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Dynamics of a Rational Difference Equation
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Abstract The authors investigate the global behavior of the solutions of the difference

equation

xn+1 =
axn−lxn−k

bxn−p + cxn−q

, n = 0, 1, · · · ,

where the initial conditions x−r, x−r+1, x−r+2, · · · , x0 are arbitrary positive real numbers,

r = max{l, k, p, q} is a nonnegative integer and a, b, c are positive constants. Some special

cases of this equation are also studied in this paper.
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1 Introduction

In this paper, we deal with some properties of the solutions of the recursive sequence

xn+1 =
axn−lxn−k

bxn−p + cxn−q
, n = 0, 1, · · · , (1.1)

where the initial conditions x−r, x−r+1, x−r+2, · · · , x0 are arbitrary positive real numbers, r =

max{l, k, p, q} is a nonnegative integer and a, b, c are positive constants. Also, we study some

special cases of equation (1.1).

Here, we recall some notations and results which will be useful in our investigation.

Let I be some interval of real numbers and

f : Ik+1 → I

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, · · · ,

x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, · · · , xn−k), n = 0, 1, · · · (1.2)

has a unique solution {xn}
∞

n=−k (see [15]).

A point x ∈ I is called an equilibrium point of equation (1.2) if

x = f(x, x, · · · , x).

That is, xn = x, for n ≥ 0, is a solution of equation (1.2), or equivalently, x is a fixed point of

f .

Manuscript received November 5, 2007. Published online February 18, 2009.
∗Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
E-mail: emelabbasy@mans.edu.eg emelsayed@mans.edu.eg emmelsayed@yahoo.com



188 E. M. Elabbasy and E. M. Elsayed

Definition 1.1 (Stability) (i) The equilibrium point x of equation (1.2) is locally stable if

for every ǫ > 0, there exists δ > 0 such that for all x−k, x−k+1, · · · , x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < δ,

we have

|xn − x| < ǫ for all n ≥ −k.

( ii ) The equilibrium point x of equation (1.2) is locally asymptotically stable if x is a locally

stable solution of equation (1.2) and there exists γ > 0, such that for all x−k, x−k+1, · · · , x−1,

x0 ∈ I with

|x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < γ,

we have

lim
n→∞

xn = x.

(iii) The equilibrium point x of equation (1.2) is a global attractor if for all x−k, x−k+1, · · · ,

x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of equation (1.2) is globally asymptotically stable if x is locally

stable, and x is also a global attractor of equation (1.2).

( v ) The equilibrium point x of equation (1.2) is unstable if x is not locally stable.

The linearized equation of equation (1.2) about the equilibrium x is the linear difference

equation

yn+1 =

k
∑

i=0

∂f(x, x, · · · , x)

∂xn−i
yn−i. (1.3)

Theorem 1.1 (see [14]) Assume that p, q ∈ R and k ∈ {0, 1, 2, · · · }. Then

|p| + |q| < 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, · · · .

Remark 1.1 Theorem 1.1 can be easily extended to a general linear equation of the form

xn+k + p1xn+k−1 + · · · + pkxn = 0, n = 0, 1, · · · , (1.4)

where p1, p2, · · · , pk ∈ R and k ∈ {1, 2, · · · }. Then equation (1.4) is asymptotically stable

provided that
k

∑

i=1

|pi| < 1.

Definition 1.2 (Fibonacci Sequence) The sequence {Fm}∞m=0 = {1, 2, 3, 5, 8, 13, · · ·}, i.e.,

Fm = Fm−1 + Fm−2, m ≥ 0, F−2 = 0, F−1 = 1, is called Fibonacci Sequence.
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Solutions of difference equations, periodicity, stability and boundedness of solutions to ab-

stract difference equations have been discussed by many authors, e.g., Elabbasy et al. [9]

investigated the global stability, periodicity character and gave the solution of special case of

the following recursive sequence

xn+1 = axn −
bxn

cxn − dxn−1
.

Elabbasy et al. [10] investigated the global stability, boundedness, periodicity character and

gave the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
k
∏

i=0

xn−i

.

In [8], E. M. Elabbasy et al. investigated the global stability character, boundedness and the

periodicity of solutions of the difference equation

xn+1 =
αxn + βxn−1 + γxn−2

Axn + Bxn−1 + Cxn−2
.

Yang et al. [20] investigated the invariant intervals, the global attractivity of equilibrium points,

and the asymptotic behavior of the solutions of the recursive sequence

xn+1 =
axn−1 + bxn−2

c + dxn−1xn−2
.

Cinar [5–7] has got the solutions of the following difference equations

xn+1 =
xn−1

1 + xnxn−1
,

xn+1 =
xn−1

−1 + xnxn−1
,

xn+1 =
axn−1

1 + bxnxn−1
.

Aloqeili [1] obtained the form of the solutions of the difference equation

xn+1 =
xn−1

a − xnxn−1
.

For some related works see [1–20].

The paper proceeds as follows. In Section 2 we show that when 3a < (b + c), the equilib-

rium point of equation (1.1) is locally asymptotically stable. In Section 3 we prove that the

equilibrium point of equation (1.1) is a global attractor. In Section 4 we give the solutions of

some special cases of equation (1.1) and give numerical examples of each case. The solutions

obtained are plotted in (n, xn)-plane by using Matlab 6.5.

2 Local Stability of Equation (1.1)

In this section, we investigate the local stability character of the solutions of equation (1.1).

equation (1.1) has a unique positive equilibrium point and is given by

x =
ax2

bx + cx
.
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If a 6= b + c, then the unique equilibrium point is x = 0.

Let f : (0,∞)4 −→ (0,∞) be a function defined by

f(u, v, w, z) =
auv

bw + cz
. (2.1)

Therefore it follows that

fu(u, v, w, z) =
av

(bw + cz)
,

fv(u, v, w, z) =
au

(bw + cz)
,

fw(u, v, w, z) =
−bauv

(bw + cz)2
,

fz(u, v, w, z) =
−cauv

(bw + cz)2
.

We see that

fu(x, x, x, x) =
a

(b + c)
,

fv(x, x, x, x) =
a

(b + c)
,

fw(x, x, x, x) =
−ab

(b + c)2
,

fz(x, x, x, x) =
−ac

(b + c)2
.

The linearized equation of equation (1.1) about x is

yn+1 +
a

(b + c)
yn−l +

a

(b + c)
yn−k −

ab

(b + c)2
yn−p −

ac

(b + c)2
yn−q = 0. (2.2)

Theorem 2.1 Assume that

3a < (b + c).

Then the equilibrium point of equation (1.1) is locally asymptotically stable.

Proof It follows by Theorem 1.1 that equation (2.2) is asymptotically stable if

∣
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∣

∣

∣
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or
2a
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a

(b + c)
< 1,

and so

3a < b + c.

This completes the proof.
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3 Global Attractor of the Equilibrium Point of Equation (1.1)

In this section, we investigate the global attractivity character of solutions of equation (1.1).

We give the following theorem which is a minor modification of [15, Theorem A.0.2].

Theorem 3.1 Let [a, b] be an interval of real numbers and assume that

f : [a, b]k+1 → [a, b]

is a continuous function satisfying the following properties:

( i ) f(x1, x2, · · · , xk+1) is non-decreasing in any two components (for example xt, xy) for

each xr (r 6= t, y) in [a, b] and non-increasing in the remaining components for each xt, xy in

[a, b],

(ii) m = M once (m, M) ∈ [a, b] × [a, b] is a solution of the system

m = f(M, M, · · · , M, m, M, · · · , M, m, M, · · · , M, M),

M = f(m, m, · · · , m, M, m, · · · , m, M, m, · · · , m, m).

Then equation (1.2) has a unique equilibrium x ∈ [a, b] and every solution of equation (1.2)

converges to x.

Proof Set

m0 = a, M0 = b,

and for each i = 1, 2, · · · , set

Mi = f(mi−1, mi−1, · · · , mi−1, Mi−1, mi−1, · · · , mi−1, Mi−1, mi−1, · · · , mi−1, mi−1),

mi = f(Mi−1, Mi−1, · · · , Mi−1, mi−1, Mi−1, · · · , Mi−1, mi−1, Mi−1, · · · , Mi−1, Mi−1).

Now observe that for each i ≥ 0,

a = m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ Mi ≤ · · · ≤ M1 ≤ M0 = b,

and

mi ≤ xp ≤ Mi for p ≥ (k + 1)i + 1.

Set

m = lim
i→∞

mi and M = lim
i→∞

Mi.

Then

M ≥ lim sup
i→∞

xi ≥ lim inf
i→∞

xi ≥ m,

and by the continuity of f ,

m = f(M, M, · · · , M, m, M, · · · , M, m, M, · · · , M, M),

M = f(m, m, · · · , m, M, m, · · · , m, M, m, · · · , m, m).

In view of (ii),

m = M = x,

from which the result follows.
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Theorem 3.2 The equilibrium point x of equation (1.1) is a global attractor.

Proof Let r, s be nonnegative real numbers and assume that f : [r, s]4 → [r, s] is a function

defined by equation (2.1). Then we can easily see that the function f(u, v, w, z) increases in

u, v and decreases in w, z.

Suppose that (m, M) is a solution of the system

m = f(m, m, M, M) and M = f(M, M, m, m).

Then from equation (1.1), we see that

m =
am2

bM + cM
, M =

aM2

bm + cm
,

(b + c)mM = am2, (b + c)Mm = aM2,

so

M = m.

It follows from Theorem 3.1 that x is a global attractor of equation (1.1) and then the proof is

completed.

4 Special Cases of Equation (1.1)

Case 1 In this case, we study the following special case of equation (1.1)

xn+1 =
xnxn−1

xn + xn−1
, (4.1)

where the initial conditions x−1, x0 are arbitrary positive real numbers.

Theorem 4.1 Let {xn}
∞

n=−1 be a solution of equation (4.1). Then for n = 0, 1, · · · ,

xn =
hk

Fn−1k + Fn−2h
,

where x−1 = k, x0 = h.

Proof For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds

for n − 1, n − 2. That is,

xn−2 =
hk

Fn−3k + Fn−4h
, xn−1 =

hk

Fn−2k + Fn−3h
.

Now, it follows from equation (4.1) that

xn =
xn−1xn−2

xn−1 + xn−2

=
( hk

Fn−3k+Fn−4h )( hk
Fn−2k+Fn−3h )

( hk
Fn−3k+Fn−4h + hk

Fn−2k+Fn−3h )

=
( hk

Fn−3k+Fn−4h )( 1
Fn−2k+Fn−3h )

( 1
Fn−3k+Fn−4h + 1

Fn−2k+Fn−3h )

=
hk

(Fn−2k + Fn−3h + Fn−3k + Fn−4h)

=
hk

(Fn−2h + Fn−1k)
.
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Hence, the proof is completed.

Lemma 4.1 Every positive solution of equation (4.1) is bounded and lim
n→∞

xn = 0.

Proof It follows from equation (4.1) that

xn+1 =
xnxn−1

xn + xn−1
≤

xnxn−1

xn−1
= xn,

or

xn+1 ≤ xn.

Then the sequence {xn}
∞

n=0 is decreasing and so is bounded from above by M = max{x−1, x0}.

For x−1 = 5, x0 = 9, the solution of equation (4.1) will take the form {3.214286, 2.368421,

1.363636, 0.8653846, 0.5294118, · · ·}, this solution is stable and lim
n→∞

xn = 0 (see Figure 1).
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plot of x(n+1)=x(n)∗x(n−1)/(x(n)+x(n−1))

Figure 1 plot of x(n + 1) = x(n) ∗ x(n − 1)/(x(n) + x(n − 1))

Case 2 In this case, we study the following special case of equation (1.1)

xn+1 =
xn−1xn−2

xn−1 + xn−2
, (4.2)

where the initial conditions x−2, x−1, x0 are arbitrary positive real numbers.

Theorem 4.2 Let {xn}
∞

n=−2 be a solution of equation (4.2). Then x1 = rk
k+r , for n =

1, 2, · · · ,

xn+1 =
hkr

dn−4hk + dn−3kr + dn−2hr
,

where x−2 = r, x−1 = k, x0 = h, {dm}∞m=0 = {1, 2, 2, 3, 4, 5, 7, 9, · · ·}, i.e., dm = dm−2 + dm−3,

m ≥ 0, d−3 = 0, d−2 = 1, d−1 = 1.

Proof For n = 1, 2, 3 the result holds; then suppose that our assumption holds for n − 1,

n − 2, n − 3 where n > 3. That is,

xn−2 =
hkr

dn−7hk + dn−6kr + dn−5hr
, xn−1 =

hkr

dn−6hk + dn−5kr + dn−4hr
.
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Now, it follows from equation (4.2) that

xn+1 =
xn−1xn−2

xn−1 + xn−2

=
( hkr

dn−7hk+dn−6kr+dn−5hr )( hkr
dn−6hk+dn−5kr+dn−4hr )

( hkr
dn−7hk+dn−6kr+dn−5hr + hkr

dn−6hk+dn−5kr+dn−4hr )

=
( hkr

dn−7hk+dn−6kr+dn−5hr )( 1
dn−6hk+dn−5kr+dn−4hr )

( 1
dn−7hk+dn−6kr+dn−5hr + 1

dn−6hk+dn−5kr+dn−4hr )

=
hkr

(dn−7hk + dn−6kr + dn−5hr + dn−6hk + dn−5kr + dn−4hr)

=
hkr

(dn−7 + dn−6)hk + (dn−6 + dn−5)kr + (dn−5 + dn−4)hr

=
hkr

dn−4hk + dn−3kr + dn−2hr
.

Hence, the proof is completed.

Lemma 4.2 Every positive solution of equation (4.2) is bounded and lim
n→∞

xn = 0.

Proof It follows from equation (4.2) that

xn+1 =
xn−1xn−2

xn−1 + xn−2
≤

xn−1xn−2

xn−2
= xn−1

or

xn+1 ≤ xn−1.

Then the subsequences {x2n−1}
∞

n=0, {x2n}
∞

n=0 are decreasing and so are bounded from above

by M = max{x−2, x−1, x0}.

Let x−2 = 5, x−1 = 9, x0 = 12. Then the solution will be {3.214286, 5.142857, 2.535211,

1.978022, 1.698113, 1.111111, 0.9137055, 0.6716418, 0.5013927, · · ·} (see Figure 2).
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Figure 2 plot of x(n + 1) = x(n − 1) ∗ x(n − 2)/(x(n − 1) + x(n − 2))
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The following cases can be treated similarly.

Case 3 Let x−2 = r, x−1 = k, x0 = h. Then the solution of the sequence

xn+1 =
xn−1xn−2

xn + xn−2
(4.3)

is given by

x2n =

h
n−1
∏

i=0

(F2i−1h + F2ir)

n−1
∏

i=0

(F2ih + F2i+1r)

, x2n+1 =

kr
n−1
∏

i=0

(F2ih + F2i+1r)

n
∏

i=0

(F2i−1h + F2ir)
,

where n = 0, 1, · · · , which is bounded and lim
n→∞

xn = 0.
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Figure 3 plot of x(n + 1) = x(n − 1) ∗ x(n − 2)/(x(n) + x(n − 2))

Figure 3 shows the solution when x−2 = 8, x−1 = 2, x0 = 7.
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Figure 4 plot of x(n + 1) = x(n) ∗ x(n − 1)/(x(n) + x(n − 2))
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Case 4 Let x−2 = r, x−1 = k, x0 = h. Then the solution of the sequence

xn+1 =
xn−1xn

xn + xn−2
(4.4)

is given by

x2n−1 =
khn

n
∏

i=1

((2i − 1)h + r)
, x2n =

hn+1

n
∏

i=1

(2ih + r)
,

where n = 0, 1, · · · , which is bounded and lim
n→∞

xn = 0.

Figure 4 shows the solution when x−2 = 11, x−1 = 7, x0 = 12.

Case 5 Let x−2 = r, x−1 = k, x0 = h. Then the solution of the sequence

xn+1 =
xn−1xn

xn−1 + xn−2
(4.5)

is given by

x2n =
h(hk)n

n−1
∏

i=0

(((i + 1)k + r)((i + 1)h + k))

, x2n+1 =
(hk)n+1

n
∏

i=0

((i + 1)k + r)
n−1
∏

i=0

((i + 1)h + k)

,

n = 0, 1, · · · , which is bounded and lim
n→∞

xn = 0.

Figure 5 shows the solution when x−2 = 5, x−1 = 8, x0 = 3.
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Figure 5 plot of x(n + 1) = x(n) ∗ x(n − 1)/(x(n − 1) + x(n − 2))

Case 6 Let x−2 = r, x−1 = k, x0 = h. Then the solution of the sequence

xn+1 =
xn−2xn

xn + xn−2
(4.6)

is given by

xn =
hkr

tn−3hr + tn−2hk + tn−1kr
, n = 0, 1, · · · ,

where {tm}∞m=0 = {1, 1, 2, 3, 4, 6, 9, · · ·}, i.e., tm = tm−1 + tm−3, m ≥ 0, t−3 = 0, t−2 = 0,

t−1 = 1, which is bounded and lim
n→∞

xn = 0.
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Figure 6 plot of x(n + 1) = x(n) ∗ x(n − 2)/(x(n) + x(n − 2))

Figure 6 shows the solution when x−2 = 6, x−1 = 9, x0 = 17.

Case 7 Let x−2 = r, x−1 = k, x0 = h. Then the solution of the sequence

xn+1 =
xn−2xn

xn−1 + xn−2
(4.7)

is given by

x2n =
hkr

(Fn−2k + Fn−1r)(Fn−2h + Fn−1k)
, x2n+1 =

hkr

(Fn−1k + Fnr)(Fn−2h + Fn−1k)
,

n = 0, 1, · · · , which is bounded and lim
n→∞

xn = 0.

Figure 7 shows the solution when x−2 = 13, x−1 = 7, x0 = 12.
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Figure 7 plot of x(n + 1) = x(n) ∗ x(n − 2)/(x(n − 1) + x(n − 2))
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