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Abstract In recent papers by Brackx, Delanghe and Sommen, some fundamental higher

dimensional distributions have been reconsidered in the framework of Clifford analysis,

eventually leading to the introduction of four broad classes of new distributions in Euclidean

space. In the current paper we continue the in-depth study of these distributions, more

specifically the study of their behaviour in frequency space, thus extending classical results

of harmonic analysis.
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1 Introduction

During the last fifty years, Clifford analysis has gained interest as a comprehensive function

theory offering a direct, elegant and powerful generalization to higher dimension of the theory

of holomorphic functions in the complex plane. In its most simple but still useful setting,

flat m-dimensional Euclidean space, Clifford analysis is centered around so-called monogenic

functions, i.e. null solutions of the Clifford-vector valued Dirac operator

∂ =

m
∑

j=1

ej∂xj
,

where (e1, · · · , em) forms an orthogonal basis for the quadratic space Rm underlying the con-

struction of the Clifford algebra R0,m. Monogenic functions have a special relationship with

harmonic functions of several variables in that they are refining their properties. Note for in-

stance that each harmonic function can be split into a so-called inner and an outer monogenic

function, and that a real harmonic function is always the real part of a monogenic one, which

does not need to be the case for a harmonic function of several complex variables. The reason is

that, as does the Cauchy-Riemann operator in the complex plane, the rotation-invariant Dirac

operator factorizes the m-dimensional Laplace operator. It hence is not surprising that Clifford

analysis often leads to refinements or generalizations of classical results from harmonic analysis.

In [3] and [4] four broad families of distributions in Euclidean space Tλ,p, Uλ,p, Vλ,p and

Wλ,p, depending on parameters λ ∈ C and p ∈ N0 = {0, 1, 2, · · · }, were introduced and studied

in the framework of Clifford analysis. These distributions all spring from the already classically

known distribution

Tλ = Fp rλ
+
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depending on the complex parameter λ. Here Fp is the fundamental distribution “finite

parts” on the real line, and spherical co-ordinates have been used to convert an originally

m-dimensional distribution into one acting on the real line. More precisely,

〈Tλ, φ〉 = amFp

∫ +∞

0

rλ+m−1
[ 1

am

∫

Sm−1

φ(x) dS(ω)
]

dr = 〈Fp rλ+m−1
+ , Σ(0)[φ]〉,

where am is the area of the unit sphere Sm−1 in R
m and Σ(0)[φ] denotes the so-called spherical

mean of the testing function φ, obtained through integration over the unit sphere. In these,

spherical co-ordinates not only reflect the “spherical” philosophy of the approach, encompassing

all dimensions at once as opposed to a cartesian or tensorial approach with products of one-

dimensional phenomena, but also enable to carry out the explicit calculations in one dimension

after which they are exported again to the original setting of Euclidean space.

An analogous approach underlies the definition of the four families of distributions men-

tioned above, which respectively involve the inner spherical monogenics Pp(ω) (p ∈ N0), i.e.,

restrictions to the unit sphere of monogenic polynomials which are vector valued and homoge-

neous of degree p, and the related outer spherical monogenics Pp(ω)ω, ωPp(ω) and ωPp(ω)ω.

Here, the spherical philosophy requires the introduction of generalized spherical means, where

the involved spherical monogenic (inner or outer) appears in the integrand over the unit sphere.

However, in view of the Fourier transformations aimed at, the distributions Tλ,p and their nor-

malized versions T ∗
λ,p are now reconsidered from a cartesian point of view in Section 3 of the

paper.

Any of the distributions in these families may be considered as a kernel (K) for a convolu-

tion operator (L): L[f ] = K ∗ f . As is well known, see [20], such an operator may be realized

in frequency space by a multiplication operator, its so-called Fourier symbol: F [L[f ]] = αF [f ],

where α = F [K]. This underlines the importance of calculating the Fourier transforms of the

distributions under consideration. It is worth mentioning that, for specific values of the para-

meters λ ∈ C and p ∈ N0, those distributions turn into known kernel functions in harmonic and

Clifford analysis: up to constants, U−m,0 reduces to Pv
ω

rm , the higher dimensional analogue of

the so–called “Principal Value” distribution on the real line which constitutes the convolution

kernel for the higher dimensional Hilbert transform (see [5–8]); U−m+1,0 reduces to the funda-

mental solution of the Dirac operator ∂, while T−m+2,0 is nothing but the fundamental solution

of the Laplace operator; furthermore, for λ = −p the inner and outer spherical monogenics

Pp(ω), Pp(ω)ω and ωPp(ω) are recovered; etc. Moreover when λ = −m − p the four fami-

lies provide examples of so-called principal value distributions (see [13, 20]), being tempered

distributions obtained by a limiting process:

〈K, φ〉 = lim
ε→

>
0

∫

Rm\B(0,ε)

K(x)φ(x)dV (x), φ ∈ S(Rm).

In [13, 20] much attention is paid to the calculation of the Fourier transforms of the principal

value distributions where the function K takes the form

K(x) =
k(ω)

rm
, ω ∈ Sm−1

with k ∈ L2(S
m−1) such that

∫

Sm−1

k(ω)dS(ω) = 0.
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Such kind of principal value distributions lead to convolution operators in the following way:

(K ∗ φ)(y) = lim
ε→

>
0

∫

Rm\B(0,ε)

K(y − x)φ(x)dV (x), φ ∈ S(Rm)

also known as singular integral operators (see [20, Theorem VI.3.1]). In this paper, we concen-

trate on the families Tλ,p, Uλ,p and Vλ,p introduced in [3, 4], for which we aim at calculating

the Fourier spectra, thus generalizing the results obtained in [13, 20]. This is the subject of

Sections 4 and 5.

In order to make the paper self-contained we recall in Section 2 some basic notions and

results of Clifford analysis.

2 Clifford Analysis

Clifford analysis offers a function theory which is a higher dimensional analogue of the theory

of holomorphic functions of one complex variable. For more details concerning this function

theory and its applications (for instance to harmonic analysis) we refer the reader to [2, 9, 11,

12, 15–18].

Let, for m ≥ 2, R0,m be the real vector space Rm, endowed with a non-degenerate quadratic

form of signature (0, m), let (e1, · · · , em) be an orthonormal basis for R0,m, and let R0,m be the

universal Clifford algebra constructed over R0,m. The non-commutative multiplication in R0,m

is then governed by the rules

e2
i = −1, i = 1, 2, · · · , m and eiej + ejei = 0, i 6= j.

For a set A = {i1, · · · , ih} ⊂ {1, · · · , m} with 1 ≤ i1 < i2 < · · · < ih ≤ m, let eA = ei1ei2 · · · eih
.

Moreover, we put e∅ = 1, the latter being the identity element; then (eA : A ⊂ {1, · · · , m}) is

a basis for the Clifford algebra R0,m. Any a ∈ R0,m may thus be written as

a =
∑

A

aAeA, aA ∈ R

or still as a =
m
∑

k=0

[a]k where [a]k =
∑

|A|=k

aAeA is a so-called k-vector (k = 0, 1, · · · , m). If we

denote the space of k-vectors by Rk
0,m, then R0,m =

m
⊕

k=0

Rk
0,m, leading to the identification of R

and R0,m with respectively R0
0,m and R1

0,m. We will also identify an element x = (x1, · · · , xm) ∈

Rm with the one-vector (or vector for short) x =
m
∑

j=1

xj ej . The multiplication of any two vectors

x and y is given by

xy = −〈x, y〉 + x ∧ y

with

〈x, y〉 =

m
∑

j=1

xjyj = −
1

2
(x y + yx), x ∧ y =

∑

i<j

eij(xiyj − xjyi) =
1

2
(x y − yx)

being a scalar and a 2-vector (also called bivector) respectively. In particular x2 = −〈x, x〉 =

−|x|2 = −
m
∑

j=1

x2
j . Conjugation in R0,m is defined as the anti-involution for which

ēj = −ej, j = 1, · · · , m.
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In particular for a vector x we have x̄ = −x.

The Dirac operator in Rm is the first order vector valued differential operator

∂ =

m
∑

j=1

ej∂xj
,

its fundamental solution being given by

Em(x) =
1

am

x̄

|x|m
.

For functions f defined in R
m and taking values in R0,m, we say that f is left monogenic

(respectively right monogenic) in the open region Ω of R
m iff f is continuously differentiable in

Ω and satisfies in Ω the equation ∂f = 0 (respectively the equation f∂ = 0). As ∂f = f̄ ∂̄ = −f̄∂

a function f is left monogenic in Ω iff f̄ is right monogenic in Ω. As moreover the Dirac operator

factorizes the Laplace operator ∆, −∂2 = ∂ ∂̄ = ∂̄ ∂ = ∆, a (left or right) monogenic function

in Ω is harmonic and hence C∞ in Ω.

Introducing spherical co-ordinates x = rω, r = |x|, ω ∈ Sm−1, the Dirac operator ∂ may be

written as

∂ = ω∂r +
1

r
∂ω = ω

(

∂r −
1

r
ω∂ω

)

,

while the Laplace operator takes the form

∆ = ∂2
r +

m − 1

r
∂r +

1

r2
∆∗,

∆∗ being the Laplace-Beltrami operator on Sm−1.

In the definition of our Clifford distributions a fundamental rôle is played by the so-called

inner spherical monogenics. Starting from a homogeneous polynomial Pp(x) of degree p which

we take to be vector valued and left (and hence also right) monogenic, the following formulae

are seen to hold in Rm:

∂Pp(x) = Pp(x)∂ = 0,

∂(xPp(x)) = (Pp(x)x)∂ = −(m + 2p)Pp(x),

∂(Pp(x)x) = (xPp(x))∂ = (m − 2)Pp(x), p 6= 0,

∆Pp(x) = ∆(xPp(x)) = ∆(Pp(x)x) = 0.

By taking restrictions to the unit sphere Sm−1 of the polynomials Pp(x), we obtain so-called

inner spherical monogenics Pp(ω). Conversely, given an inner spherical monogenic Pp(ω) then

obviously

rpPp(ω) = Pp(x)

is a left and right monogenic homogeneous polynomial the restriction to the unit sphere of

which is precisely Pp(ω). At the same time the functions

1

rm+p−1
ωPp(ω) =

1

rm+2p
xPp(x) = Q(l)

p (x),
1

rm+p−1
Pp(ω)ω =

1

rm+2p
Pp(x)x = Q(r)

p (x)

are left, respectively right monogenic homogeneous functions of order −(m + p − 1) in the

complement of the origin. Their restrictions to the unit sphere Sm−1, ωPp(ω) and Pp(ω)ω,

are called outer spherical monogenics. Both the inner and the outer spherical monogenics are

special cases of spherical harmonics.
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Finally, in this paper we adopt the following definition of the Fourier transform

F [f(x)](y) = f̂(y) =

∫

Rm

f(x) exp(−2πi 〈x, y〉)dV (x)

for which some well-known basic formulae hold:

F [∂ f ](y) = 2πi yF [f ](y), 2πiF [x f ](y) = −∂F [f ](y),

2πiF [f x](y) = −F [f ](y)∂, F [δ(x)] = 1, F [1](y) = δ(y).
(2.1)

3 Normalization of the Distributions Tλ,p

3.1 Definition of the distributions Tλ,p

We recall the definition of the family of distributions Tλ,p as given in [3, 4].

First, let µ be a complex parameter, let x be a real variable and consider the function

x
µ
+ =

{

xµ, x > 0,

0, x < 0,

which is a regular distribution for Reµ > −1. In addition, one defines, for n ∈ N and µ ∈ C

such that −n − 1 < Re µ < −n, the classical one-dimensional “finite part” distribution Fpx
µ
+

by

〈Fpx
µ
+, φ〉 =

∫ +∞

0

xµ
(

φ(x) − φ(0) −
φ′(0)

1!
x − · · · −

φ(n−1)(0)

(n − 1)!
xn−1

)

dx

= lim
ε→

>
0

(

∫ +∞

ε

xµφ(x)dx + φ(0)
εµ+1

µ + 1
+ · · · +

φ(n−1)(0)

(n − 1)!

εµ+n

µ + n

)

.

As a function of µ, x
µ
+ is holomorphic in the half-plane Reµ > −1, and by analytic continuation

Fpx
µ
+ is holomorphic in C\{−1,−2,−3, · · · }, the singular points µ = −n (n ∈ N) being simple

poles with residue (−1)n−1

(n−1)! δ
(n−1)
x . This finite part distribution shows the following properties:

d

dx
Fpx

µ
+ = µ Fpx

µ−1
+ , µ 6= 0,−1,−2,−3, · · · , xFp x

µ
+ = Fpx

µ+1
+ , µ 6= −1,−2,−3, · · · .

Remark 3.1 By a slight change in the above expression for Fpx
µ
+ a definition may be

given for negative entire exponents as well, through the so-called monomial pseudofunctions

Fpx−n
+ , n ∈ N (see e.g. [10, 19]):

〈Fpx−n
+ , φ(x)〉 = lim

ε→
>

0

(

∫ +∞

ε

x−nφ(x) dx+φ(0)
ε−n+1

−n + 1
+ · · ·+

φ(n−2)(0)

(n − 2)!

ε−1

(−1)
+

φ(n−1)(0)

(n − 1)!
ln ε

)

with properties

d

dx
Fpx−n

+ = (−n)Fpx−n−1
+ + (−1)n 1

n!
δ(n)
x and xFpx−n

+ = Fpx−n+1
+ .

However, in what follows, we have chosen to deal with the singularities of Fp x
µ
+ in another

way.
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Next we define the generalized spherical mean Σ
(0)
p [φ] (see also [21]), for a scalar valued

testing function φ(x) in R
m and a vector valued, monogenic, homogeneous polynomial Pp(x)

of degree p 6= 0, as

( i ) Σ
(0)
2k [φ] = Σ(0)[P2k(ω)φ(x)] =

1

am

∫

Sm−1

P2k(ω)φ(x) dS(ω),

(ii) Σ
(0)
2k+1[φ] = Σ(0)[r P2k+1(ω)φ(x)] =

r

am

∫

Sm−1

P2k+1(ω)φ(x) dS(ω).

Finally we define the distributions Tλ,p where λ ∈ C and p ∈ N0, as follows. Let φ be a

scalar valued testing function, let µ = λ + m − 1 and put pe = p if p is even, and pe = p − 1 if

p is odd; then

〈Tλ,p, φ〉 = am〈Fp r
µ+pe

+ , Σ(0)
p [φ]〉. (3.1)

Let, for a moment, λ 6= −m − n and λ 6= −m − n − pe, n = 0, 1, 2, · · · . Then the connection

between Tλ,p and Tλ = Tλ,0 is obtained in a natural way from

〈TλPp(x), φ(x)〉 = 〈 Tλ, Pp(x)φ(x)〉 = am〈Fp r
µ
+, Σ(0)[Pp(x)φ(x)]〉

= am〈Fp r
µ+pe

+ , Σ(0)
p [φ(x)]〉 = 〈Tλ,p, φ(x)〉,

leading, at least for the values of λ mentioned above, to

Tλ,p = TλPp . (3.2)

The other values of λ are not yet taken into account, as they seem to be simple poles of either

the left- or the right-hand side of the relation (3.2). Further investigation of these assumed

singularities is carried out in the next subsection.

3.2 The singularities of Tλ,p

As mentioned in the previous subsection it is clear from the definition itself that Tλ,p,

considered as a function of (λ, p) ∈ C×N0, inherits an infinite sequence of singularities (simple

poles) from the finite part distribution, i.e. for µ + pe = −n, n ∈ N, or equivalently, λ =

−m − pe − n + 1, n ∈ N; the corresponding residue is given by

Resλ=−m−pe−n+1〈Tλ,p, φ〉 = am

〈 (−1)(n−1)

(n − 1)!
δ(n−1)
r , Σ(0)

p [φ]
〉

. (3.3)

In this subsection we will examine these singularities more closely, revealing that in several

subcases the residues turn out to be zero, on account of some specific properties of the gene-

ralized spherical mean operator Σ
(0)
p and of the polynomial Pp(x), respectively. Indeed, it has

been shown in [3] that

Proposition 3.1 The spherical mean Σ
(0)
p [φ] is an even testing function on the real r-axis.

Its derivatives of odd order vanish at the origin r = 0, while for the derivatives of even order

we have

{∂2l
r Σ(0)

p [φ]}r=0 =
(2l)!

(pe + 2l)!

1

C(pe

2 + l)
{∆

pe
2 +l

m (φ(x)Pp(x))}x=0 (3.4)

with constants

C(l) =
22ll!

(2l)!

(m

2
+ l − 1

)

· · ·
(m

2

)

, l ∈ N0.
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In addition we may prove the following important results.

Proposition 3.2 Let Pp(x) be a vector valued, monogenic, homogeneous polynomial of

degree p and let r = |x|. Then for each l ∈ N0,

Pp(∂)r2l =







0, if l < p,

2p l!

(l − p)!
Pp(x) r2(l−p), if l ≥ p,

(3.5)

Pp(x)∂2lδ(x) =







0, if l < p,

2p l!

(l − p)!
Pp(∂)∂2(l−p)δ(x), if l ≥ p.

(3.6)

Proof The calculations being long and technical, we only sketch the main lines of the proof

which proceeds in several steps.

Step 1 We write the vector valued monogenic homogeneous polynomial of degree p, Pp(x),

as

Pp(x) =

m
∑

i=1

ei

(

∑

|α|=p

bi,αF (α)xα1
1 · · ·xαm

m

)

(3.7)

with

F (α) =
|α|!

α1! · · ·αm!
.

Then its assumed monogenicity leads to the following conditions on its coefficients: for i =

1, · · · , m, and for α = (α1, · · · , αm) with |α| = p and αi ≥ 1 one has














m
∑

k=1

b
k,α̂

k(1)

i(1)

= 0,

bl,α = b
i,α̂

l(1)

i(1)

, l = 1, · · · , m, l 6= i,

(3.8)

where

α̂
1(q1)2(q2)···m(qm)
1(s1)2(s2)···m(sm) = (α1 + q1 − s1, α2 + q2 − s2, · · · , αm + qm − sm) = α + q − s.

Step 2 As each term in the operator Pp(∂) is of the form ∂α1
x1

∂α2
x2

· · · ∂αm
xm

, with αi ∈ N0,

i = 1, · · · , m, and |α| =
m
∑

i=1

αi = p, we have explicitly calculated the action of such a term on

r2l, l ∈ N0, by a double induction argument both on the orders of derivation αi and on the

number of αi’s occurring (i.e., not being zero). The obtained result reads

∂α1
x1

∂α2
x2

· · · ∂αm

xm
r2l

=

Sα
∑

j=0

(

∑

|β|=j

aα1,β1 · · · aαm,βm
x

α1−2β1

1 · · ·xαm−2βm

m

)

[2l]2p−2j−2 r2l−2p+2j , (3.9)

where

Sα =

m
∑

i=1

(αi)e

2
, [2l]2p−2j−2 = (2l)(2l − 2) · · · (2l − 2p + 2j + 2),

aαi,βi
=







1

2βi

αi!

βi!(αi − 2βi)!
, if 0 ≤ βj ≤

(αj)e

2 ,

0, otherwise.
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In particular note that

∂α1
x1

∂α2
x2

· · ·∂αm

xm
r2l = 0, if l < p − Sα. (3.10)

Step 3 We now let Pp(∂) act on r2l for p ≤ l. On account of (3.9) and of the proposed

form (3.7) of Pp(x) this yields

m
∑

i=1

ei

∑

|α|=p

bi,αF (α)

Sα
∑

j=0

(

∑

|β|=j

aα1,β1 · · · aαm,βm
x

α1−2β1

1 · · ·xαm−2βm

m

)

[2l]2p−2j−2r
2(l−p+j),

which can be rewritten as

2p l!

(l − p)!
r2(l−p)Pp(x)

+

m
∑

i=1

ei

∑

|α|=p

bi,αF (α)

Sα
∑

j=1

(

∑

|β|=j

aα1,β1 · · · aαm,βm
x

α1−2β1

1 · · ·xαm−2βm

m

)

[2l]2p−2j−2r
2(l−p+j)

≡ 2p l!

(l − p)!
r2(l−p)Pp(x) + Sp,l(x) (3.11)

by isolating the term for j = 0. As each of the terms in Sp,l(x) may be proven to be zero, on

account of the conditions (3.8) on the coefficients of Pp(x), we are lead to the first part of (3.5).

Step 4 Next, we consider the case where p > l. First, let l < p− pe

2 . Then clearly, for each

α with |α| = p we have l < p − Sα. Invoking (3.10) we thus have that

∂α1
x1

∂α2
x2

· · · ∂αm

xm
r2l = 0, ∀α = (α1, · · · , αm), |α| = p,

yielding Pp(∂)r2l = 0. Next, take p− pe

2 ≤ l < p. In this case, the arguments of Step 3 may be

rephrased quite literally, leading to an analogous result as in (3.11), however without the term

for j = 0, since j will start from p− l > 0. So, also here Pp(∂)r2l = 0, implying that the second

part of (3.5) holds.

Step 5 Finally, expression (3.6) may be shown by conversion of (3.5) to frequency space

and invoking properties (2.1) of the Fourier transform.

The proof is completed.

Returning to (3.3) for a more precise calculation of the residues, we will consider two distinct

cases, according to the parity of n.

Case A n = 2l + 2, l ∈ N0.

In this case we rewrite (3.3) as

Resλ=−m−pe−2l−1〈Tλ,p, φ〉 =
am

(2l + 1)!
〈δr, ∂

(2l+1)
r Σ(0)

p [φ]〉 =
am

(2l + 1)!
{∂2l+1

r Σ(0)
p [φ]}r=0,

the latter being zero on account of Proposition 3.1. Hence Tλ,p shows no genuine poles whenever

n = 2l + 2, or equivalently, λ = −m − pe − 2l − 1, l ∈ N0.

Thus, the distributions T−m−pe−2l−1,p, l ∈ N0 can be defined by means of a limiting process:

〈T−m−pe−2l−1,p, φ〉 = am lim
µ→−2l−2

〈Fp r
µ
+, Σ(0)

p [φ]〉,
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where the limit at the right-hand side exactly yields the monomial pseudofunction Fp r−2l−2
+

(see Remark 3.1).

Case B n = 2l + 1, l ∈ N0.

Substitution of these values of n in (3.3) yields

Resλ=−m−pe−2l〈Tλ,p, φ〉 =
am

(2l)!

〈

δr, p
(2l)
r Σ(0)

p [φ]
〉

= am

1

(pe + 2l)!

1

C(pe

2 + l)
〈Pp(x)∆

pe
2 +lδ(x), φ〉, (3.12)

the last step holding on account of (3.4). Since, according to (3.6), the expression at the

right-hand side of (3.12) equals zero for p > pe

2 + l, we conclude that Tλ,p also has no genuine

singularities in the case λ = −m − pe − 2l for l = 0, 1, 2, · · · , p − pe

2 − 1; for this finite set of

values, the distribution can be defined similarly as above by a limiting process, now involving

the monomial pseudofunction Fp r−2l−1
+ .

The results obtained are summarized in the following theorem.

Theorem 3.1 Considered as a function of (λ, p) ∈ C × N0, the distribution Tλ,p shows

simple poles at λ = −m − 2p − 2l, l ∈ N0, with residue

Resλ=−m−2p−2l Tλ,p = am

1

(2p + 2l)!

1

C(p + l)
Pp(x)∆p+lδ(x).

Remark 3.2 The above considerations lead to the conclusion that multiplication of Tλ

with Pp(x) in (3.2) causes the removal of its singularities λ = −m − 2l for l < p. Hence, the

equality (3.2) may be holomorphically extended to all couples (λ, p) which do not fulfill the

relation λ + 2p = −m − 2l, l ∈ N0. This means that, whenever Tλ,p is well-defined, we may

rewrite it as Tλ Pp.

3.3 The distributions T
∗

λ,p

In [7] the distributions T ∗
λ are defined as normalizations of the distributions Tλ. This is done

by removing the singularities of Tλ through the well-known technique of division by a delibe-

rately chosen Γ-function. Here we generalize this normalization procedure to all distributions

Tλ,p.

Noting that the function Γ
(

λ+m+2p
2

)

shows exactly the same simple poles as Tλ,p, with

residues

Resλ=−m−2p−2l Γ
(λ + m + 2p

2

)

= 2
(−1)l

l!
,

we are lead to the following definition of the so-called normalized distributions T ∗
λ,p:















T ∗
λ,p = π

λ+m
2 +p Tλ,p

Γ
(

λ+m
2 + p

) , λ 6= −m − 2p − 2l,

T ∗
−m−2p−2l,p =

(−1)l l! π
m
2 −l

22p+2l(p + l)! Γ
(

m
2 + p + l

)Pp(x)∆p+lδ(x), l ∈ N0,

where, at the singularities of Tλ,p, the normalized distribution T ∗
λ,p is defined, up to constants,

as the quotient of the residues involved.

According to the results of the previous subsection, in this definition, Tλ,p should be inter-

preted in terms of the monomial pseudofunction Fp r−n
+ whenever λ = −m− pe −n+1, n ∈ N,

but λ 6= −m − 2p − 2l, l ∈ N0. Moreover, one can verify that for p = 0 this definition is in

accordance with the definition of T ∗
λ = T ∗

λ,0 in [7].
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4 The Fourier Spectra of the Distributions T
∗

λ,p

For the calculation of the Fourier spectra of the distributions T ∗
λ,p, we will start from the

classical result (see [20, Theorem IV.4.1]): for those couples (λ, p) ∈ C × N0 for which Re λ is

restricted to the strip −m − p < Re λ < −p, the following formula holds

F [TλPp(x)](y) = i−pπ−m
2 −λ−p

Γ
(

λ+m
2 + p

)

Γ
(

− λ
2

) T−λ−m−2pPp(y)

or, following the results of the previous section,

F [Tλ,p] = i−pπ− m
2 −λ−p

Γ
(

λ+m
2 + p

)

Γ
(

− λ
2

) T−λ−m−2p,p . (4.1)

In [14, Lemma 2] it is shown that, by means of analytic continuation, the above formula also

holds in the larger strip −m− 2p < Reλ < 0. However, both sides of (4.1) being meromorphic

functions in the complex variable λ, through analytic continuation that equality is valid in each

open connected area containing the strip −m − p < Re λ < −p, and where the expression on

both sides exist. Singularities occur in (4.1) when λ = −m−2p−2l, l ∈ N0, for the distribution

at the left-hand side and when λ = 2l, l ∈ N0, for the one at the right-hand side. Naturally, the

same singularities are also contained in the involved Γ-functions. Consequently, (4.1) is seen to

hold for λ belonging to the set Ω, which is defined as

Ω = C \ ({−m − 2p− 2l : l ∈ N0} ∪ {2l : l ∈ N0}).

This smoothens the path for the following fundamental result.

Theorem 4.1 The Fourier transform of the distributions T ∗
λ,p is given by

F [T ∗
λ,p] = i−pT ∗

−λ−m−2p,p, ∀ (λ, p) ∈ C × N0.

Proof Three cases have to be distinguished.

( i ) λ ∈ Ω

On account of (4.1) we indeed have

F [T ∗
λ,p] =

π
λ+m

2 +p

Γ
(

λ+m
2 + p

)F [Tλ,p] = i−p π−λ
2

Γ
(

− λ
2

)T−λ−m−2p,p = i−pT ∗
−λ−m−2p,p.

( ii ) λ = −m − 2p − 2l, l ∈ N0

Exploiting the definition of T ∗
−λ−m−2p,p and the properties of the Fourier transform we arrive

at

F [T ∗
−m−2p−2l,p] =

(−1)ll!π
m
2 −l

22p+2l(p + l)!Γ
(

m
2 + p + l

)F [Pp(x)∆p+lδ(x)]

=
(−1)ll!π

m
2 −l

22p+2l(p + l)!Γ
(

m
2 + p + l

)(−1)p(2πi)2l+pPp(∂)ρ2p+2l.

As p ≤ p + l, Proposition 3.2 leads to the desired result, i.e.

F [T ∗
−m−2p−2l,p] = i−p π

m
2 +p+l

Γ
(

m
2 + p + l

)ρ2lPp(y) = i−pT ∗
2l,p. (4.2)
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In the above, we have used the notation ρ = |y|.

(iii) λ = 2l, l ∈ N0

This case directly follows by the action of the Fourier operator on (4.2):

F [T ∗
2l,p](y) = ip T ∗

−m−2p−2l,p(−y) = i−pT ∗
−m−2p−2l,p(y).

The proof is completed.

5 The Fourier Spectra of the Distributions U
∗

λ,p
and V

∗

λ,p

Along with the family of distributions Tλ,p also two other families Uλ,p and Vλ,p have been

defined, in which the higher dimensional “signum distribution” ω plays an important rôle (see

e.g. [3, 4]). While recalling their respective definitions we directly introduce the corresponding

normalizations following the procedure used for the Tλ,p in Section 3. To conclude the paper,

the Fourier spectra of those normalizations U∗
λ,p and V ∗

λ,p are calculated.

For a scalar valued testing function φ(x) in Rm, and a vector valued, monogenic, homoge-

neous polynomial Pp(x) of degree p 6= 0, the generalized spherical means Σ
(1)
p [φ] and Σ

(3)
p [φ]

are defined as follows (see also [21]):

( i ) Σ
(1)
2k [φ] = Σ(0)[ωP2k(ω)φ(x)] =

1

am

∫

Sm−1

ωP2k(ω)φ(x)dS(ω),

( ii ) Σ
(1)
2k+1[φ] = Σ(0)[rωP2k+1(ω)φ(x)] =

r

am

∫

Sm−1

ωP2k+1(ω)φ(x)dS(ω),

(iii) Σ
(3)
2k [φ] = Σ(0)[P2k(ω)ωφ(x)] =

1

am

∫

Sm−1

P2k(ω)ωφ(x)dS(ω),

(iv) Σ
(3)
2k+1[φ] = Σ(0)[rP2k+1(ω)ωφ(x)] =

r

am

∫

Sm−1

P2k+1(ω)ωφ(x)dS(ω).

Note that for p = 0 and P0(x) = 1 we have that Σ
(3)
0 [φ] = Σ

(1)
0 [φ].

The definition of the distributions Uλ,p and Vλ,p then is similar to the one of the distributions

Tλ,p introduced above, however involving the newly introduced spherical means:

( i ) 〈Uλ,p, φ〉 = am〈Fp r
µ+pe

+ , Σ(1)
p [φ]〉,

(ii) 〈Vλ,p, φ〉 = am〈Fp r
µ+pe

+ , Σ(3)
p [φ]〉.

Clearly, also these distributions show an infinite number of singularities, in view of which we will

introduce their normalizations at once. The modus operandi from Subsection 3.3 is adopted,

leading to the following definitions, with l ∈ N0:















U∗
λ,p = π

λ+m+1
2 +p Uλ,p

Γ
(

λ+m+1
2 + p

) , λ 6= −m − 2p − 2l − 1,

U∗
−m−2p−2l−1,p =

(−1)p+1 l! π
m
2 −l

22p+2l+1(p + l)! Γ
(

m
2 + p + l + 1

) (∂2p+2l+1δ(x))Pp(x),















V ∗
λ,p = π

λ+m+1
2 +p Vλ,p

Γ
(

λ+m+1
2 + p

) , λ 6= −m − 2p− 2l − 1,

V ∗
−m−2p−2l−1,p =

(−1)p+1 l! π
m
2 −l

22p+2l+1(p + l)! Γ
(

m
2 + p + l + 1

)Pp(x)(∂2p+2l+1δ(x)).

In order to calculate the Fourier spectra of the normalized distributions U∗
λ,p and V ∗

λ,p,

note that they are interrelated with the “mother” family T ∗
λ,p by the multiplication with the
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C∞-function x as well as by the action of the Dirac operator ∂ (see [1, Propositions 5.2 and

5.3]):

xT ∗
λ,p =

λ + m + 2p

2π
U∗

λ+1,p , ∂T ∗
λ,p = λU∗

λ−1,p , T ∗
λ,px=

λ + m + 2p

2π
V ∗

λ+1,p , T ∗
λ,p∂ = λV ∗

λ−1,p.

Hence it suffices to combine Theorem 4.1 with the properties (2.1) of the Fourier transform, to

arrive at the following elegant results:

Proposition 5.1 The Fourier transform of the distributions U∗
λ,p, respectively V ∗

λ,p, is given

by

F [U∗
λ,p] = i−p−1 U∗

−λ−m−2p,p, F [V ∗
λ,p] = i−p−1 V ∗

−λ−m−2p,p.
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