, we obtain (1.4) for I =3,4,5--- .

The following lemma shows that how the self-expanding solutions are constructed by the
flow (1.1).

Lemma 2.8 If ug satisfies conditions A and B. Then u(x, 1) is a smooth solution to (1.5).

Proof The main idea comes from [6], which we present here for completeness.
If ug satisfies conditions A and B. Then by Theorem 1.1, there exists a unique smooth
solution u(x,t) to (1.1) for all ¢ > 0 with initial value ug. One can verify that

ur(z,t) ;== R~ 2u(Rx, R*t)
is a solution to (1.1) with initial value
ur(z,0) := R 2ug(Rz) = uo(x).
Here condition A is used. Since ug(x,0) = ug, the uniqueness results in Theorem 1.1 imply
u(z,t) = ug(z,t)

for any R > 0. Therefore u(z,t) satisfies (2.4), and hence u(x, 1) solves (1.5). In other words,
u(z, 1) is a smooth self-expanding solution.

We present here the proof of Theorem 1.2 by the methods of [6].

Proof of Theorem 1.2 Assume that

Up(z) = Rlir_{lw R™%ug(Rx).

So U(x,0) satisfies condition B and we obtain

Uo(z) = lim R 2ug(Rx) = Jim R™2172ug(Rlz) = 172Uy (lz),

R—o00

namely, Up(z) satisfies condition A. Then by Lemma 2.8, we conclude that U(z,1) is a self-
expanding solution.
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Define
ug(x,t) := R %u(Rx, R*t).
It is clear that ug(x,t) is a solution to (1.1) with initial value ug(z,0) = R~%uo(Rz) satisfying
condition B.
For any sequence R; — +00, we consider the limitation of ug, (x,t). For ¢t > 0, there holds

D?up,(z,t) = D*u(R;x, R%t).
Using Theorem 1.1, we have
M < D?up,(z,t) < AT

for all  and t > 0. Moreover, according to (1.4) in Theorem 1.1, we get

sup |Dug,(-,t)] <C, Yt>ep, | =1{3,4,5---}.
TER™

For any m > 1, [ > 0, using (1.1), there exists a constant C' such that

m
sup DluRi}SC’, Vit >ep, 1 ={3,4,5---}.
rER™ otm

We observe that
UR, = Ri_Quo and Dug,(0,0) = Ri_lDuo(O)

are both bounded. Thus ug,(0,t) and Dug,(0,t) are uniformly bounded with respect to i for
any fixed ¢. By the Arzela-Ascoli theorem, there exists a subsequence { Ry, } such that ug, (,?)

converges uniformly to a solution U(z,t) to (1.1) in any compact subsets of R" x (0,00), and

U(z,t) satisfies the estimates in Theorem 1.1. Since ad(tj is uniformly bounded for any ¢ > 0,

U(z,t) converges to some function ﬁo(x) when ¢ — 0. One can verify that
Up(z) = lim U(x,t)
=lim lim R;?u(R;z, Rt)

t—0i—4o00

= lim lim R; *u(R;z, R?t)

i——+o00 t—0

lim R;QUO(Rix)

i——00

= UQ(J))

By the uniqueness results, the above limit is independent of the choice of the subsequence {R;}
and

~

U(x,t) =Ulx,t).
So, letting R = V/t, we have t~'u(vtz,t) = u 4 (z,1) converging to U(z,1) uniformly in
compact subsets of R” when ¢ — +o00. Theorem 1.2 is established.

At the end of this section, we present the following Bernstein theorem for equation (1.5).

Proposition 2.2 Let

w=u-— 2<x,Du>.

If u is a C? strictly convex solution to (1.5) and w takes its mazimum or minimum at some
point x € R™ with |z| < +oco. Then u must be a quadratic polynomial.
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Proof It follows from Caffarelli’s regularity theory of Monge-Ampeére type equations and
interior Schauder estimates that u is a smooth strictly convex solution. From (1.5), w satisfies

iy 1
uw;; = {x, Dw).
72

Since w takes its maximum or minimum at some point € R™ with |z| < +oc0. For every R > 0,
by strong maximum principle (cf. [18]), we deduce that w must be some constant in Br(x) also
in R™. Using the Pogorelov’s theorem in [17], we show that « must be a quadratic polynomial.

3 Longtime Existence and Convergence

As in [5], we can also show that a bound on the height of the graphs is preserved along (1.1).

Lemma 3.1 If u(x,t) is a smooth solution to (1.1) and sup |Dug(x)|*> < +o0o . Then
-’EERW

sup |Du(z,t)|> < sup |Duo(z)|?. (3.1)
zER" zER"

Proof By (1.1), we have
) 1, 2
81§|Du(m,t)|2 - nu J(|Du(m,t)|2)ij = —nupqupiuqi <0.

Using Lemma 4.2 in [23], we obtain the desired results.

To obtain the convergence of the flow (1.2), we introduce the following decay estimates of
the higher order derivatives based on Theorem 1.1 (cf. [13, Theorem 1.3]).

Proposition 3.1 Assume that u(z,t) is a strictly convex solution to (1.1) satisfying (1.3)
and condition B. Then there exists a constant C' depending only on n, A, A, 510 such that

sup |D3u(-,t)] < C, Vi > €. (3.2)
rER™ t
More generally, for alll={3,4,5,---} there holds
l C
sup [D'u(-, )| <, Vt>eo. (3.3)
zER™ t

Proof of Theorem 1.3 By Theorem 1.1 and Proposition 2.1, (1.2) admits a long-time
smooth solution.

Using (3.3) and (3.1), a diagonal sequence argument shows that as t — oo, Du(x,t) converges
subsequentially and uniformly on any compact subsets of R" to a smooth function Du, with
|D}too| = 0, Vy € R"™ for I > 3. So Dus, must be an affine linear function and (z, Duc ()
an affine linear subspace. It shows that the graph of the mean curvature flow (1.2) converges
to a plane in R2".

As the proof of Theorem 1.1 in [5], if |Dug(x)| — 0 as || — oo, then the graph (z, Du(z,t))
converges smoothly on any compact sets to the coordinate plane (x,0) in R2".

Acknowledgements The author wishes to express his sincere gratitude to Professor Y.
L. Xin for his valuable suggestions and comments. He also would like to thank the referees for
useful comments which improved the paper.



200 R. L. Huang
References
[1] Andrews, B., Pinching estimates and motions of hypersurfaces by curvature functions, J. Rein. Angew.
Math., 608, 2007, 17-33.
[2] Caffarelli, L., Nirenberg, L. and Spruck, J., The Dirichlet problem for nonlinear second order elliptic
equations, III: Functions of the eigenvalues of the Hessian, Acta. Math., 155, 1985, 261-301.
[3] Caffarelli, L., Interior W21 estimates for solutions of the Monge-Ampere equation, Ann. Math., 131(2),
1990, 135-150.
[4] Caffarelli, L., A localization property of viscosity solutions to the Monge-Ampére equation and their strict
convexity, Ann. Math., 131(1-2), 1990, 129-134.
[5] Chau, A., Chen, J. Y. and He, W. Y., Lagrangian Mean Curvature flow for entire Lipschitz graphs. arXiv:
0902.3300
[6] Chau, A., Chen, J. Y. and He, W. Y., Entire self-similar solutions to Lagrangian Mean curvature flow.
arXiv: 0905.3869
[7] Chen, J. Y. and Li, J. Y., Mean curvature flow of surface in 4-manifolds, Adv. Math., 163, 2001, 287-309.
[8] Chen, J. Y. and Li, J. Y., Singularity of mean curvature flow of Lagrangian submanifolds, Invent. Math.,
156, 2004, 25-51.
[9] Colding, T. H. and Minicozzi, W. P., Generic mean curvature flow I: generic singularities. arXiv: 0908.3788
[10] Gilbarg, D. and Trudinger, N., Elliptic Partial Differential Equations of Second Order, 2nd ed.,
Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin, 1998.
[11] Han, X. L. and Li, J. Y., The mean curvature flow approach to the symplectic isotopy problem, Int. Math.
Res. Not., 26, 2005, 1611-1620.
uang, R. L. and Bao, J. G., The blow up analysis of the general curve shortening flow. arXiv: .
12] H R. L. and Bao, J. G., The bl lysis of th 1 h ing fl Xiv: 0908.2036
uang, R. L. an ang, Z. Z., On the entire self-shrinking solutions to Lagrangian mean curvature flow,
13] H R. L. and W Z.Z., On th i 1f-shrinki luti L i fl
Cal. Var. PDE, to appear.
[14] Lieberman, G. M., Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996.
[15] Lions, P. L. and Musiela, M., Convexity of solutions of parabolic equations, C. R. Acad. Sci. Paris, Ser.
I, 342, 2006, 915-921.
eves, A., Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math., ,
16] N A., Singulariti f L i fl Masl 1 I Math., 168
2007, 449-484.
[17] Pogorelov, A. V., On the improper convex affine hyperspheres, Geom Dedi., 1, 1972, 33-46.
rotter, M. H. an einberger, H. F., Maximum Principle in Differential Equations, Prentice Hall, New
18] P M. H. and Weinb H. F., Maxi Principle in Diff ial K i P ice Hall, N
Jersey, 1967.
[19] Smoczyk, K., Longtime existence of the Lagrangian mean curvature flow, Cal. Var. PDE, 20, 2004, 25—46.
[20] Smoczyk, K. and Wang, M. T., Mean curvature flows of Lagrangian submanifolds with convex potentials,
J. Diff. Geom., 62, 2002, 243-257.
[21] Tso, K. S., On a real Monge-Ampere functional, Invent. Math., 101, 1990, 425-448.
[22] Xin, Y. L., Mean curvature flow with convex Gauss image, Chin. Ann. Math., 29B(2), 2008, 121-134.
in, Y. L., Mean curvature flow wit ounde auss image, preprint.
23] Xin, Y. L., M fl, ith bounded G i i
[24] Xin, Y. L., Minimal Submanifolds and Related Topics, World Scientific, Singapore, 2003.



