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The Inverse Mean Curvature Flow in
Rotationally Symmetric Spaces
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Abstract In this paper, the motion of inverse mean curvature flow which starts from a
closed star-sharped hypersurface in special rotationally symmetric spaces is studied. It is
proved that the flow converges to a unique geodesic sphere, i.e., every principle curvature
of the hypersurfaces converges to a same constant under the flow.
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1 Introduction

The inverse mean curvature flow space was studied in Euclidean space or asymptotically
flat Riemannian spaces. Huisken and Ilmanen used it to prove the Penrose inequality for
asymptotically flat 3-manifolds. A classical solution of inverse mean curvature in Euclidean
space is a smooth family X : M™ x [0, T] — R™*! of closed hypersurfaces satisfying

0 1
X(p,t)= 4 M™ <t<T
g X@t)= v(t), peM® 0<t<T,
where H(p,t) = div(r) > 0 and 7/(p,t) is the outward unit normal vector of the surface

X(-,t)(M™) at the point X (p,t) and div is the divergence of X (M,t). Gerhardt [4] proved
that for a smooth, closed, star-sharped initial hypersurface of strictly positive mean curvature,
the evolution equation has a unique smooth solution for all times, moreover the rescaled surfaces

X(t)Le n X(t)

converge exponentially fast to a unique sphere. On the other hand, Huisken and Ilmanen [5]
proved higher regularity properties of inverse mean curvature flow in Euclidean space.

However, the results do not close relate to the ambient space, namely, Euclidean space could
be perturbed in some fashion. In this paper, we discuss that the ambient space is a rotationally
symmetric space with nonpositive sectional curvature and Euclidean volume growth. We also
discuss the case that the ambient space is hyperbolic space whose flow is different from Euclidean
space to a certain extent.

Let N™*! be a rotationally symmetric space, whose metric is

g = dr? + \*(r)o;;da'da? (1.1)
under the geodesic polar coordinates, where o = Jijdxidxj is the canonical metric of S™,
A€ C®(R4),A(0) =0,X(0) =1 and A(r) > 0 for any r > 0. Correspondingly, we introduce
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the local tangent vector fields of S® and N™*!
{ontin = {00
Ox; Ji=1 0x; Ji=1 orl’
respectively.

In this paper, we only consider the manifolds with nonpositive sectional curvature, which is
equivalent to A’ > 0. Furthermore, if the manifold N also has Euclidean volume growth, which
means that X’ is uniformly bounded, we prove the following theorem.

Theorem 1.1 Let N1 be a rotationally symmetric space with nonpositive sectional curva-
ture, My be a smooth closed, star-shaped hypersurface of N Y, which is given as an embedding

Xo:S" — N
whose mean curvature H is positive. Then the evolution equation

) 1
X= 7. X(0)=Xo (1.2)

on S"™ x Ry, where v is the outward unit normal vector of the surface X (t), H = H(t) is the
mean curvature of X (t) and X = ‘31: 8‘97" + df; 8?& if we use the geodesic polar coordinates in
N1 has a unique smooth solution for all times.

Case 1 If X is uniformly bounded, then the rescaled surfaces

X(t)=e nX(t)

1
converge to a uniquely determinate sphere of radius )\,(100) (Arigffl\/[‘))) ", where N (c0)2 lim X (7),
T—00

Area(My) is the area of Mo in N ', and |S"| is Lebesgue measure of n-sphere in Euclidean

space.
Case 2 If A(r) = sinh(r), the rescaled surfaces

converge to a uniquely determinate sphere of radius 1.

2 A Reformulation of the Problem

It is well-known the existence of the short time solution to (1.2) (see [3] for example). Let
[0,T) be its maximum interval, that is, H(¢) > 0 for all ¢ € [0, T). Considering this embedding

X, :S" = M — N"tt vie[0,T).

Let D be the Levi-Civata connection on S™. We always regard r(z,t) as a function on S, for
fixed t. Then derivative of r(z,t) in the direction of 8(;» can be written as D;r. Then, we have
local coordinate vector fields of M (t)

o\ 0%, 0 0
8xi) = Dir

s _
“i Xt*( oxt or + oxt’

for fixed ¢t and the outward unit normal vector of M (t)

IRV RN
”*v(ar A~2(r)D raxj), (2.2)
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where D’r = ¢ D;r, (¢7) is the inverse matrix of (0;;), Dr € T(TS"), v = /1 + A=2(r)|Dr|2,
| o | is with respect to the metric of S™: ¢;;daz’da?.

Remark 2.1 In this paper, we use different norms | e | with respect to the metric from
tangent space where e belongs; D’ always denotes o D;.

Naturally, we have the metric g = g;;dz’da? of M(t) induced from N, where
gij = glei,ej) = DirDjr + N\ (r)oij. (2.3)

From (1.2) and (2.2), we obtain

dr 1 ) Dir
frng d Pt = — . 2.4
dt  Hwv and @ N Ho (2.4)
Then
or dr , v
fr — D ] — . 2.
ot dt T Ty (25)

Let D, V and V be the Levi-Civita connections of S™, M and N, respectively. ffj denote
the Christoffel symbols of S™ with respect to the tangent basis { 8?“ 1, and I‘Zﬁ denote the
Christoffel symbols of N1 with respect to the tangent basis { 8‘; o, ud 887" }. Then we have

Al
sy ng = FZSO = T80 =0

Ly =T, T =-MWoy, Ifi="

179
for i,7,k > 0. R,Ric and R, Ric and E, Ric denote the curvature tensors and Ricci tensors of

N, M,S", respectively, where R = —V o V, etc., and we write g,; £ g(a?w 8‘2].).
From [7, Appendix A}, we have

o 0\ 0 0 N
<R(5‘xi’ 8r)8xj’ 5‘r> LA
o 0 o 0 1—(\)?
<R(3xw 3x]‘)axk’ 8xl> = 22 (gikgjl - gilgjk)a
and other components are equal to zero. A straightforward computation shows

Rie(v ) = (R(0) g o) = 0

_ N , n—1 (N)Z—=1-X\
Ric(v,v) = —n N |Dr|” - 0222 22 .

Let hijdxidxj be the second fundamental form of M in N. Then

and

hij = —<Vej €, I/>

1,0 5 e O 0 3} 0 0
N _v<8r —AT(D Taxk’mvaar (”ar + 8:&) +vazi (”ar + 8fcl>>
1,0 1 . 0 9 0 0 d
N _v<8r a )\2(7“)D Taxk’rjvaar oz’ +Tij8r +rivai]‘ or +vaii 5‘xi>

k .
- _i{”<§r’va"§r aii> tri <§r’vaij aii> -7 :£Jr<aik’vé’r aii>
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k
D TDT au 8r>_l?\2r<8ikvvaij 8i1>}

(o
{w (¥ amz>+Dk§5”<§r’Vaziaik>
(or

DkrD T Dkr 0 0
8):] 8xk 22 <5‘xk Vv aii oxt >}
1 N (r) Dk7'~l 2
= —U{Tij — )\(T))\,(T)Uij‘ -2 /\(’I“) rirj — /\2 F”A Ukl}
’

((:)) rir]}, (2.6)

where 7; ; denotes the second covariant derivative of r.
For the convenience, we define function

r(z,t) 1
oz, t) = /C AGs) ds

on S™ x [0,7). To make the integral been meaningful, ¢ is supposed to be an arbitrary fixed
positive constant. Then we have

1 A
== {rii =2V (e -2

i
Dr =\ Do, 87':/\.84,0 1 A

ot gr’ ¥hi T \Ted T 2T (2.7)

Moreover
. . J
V= VLHIDGR, gy =Ny +ews). 0= e - P ) )

So the second fundamental form of M could be expressed as

A i i N 1y
hij = . [N (oi; + @iv;) — @ijl, I =g"hjn = /\U5j W’ o5, (2.9)
where 7% = g% — ‘P:}fj and @' = o,
Evolution equation (2.5) can also be rewritten as
Ao v?
= . . 2.10
ot nXN —0dYy;; (2.10)
Since Vye; — Vo, X = X, L’)t’@z‘] 0, we have
0
({)tgij =V A <6i76j> = <VXeivej> + <eia vXej>
= (Ve X, ej) + (ei, VeJX>
= (Ve (jr)-0) + {0 Ve (g ))
1
H<V671/ ej) + H(ez,ve v)
2
= 2 hy, (2.11)

and

c‘?ty = <gtu, ei>gijej = —(1,V., X)ge; = —<u, Ve, (Z)>gijej

—w (=~ ) @
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Finally, we give a comparison theorem which is used several times in this paper. Suppose
that (M™, g) is an arbitrary Riemannian manifold, V is Levi-Civita connection. Let

9,
Llu] = (,;: — F(x,t,u, Viu,V?ju),
where x = (2!, -+ ,2™) is a local coordinate system of M, V; = Vaii , Viu= VVu( it 525),

and the function F' contains the metric g;; = g( a;dciv 8(;' ).
If v,w € C*1(M x [0,7)), then we define set

Gv,w:{(xvtauvpivpij) | ({E,t) € M x [OaT)a u € <va>7 pi € <Vﬂ), viw>v DPij € <V1,2jvv Vf]w>}v

where (v, w) = (v(z,t), w(z,t)), (a,b) denotes the interval between a,b. That is, when a < b,
(a,b) = [a,b], and when a > b, {(a,b) = [b,al.

We need the following theorem, which is a generalization of the result in [10, Theorem 2.4.4].
The proof is similar.

Theorem 2.1 If (M™,g,V) is a closed Riemannian manifold, and

(1) v,w e C*Y (M x [0,7));

(2) there exists domain E of M x R x R x R" x R™*", s.t. E D Gy, F(x,t,u,pi,pij) is
continuous and has one order partial derivative with respect to py; in E;

(3) matrix (8F(x’g’;‘j"”p"’j)) is positive definite in Gyy;

(4) L] > ()0, L[w] < (>)0in M x [0,7), and v > (<) w in M.
Then we have v > (<)w in M x [0,7].

Remark 2.2 When we use this comparison theorem, we often compare with function w
which satisfies

ow
ot

where F'(x,t,u,p;, pij) > (<) f(t, u, p;, pij) for any @ € M, correspondingly we consider operator

< (>)f(t,w,0,0),

E[u] = g:: — f(t,u, Viu, V?ju).

3 Evolutions

Let ¢ & A(r)((?r V) = )‘S}r), which could be seen as “support function” of M in N, and ¢ £
P}¢. Curvature tensors of N are Ry = (R(ei, ej)ex, er), and Roj = Rujr = (R(v, e))ex, er).
We sometimes write A = Ay, V =V, V, = Ve, grad= grad,,, for short.

Evolution equations are very helpful for estimates of asymptotic behavior and long time
existence (see [1, 2, 12] for instance). Now let us compute several evolution equations, which

will be in the following chapters.

. 0 Ahg; 2 Al? 1

Lemma 3.1 (1) athij = H2] - H3 ViHVjH—F |H|2 hij - H<Ril,6j,u>
1
* 2 [—9"Vi(Rojit) + 9" Vi(Roikj) — Rraph g™ + Rixphl g™,

.. 0H AH 2 . AP 1.
(ii) ézg = {{2 —H3|VH| _1H 7HR1C(Z/,I/), ;
o 2 . . .
(iil) 5 = H2 (Lo + |AI7¢) + 172 (gi)Rlc(l/, v) )\Rlc(z/, 8r))’

8 . A//
(v) O = G DY+ 2607V Vo~ mpg? |
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Proof (i) By definition of h;;, we deduce

0
el ==V 5, (Veej,v)

= —<VXve,;ej7V> o <vei€j’ ay>

ot
= (Ve Ve, X, v) — ;<Riuej, V) + (Ve,ej,ex) Ve, (11{)
_ —<Vei, (;vqy n uveijl),y> - I;<Rwej,y> + (Ve e, e0)Ve, (;)
= Ve Vo) =9V (1 ) (eres) = o {Rives, )
_ ;Ihikhjlgkl . vv(;)(ei,ej) - ;I<Rwej,y>; (3.1)

from Simon’s equation in [8] (see also [11]),

Ahij = VVH(CZ', ej) + gklgpq(Rkilphqj + Rkijphql) + thhqj — hij|A|2
+ g" Vi (Rojir) + g™ Vi(Roy)-

Combining above two formulas, we obtain (i).

(ii) Recalling (2.9) and contracting the above equation (i), then the desired equation follows
easily.

(iii) Let X be the local tangent field in N. We have

Vo= (K= (50%)5) 32
and o 1o Niv 1,0 \0 v
Vo (o) =¥ oo P (i~ o o) =V i
Combining (2.10), we get
0= 50 = 5 =M goma(yy)) 9
On the other hand, we have

Np = A()\<§T,1/>) = iA)\(r) +2<grad)\,grad(<§r,l/>)> + )\A<§T,l/>.

Hence, we need to calculate above 3 terms on the right-hand side. Since N"*! is a rotationally
symmetric space, we have

Ar = Anr = ni\\/ and V'r(X,X)= >/\\I{<X,X> - <X, §r>2}. (3.4)

And Vyr = (g,,)T, where T represents the projection from T,N to T,M for any p € M;

sometimes we write 0, = z?r for short. If we choose normal coordinates {X;}7 ; on M, then

ANT) = NAr 4+ N |V prf?
=N (Vx, Vx,r = (Vx, Xi)r) + N[0 |?

i=1
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0N X

_ )«(Z(invx,.r — (Vx, X)r) — H<u, o

i=1

=\ (Ar - VVr(v,v) — I;I) + N0, 12

(= Oy - ) 09

where the last equality comes from (3.4) and

(soar gma({ 1)) = XX 50)
X<X~§r>{<V&§~ )+ (g V)

:zn: <X7/787T>{ l<87TaXi><8T7V>+h(8:7Xi)}

=1
T ATy ()20 T2
=X, 00)= ) (5 )T, (3.6)
where the third equality come from (3.2).
Since
B
A<ar,y> = (Vx,V, 00 0) + 2(Vx, 00, Vx,) + (0, Vx,Vx,0), (3.7)
)\/
(Ve Vx,0r) = (Vx, () (X0 = (0, X0)01) ) ov)
)\/ PN \
Vx X ) = () Vxr (0, X0 v) = | Vi, (0, X (0, )
A/

1\ (Or, Xi)(Vx,0r, 1)

N N N
- _H _(A) 10100y, v) = ((Vx,0y, Xi) + By, Vi, X))y, 1)

A A
A\ 2 9
+ (7)) 0n X020, v)
B )\l )\l 2 )\l/ T )\/ )\/ T2
=i’ —(2(7) = )IN@n) = | =107 )
)\/
+H>\|<8,«,l/>|2
- N M 2 N ) N N -
=t () @)+ 1 0P+ (3(7) =N )TN0, 3.9
/ i !
2(Vx,0r, Vx,v) = 2AA (Xi = (0r, Xi)0r, Vx,v) = 2H>)\\ - 2AA h(o,,0,), (3.9)

(0r, Vx,Vx,v) = (0r, X;){X;,Vx,Vx,v) + (0r,v) (1, Vx,Vx,V)
= (0r, X;)Vx, WX, X;) — (0r, X;){((Vx, X;) ", Vx,v)
+(0r,v) (v, Vx,Vx,V)
= (0r, X;)(X;(H) + Ric(v, X;)) = (0r, )| AP
= (0, gradH) + Ric(v,d,) — (v, d,)Ric(v,v) — (0, V)| A%, (3.10)
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combining (3.5)—-(3.10), we reach at
! )\ 2 . )\ .
Ap = HN + X0, gradH) — . |A]” + ARic(v, 0,) — URIC(V, v).

Combining this with (3.3) yields (iii).
(iv) From (ii) and (iii), we have

o 1 8H 1 99 1 2 1 (D
ot H2p ot H¢20ot  H4o (AH HWH | ) H3¢2 (A¢ ARlC(V’ 8r))
and 1 2 1 2 2
_ _ 2\ _ _ 2 .
A = H2¢<AH V) 1220~ VO + o VH V6.
Then, we deduce
oy 1 5 3 0
oy = g2 0+ 2007V - Vi + A ¢R1c(y, ar)'
Note Ric(v, 5‘9 )=—1" ’\;. (iv) follows immediately.

4 Rotationally Symmetric Spaces with Nonpositive Sectional
Curvature and Euclidean Volume Growth

From (2.5), due to Theorem 2.1, we only need to solve corresponding ODE,

ds  A(s)
dt — nN(s)
Hence we obtain
t
inf InA(r(y,0)) <InA(r(x,t)) — < sup InA(r(y,0)), VxzeS" te][0,T). (4.1)
yesr ——

If we differentiate (2.10) with respect to the operator D¥@ Dy, define w = %|D<,0|27 and

F = ")‘Iff:‘ #3  then we obtain
1 g . AN
%‘;j + 2 ( - a”Dk(DiDjap)Dkgo +a'D;w + 2nv2 w) =0,

.. ~ij .
where a” = 7, , a' = ng and F = H?.
v Pi v

Applying Ricci identity and the Gauss equation Eijkl = 04,01 — 040k, We deduce

Ow 1 py i ii ii nAIN!

o+ Fz(_“jDiDijra Diw + a“oij| Dpl* — a¥ pip; + 2 |D90|2)
%MD Dyo- D Do < 0 4.2
=~ 0 DiDiy- DiDip <0, (4.2)

where the above inequality follows from this simply fact: if matrix A, B, X are symmetry, and
A>0,B>0,ie., A, B are both positive definite, then we have tr(AXBX) > 0. In fact, there
exist a reversible matrix P and diagonal matrices A, Ay > 0, s.t. A = PA;PT, B = PA,PT.
If we define Y = PTX P, then

tr(AXBX) = tr(PA;PTXPA,PTX) = tr(A Y TALY) > 0.
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Lemma 4.1 If 0 is a constant and (a"),xn > 0(0Y)xn, then a¥o;j|Dol? — a¥pip; >
(n — 10 Dol

Proof Let A = (a¥)uxn, 0 = (04j)nxn. Then there exist a reversible matrix P and
real diagonal matrices A= diag{p1, -+ ,pnt, A = diag{\, -, \n}, s.t. A= P/~\PT,U’1 =
PAPT,

By (a)nxn > 0(69)pxn, we have p; > 9)\;1 for each ¢. Then

ai;|D|* — apip; =Y (nidi (D) " PAT'PTDy) — (D) " PAPT Dy
_ T —1pT 1 t 2
= > X (D) PATIPTDG — | (P'DR)?)
N 3

1
> TpaA—-1pTr, T 1,)2
>0 % ((D(p) PAT*P D¢ A (P Dgp)z>
= 0(n — 1)|Dyp|*. (4.3)
where (PTDy); is the i-th component of vector PT D.

Due to Theorem 2.1, w < supw(x,0). Therefore, v is uniformly bounded, matrix & is
Sn

uniformly bounded, and a% is uniformly elliptic.
If we differentiate (2.10) with respect to ¢, we obtain

00p a¥ Op 1 OF (830) 1 OF0p 1 nA\"0¢

oror 2 o T rop\at)i T TFrop 0t T R 02 ot (44)

By Theorem 2.1, ‘?d‘f is uniformly bounded. From estimates of [6, Section 5.5], |¢|2,« is bounded.

. ’ ~ia
Since H = ’f\i‘) — G, ;, we have

n\ +C - n\N +C
DY/
where C' is a constant depending on the initial hypersurface My and the dimension n.
In this paper, we always define C' and 6 to be generic positive constants which only depend
on the initial hypersurface My and the dimension n, otherwise, we will specify it.
In the rest of this section, we always suppose that )\ is bounded from above.
Then we have

H < (4.5)

A2 5 _ (nN +C)?
< < 4.
R N (46)
where (' is a positive constant depending on the initial hypersurface M, and the dimension n.

Theorem 4.1 Ifw = }|Dy|? is as above, then there exists 6 >0 s.t. w < C-e™ .

Proof Let f(t) = sup w(x,t). Applying Theorem 2.1 to (4.2), we obtain

TES™
af 1 A" 1
t. < 0.
3O >0, st dt+clgrg((A2+A)H2)f,o
Then by (4.5),
a
< .
a o =0

integrating both sides yields the conclusion.
Combining Theorems 4.1, we use interpolation theorems to get

3C >0, 60, >0, st |[D*|<C-e (4.7)
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Lemma 4.2 The mean curvature H(t) of M(t) satisfy
Cy < H(z,t)-er < Cy,

where Cy and Co are positive constants.

Proof From (4.5) and (4.1), the right-hand side inequality is satisfied clearly. Then let us
prove the left-hand side one. Recall Lemma 3.1(iv), we have

oy
ot

By Theorem 2.1, we obtain

¥ <supw(e,0), e, Ho = inf(Ho)(,0),
u )

PP D+ 209°V § - Vip — mp® /\;'

By (4.1), we have
o < A(r) §C'e:ﬂ7.
Combining the above inequality, we get the conclusion.
Since (2.8) can be rewritten as
dp v
ot HX
by Lemma 4.2, it is clearly that the time of the solution to (2.8) is infinite. So the solution to
(1.2) exists in S™ x [0, +00).
We consider the rescaled surfaces

X(t)=X(t)e n, VzeS", te|0,00), (4.8)
Correspondingly, radial function r(x,t) = r(x,t)e’ft, and 'gvij,i;ij,%} denote the first, second
fundament form and volume form of X, respectively.

Since 1 < X < oo, 7 has an upper bound and a positive lower bound. Moreover, we claim
the existence of limit of 7. We want to estimate the velocity of 7 with respect to the time ¢,

8?_8reft_reft_veft_reit_( Av? _T‘)eit (4.9)
ot ot n - H n S \nN —Glp ;o ' '
If we define f(x,t) = n}\,:\g’;w, — )+ then by Theorem 4.1 and (4.7), it is not hard to see
that | f(z,t)] < C - e(a =9t for a sufficient small 6 > 0. Thus we have
8’7T )\ T ot
ot (f+n)\’_n)e ’
t ]. r t
— f.o V(s)ds — r)\ )*
fe +n/\’(r)(/0 (s)ds —rX(r) e
t ]. t r r
=f-en— T N (u)dud
f-e n)\’(r)e /0 /8 (u)duds
t 1 t r
=f-en— e n / s\ (s)ds 4.10

Since \” > 0 and 7 is bounded, from fooo |f|e*det < oo and ‘31: = U12 g;, we conclude

> 1 e [T ”
/0 n)\’(r)e ’/0 sN"(s)dsdt < oo.



Inverse Mean Curvature Flow 37

Thus the limit of 7 exists for any fixed z € S™.
If we differentiate ¥ with respect to the operator D of S™, then we have

DF =e »Dr = )\.D@.e*i —0, t— o0
Hence 7 converges to a positive constant , uniformly. The metric of X (t) is
~ _ 2t _ 2t
Gij = e nriry + N (F)ay = A (r(1)e” i + AN(F)oy; — A (k)ai;.
Moreover,

_ 1 N(F) - L A(r) riy N fA(r)\2
Giy— 2( R — (r) rig 2(”)( t)) iy
A(7) A2(7) A7) en A(r) X))\ en
Due to ¢;; — 0 (t — 00), by (2.7), we have ;(73) — 0(t — 00). From Theorem 4.1, we deduce

©ij — 0 (t — 00). Hence
~. ! . N / ]
i A (Fz(s@ 1 GG — N(8) 5
P T AT T )
So the rescaled surface converges to a sphere of radius of k. Fortunately, we can determine this
unique k. By (2.11), we have

0 Vdetg ,.0g;; /detg ;.2
det g = v = 9" hij = +/det
prVdetg =" gy y 97 iy = Vdety,
which implies
d d

threa(Mt) = at /Mt dpy = Area(M;).

Thus, we get Area(M;) = Area(My) - e'. Since 7 converges to a positive constant r, uniformly,
there exists function e(z, 1), s.t.

lim max |e(z,t)] =0 and r(z,t) = (k +c(z,t))en.

t—oo S
For any § > 0, let M(c0) £ lim MN(r). When ¢ is sufficiently large, we have )\(gefl) >
(X(00) — 8)(%en). Then

Area(My) = e 'Area(M;) = e ! A" (r)do
S’IL

>e . )\”((Fc—k Ilslins(x,t))ezr) - [S™
> (N(o0) = )" (i + mine(z, t))" e
where |S™| is Lebesgue measure of n-sphere in Euclidean space. Let ¢ go to infinite. Then
Area(My) > (N (o) — §)"k™ - |S™].
Since ¢ is arbitrary, we have
Area(Mp) > (X' (00))" k" - [S"].

Similarly, we can get
Area(Mpy) < (N (oc0))™k™ - |S™|.
Hence, we obtain
1 Area(Mo)\ »
T V(o) ( S| )
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5 Hyperbolic Space

When N is the hyperbolic space (whose sectional curvature is —1), the metric is

g = dr? + sinh®(r)o;;da’ da?

under the geodesic polar coordinates, that is, we choose A(r) = sinh(r). Inheriting the
notations before, (j) = sinhr((?r, vy, ¥ = I;¢, oij = 0ij + Sinlle T, Gij = sinh?r - Tijs
o(z,t) = j‘:(mxt) s1nh(€) ds and 5 = 0" — sin%)Q v TDJ - We obtain
, , coshr 1 ;
ht — zkh - 5t — &’Lk .
379 T sinh e T wsinhr” PR
coshr _. coshr X oy,
= 64 D'rD;r — L 5.1
v-sinhr 7 ¢3sinh®r 77 v.sinh®r (5.1

Moreover, if we define M;; £ H - h;; and M j £ g% . My, then we have the following result.

NG Ah;j 2 |A)?
Lemma 5.1 (i) 8th1j HQJ = s ViHVjH—i- o hij + h”,
... OH AH 2 A2 n
= — H|? -
W) o = 2 ~psVHET -y
... 0o 1 2
(i) 5 = 1 (80+1AP0)
: o 2.2 2 3,2
(V) ), = 6D + 2602V 6 - Vi — nye?,
OM,;,; 1 2 2n 2
(V) at” — 2 AM” — H2 V.H - VJH—F H2 Mij — H3 <VH, VMij>,
. OMF 1 2 . 2n
(vi) o = HQAMf H3 (VH,VMF) - H2ngViH-VjH+ HQMf HQM”M ik
.. 0|A]? 1 y 2 ; ; n+ |AP? ; -
(vi) "5, = H2A|A|2 - th“viijH— H2W VR +20 0T AP — thhfh;.
Proof Since N has constant sectional curvature —1, we have Rijr = —gigji + JiGjk,

Riojo = —gi; and Ro;jrx = 0. Hence by Lemma 3.1(i)—(iv), Lemma 5.1(i)~(iv) follow easily.
Combining (i), (i) and (2.11), it is not hard to show (v)—(vii).

By (4.1), we have

inf In(sinh(r(y,0))) <In(sinh(r(z,t)))— ! < sup In(sinh(r(y,0))), VxzeS", te0,T). (5.2)

yesn n= yesn
. . 2
Since ¢ = sinhr( 2 ,v), due to |[A|?> > %" and Theorem 2.1, we have

¢ >en - min ¢(z,0), (53)

Let Ry = misn ¢(z,0), Ry = m%xsmhr(x 0). By (5.2) and (5.3), we have
TeES™

Ri<¢-e n <R, (5.4)
From Lemma 3.1(iv), we define f(t) = max ¥(z,t). Then by (5.4) and Theorem 2.1, we deduce

d
f —nf3R%% =2 > inf (Ho) 2(2,0) + n®R2(ent — 1).
dt zesn
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Similarly, we have ,
»7? < sup (Hp)*(w,0) + n®Ri(en" — 1).

zEeES™

Therefore, we have

1 2 2
}zv@wﬁiﬁ(H¢V@gm+4ﬂRﬂ1—eﬁ)
2

reSn

zeES™

1 2 2
<H<Z B \/e_nt sup (H¢)?(x,0) + n2R3(1 —e™nt). (5.5)
1

In particular, when the initial surface is a ball, equality is attained.
Using Lemma 5.1(vi) and Theorem 2.1, we know that the largest eigenvalue of matrix of

h; is bounded from above. Since H = Y h! is bounded, all the eigenvalues of matrix of h; is
i=1
bounded. From (2.11), we know that the solution to (1.2) exists in S x [0, +00).

From (4.2), then by (5.5) and Theorem 2.1, we get 363 > 0, s.t. w < sup w(x,0)e %"

reSn
Moreover, (4.4) becomes
0 0p a¥ Do 1 OF /0¢ n Op
— DD, =— . .
ot ot  F?2 J(at) F?2 8goi<8t)i H2 0t (56)

Due to Theorem 2.1, %‘f is uniformly bounded. Also using estimates of [7, Section 5.5], we get

that |¢l2,o is bounded. Due to interpolation theorems, we know

3C >0, 64 >0, s.t. |D2<p| < (C .ol

. or __ sinh(r)v2 1
Since 97 = and (5.1), we know 30 < 3 < ., C >0, s.t.

ot n cosh(r)—o¥ g, ;

or 1
_ < (.o Bt
ot n‘ =C-e

and
: : coshr : -
m—&<‘ s Sik,
I = 051 = vsinhr 7 vsinhr|a Pri|
< 1 C?Shr—l‘—i—‘l—l‘—l— '1 |Eikg0kj|§C~e_(i+5)t.
v | sinhr v vsinh r ’
Hence )
H| <n+C-e AL (5.7)
Let f(t) = m%xw(x,t) in (4.2). Using Theorem 2.1 and (5.7), we have
zesn
df 2n . df onf
<0 .e. - .
dt néatzf_ PNy = n2 4 Ce—Pt

From the above differential inequality, we deduce

|Dp|? = 2w < 2f(t) < C - e nt. (5.8)
From (5.1), we have
sinhr ; 1 ; 1 y L
coshr ™ 7 %] ‘U — 105+ g T e S C e (5.9)
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. 1
St 5% or | < C- o~ (n Bt (5.10)
sinh r

o h
|’Uh; —(5;| S ‘COS T

sinh r

Let us consider rescaled surfaces
X(t)= X(), (5.11)

and g;j, hij, v denote the first,

nr

comparing to (4.8). Correspondingly, radial function 7 = ",

second fundament form and volume form of X , respectively.
By (5.2), it is clearly ¥ — 1 and © — 1 as t — co. Moreover

2
Gij = sinh®(F)oy; + 7;7; = sinh?(F)o;; + sinh®(r) (7;) @ipj — sinh®*(1)oy;.

Due to
) coshr . coshr ) a1
hy= " 84 . D'rDir— 57,
vsinhr v3 sinh” r vsinh” r
then we have
. . , ~ik
i _ cosh(’}r) 50 cosh(}7) /n DirDip_ O Tt Thi
3T Fsinh(?r) T 58 ainh3(n t J Tsinh2(")’
vsinh(r) 03 sinh” (" r) vsinh®(’}r)

~ik . . >
where ¢ is %% in the version of X. In order to prove

i cosh1 ;
7 sinh1 7
we need
|D2’I“| S Cl.
Since @ij = g, Tig — SO riry, w < sup w(w, 0)e %!, [D?r| < Cy is equivalent to [i; ;| <

zesSn
Cy-e” 'rlnt, where C1, Cy are two different constants.
From above, we know 30 < 3 < 711, C > 0s.t. |D%p| < Ce P,
Let us consider function

G2A7 - iH—i— :2 = Z(h;i — 85)(h] = 7).
0.
Theorem 5.1
%f - ?{f - ;3 (11}|VH|2 - hg‘viijH) + 2”’;;4'2 A2 + ;U(IAIQ —n) — éhfhfhﬁg
~ VT g (= )+ v (7) v
_ ;2 ( B Qﬁw n 1}86 |Vw|2) + 52 (Hv —n) o silnhzr [i: Wi j — a‘w;
— a0, Dp|* + a i — nSi:;h2 T|DS"|2 - i;] Ukl%’“%l}

4 ;
< _HZG +C e GH3B L 0. = (LA,
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Proof If we define w = }|Dy|? as before, then v = /1 + 2w and

0G _ 0\ 4o 20H 2

0
ot~ ot vafh¢MHm&“

By Lemma 5.1(ii), (vii) and (4.2), we have

o =gl i = (5 ) e () s () v
+ H22 AH A 2 (Hv—n)ir — Hl_QA(:Q>
- Hjhngv H ZQVh{-Vhi-+2”+ AP e - h{h’?h};
P A R B W R
a I;QA(;) * 1;24 (Hv - )}«}2 {5” wij — a'w; — a0y Dyf®
+ a9 pip; — nsmh T|D ? - 510 %k%z} (5.12)

Since v = /1 + 2w and F = HSi’“vhr7 we have

0G  AuG 4 /1 - Jn+ AP
o :HB(U|VH|2—thHvH)+ | |
2 Cuiopi s 2 (0w, 2 /92
~ L VHIVE + H( g 5|v Wl ) HQV(U) VH
n 2Aw 8 9 2 1 o
_HQ(_ +v6|vw| )+v2(HU_n)HQSinh2r{

2 4 5
AP+ o (AP =n) = o hihihy

1)4 Wi, j — alwi

” iy nsmh r ol

_ a”Uij|Dg0|2 + awsﬁi@j |D |2 2 Ukl@ik@jl]

By (2.8), we have

1 i
a¥.

h?r

Combining ¢ = %%, (5.8) and (5.10), we conclude

%f - flf - ;3 (11)|VH|2 - hg'viijH) +2"+H|2j4|2|A|2 ;2 (AP =) - éh{h?h;;
—;QVhWhj-nL;(— ﬁ;"+v35|w|2) ;N( ) VH
e (20 el ¢ o ) e
FO(e %) e sy Y T
;3( 5l — h{)ViHVjH+2nJ;I|2A|2|A|2+ 2 (|A|2—n)—§hgh§h;;
_4nH;2;4”w_ 2 VhIVH + ﬁzv( ) VH—Ijéf;;i;}:;)r g

6 3
IVl = Vel + 0 ) + O (99,
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Since Vh{ Vh; is independent of the frame, we can choose normal coodinates {X;}]; on M.
Then

- 1
VhIVhi = " Vh(X;, X;)Vh(X;, X;) > > VA(X;, X;)Vh(X;, X;) > n|VH|2.
7 7

Hence

41y Neimo g 2 oo L 4ol 6 o o
s (O = W)V H = D VRV V() VH S [V
4

_Cef(,}b+ﬁ)t|vH|2 — ni12|VH|2+ HQV(i) VH - ;(?IT; _6)‘V(1)‘2

v
4 1\ 2 1 v/ 8n 1\ 2
H4‘v(v)‘ n?{2+ce(r,lﬂrﬁ)t_H(Hv_G)‘V(v)’

< Ce*(}ﬂrﬁ)tlvwﬁ < C’e*?’(iJrﬁ)t’

8n
1246 |Vw|?

IA

IN

where the second inequality above is obtained by using Cauchy-Schwartz inequality, and the
third inequality is obtained by (5.8).

. . Py, .
From a' = 8‘95 = 83 (" 72 7%7), we obtain
2(Hv—n) . 4

( ) 2) adlw; < Ce= (WP,
H2y2sinh” r

Thus we conclude

3} AG _ _n+|A]P

2
_ < 2 2 _ ) =
oG g2 <2 g MAPH g (4P =)

+ O(e—(ﬁ,w)t) + O(e(n 1300y,

4
H

Hv—n

—_
RIS —2n ",

(v* = 1)
If {\;}7 are the princple curvatures of M in N, and p; = A; — |, then (5.10) implies
|| < C- e~ (LAt

Combining v? —1=2w < C -e~ %:, we deduce

3

:22)\1-2)\30?—2(14—)\?)2)\?—iZ)\iZ()\?—l)

i

—2;@#3});(##i)g—;(H(“ﬁi)z);(“ﬁi)Q
Xl )T (e ) )

. H
2H > " hihfhi, — [AP(JAP +n) — . (JA]? = n)

K3
1 2 3 1 1
_ 3202 2 32 2 ) )
= E (%uj N T R R R YL vu;+vguy>
2y
3 2 2 2 3 2 1 1 —(2+p)t
=> (Qﬂiﬂj_ﬂiﬂj+ﬂiﬂj+ﬂj+2uj_Uﬂj+v3ﬂj)+0(e » )
i\

I a4 s
= nz (2;@ + vg (1- v2)) + O(e (n+ﬁ)t) +0(e (,ﬂr?)ﬁ)t).
J
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Therefore

0 NG 2n 1 1

atG_ H2 S_H2 (2/,6?+ v; (1—U2)+v4(Ajv_1)(v2_1)>
J

+O0(e= (A1) 1 O(e= (3001

- _12{712 ZQM? + O(Qf(iw)t) + O(ef(iJrSB)t)
J

4dn (4 (3 -
=— ;2 G+ 0l GAB) 1 O(e= (2 +300, (5.13)
Let f(t) = sup G(z,t). From Theorem 2.1 and (5.7), we deduce
IESW
df < — 4f . + Ce_(i'i‘ﬁ)t + Ce—(i+35)t’
dt = n +Ce n

which is equivalent to

i[(ne’t’ +CO)f) < C(ne:i + 0)4(e_(i+5)t +e_(3+35)t).

From the solution to above differential inequality, we obtain

t 5

Gla,t) = D (= 8)(h — 67) < C-e™ 7 (e7h + 7 30),

]

If we define matrix B = (B;;), where B;; = h; — 5;», then matrix B can be diagonalized at
a given point, i.e., there exist a reversible matrix P and a real diagonal matrix A, such that
B = PAP~!, then

G = tr(B?) = tr(PAP ' PAP™!) = tr(A?).

We deduce |By;| = |h! — %] < VG. If 58 < !, then by (5.1), we have [D?p| < C-e a2 3Pt If
we use Theorem 5.1 to iterative the order of [D2¢], then we deduce G(x,t) < C'-e~ =, that is

t

|D%p| < C-e”n. Since

coshr coshr

e= " 8+
7 wsinhr 7 y3sinh®r

~ik )
DiTDjT — 7 A T];’j 5
vsinh” r

and % — %, we have |D?r| < C, where C' is a uniform constant.

Finally,
7 _ cosh('/r) i cosh('/r) (n) DirD.y O TR coshl L e
7 Usinh(Yr) 7 $3sinh®(Tr) \t / Usinh?("r)  sinh1l 7 '
~ik . . > .
where & is ¢'* in the version of X, so the rescaled surface converges to a sphere of radius 1.
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