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Abstract Ricci solitons are natural generalizations of Einstein metrics on one hand, and
are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we
survey some of the recent developments on Ricci solitons and the role they play in the
singularity study of the Ricci flow.
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The concept of Ricci solitons was introduced by Hamilton [43]. They are natural generaliza-
tions of Einstein metrics, which have been a significant subject of intense study in differential
geometry and geometric analysis. Ricci solitons also correspond to special solutions of Hamil-
ton’s Ricci flow (see [41]) and often arise as limits of dilations of singularities in the Ricci flow
(see [45, 12, 21, 57]). They can be viewed as fixed points of the Ricci flow, as a dynamical
system, on the space of Riemannian metrics modulo diffeomorphisms and scalings, and Perel-
man’s F and W functionals (see [54]) are of Lyapunov type for this dynamical system. Ricci
solitons are of interests to physicists as well and are called quasi-Einstein in physics literature
(see [32, 19]). For above reasons, it is very important to understand the geometry of Ricci
solitons and try to classify them both topologically and geometrically. A lot of work has been
done in these directions during the past twenty years. In this paper, we will survey some of
the recent development on Ricci solitons and the role they play in the singularity study of the
Ricci flow.

1 Ricci Solitons

1.1 Ricci solitons

Recall that a Riemannian metric gij is Einstein if its Ricci tensor Rij = ρgij for some
constant ρ. A smooth n-dimensional manifold Mn with an Einstein metric g is an Einstein
manifold. Ricci solitons, introduced by Hamilton [43], are natural generalizations of Einstein
metrics.

Definition 1.1 A complete Riemannian metric gij on a smooth manifold Mn is called a
Ricci soliton if there exist a vector field V = (V i) and a constant ρ such that the Ricci tensor
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Rij of the metric gij satisfies the equation

2Rij +∇iVj +∇jVi = 2ρgij . (1)

Moreover, if V is the gradient vector field of a function f on M , then we have a gradient Ricci
soliton, satisfying the equation

Rij +∇i∇jf = ρgij . (2)

For ρ = 0 the Ricci soliton is steady (or translating), for ρ > 0 it is shrinking and for ρ < 0
expanding. The function f is called a potential function of the Ricci soliton.

Since ∇iVj +∇jVi = LV gij is the Lie derivative of the metric g in the direction of V , we
can also write the Ricci soliton equations (1) and (2) as

2Ric + LV g = 2ρg and Ric +∇2f = ρg

respectively.
When the underlying manifold is a complex manifold, we have the following corresponding

notion of Kähler-Ricci solitons.

Definition 1.2 A complete Kähler metric gαβ̄ on a complex manifold Xn of complex di-
mension n is called a Kähler-Ricci soliton if there exists a real number ρ and a holomorphic
vector field V = (V α) on X such that the Ricci tensor Rαβ̄ of the metric gαβ̄ satisfies the
equation

2Rαβ̄ +∇β̄Vα +∇αVβ̄ = 2ρgαβ̄ . (3)

It is called a gradient Kähler-Ricci soliton if the holomorphic vector field V is the gradient
vector field of a real-valued function f on Xn so that

Rαβ̄ +∇α∇β̄f = ρgαβ̄ and ∇α∇βf = 0. (4)

Again, for ρ = 0 the soliton is steady, for ρ > 0 it is shrinking and for ρ < 0 expanding.

Note that the case V = 0, or f being a constant function, is an Einstein (or Kähler-Einstein)
metric. Thus Ricci solitons are natural extensions of Einstein metrics. In fact, we will see later
that there are no non-Einstein compact steady or expanding Ricci solitons.

Lemma 1.1 (See [46]) Let gij be a complete gradient Ricci soliton with potential function
f . Then we have

R + |∇f |2 − 2ρf = C

for some constant C. Here R denotes the scalar curvature.

Proof Let gij be a complete gradient Ricci soliton on a manifold Mn so that there exists a
potential function f such that the soliton equation (2) holds. Taking the covariant derivatives
and using the commutating formula for covariant derivatives, we obtain

∇iRjk −∇jRik + Rijkl∇lf = 0.

Taking the trace on j and k, and using the contracted second Bianchi identity

∇jRij =
1
2
∇iR,
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we get
∇iR− 2Rij∇jf = 0.

Thus
∇i(R + |∇f |2 − 2ρf) = 2(Rij +∇i∇jf − ρgij)∇jf = 0.

Therefore
R + |∇f |2 − 2ρf = C

for some constant C.

Proposition 1.1 (See [46]) On a compact manifold Mn, a gradient steady or expanding
Ricci soliton is necessarily an Einstein metric.

Proof By Lemma 1.1, we know that

R + |∇f |2 − 2ρf = C (5)

for some constant C. On the other hand, taking the trace in equation (2), we get

R + ∆f = nρ. (6)

Taking the difference of (5) and (6), we get

∆f − |∇f |2 + 2ρf = nρ− C. (7)

When M is compact and ρ ≤ 0, it is elementary to check that f must be a constant and hence
gij is an Einstein metric.

1.2 Examples of nontrivial Ricci solitons

Proposition 1.1 says that there exist no nontrivial compact gradient steady or expanding
solitons. What about compact gradient shrinking solitons? In real dimension n = 2, Hamilton
[43] showed that any compact shrinking soliton on a Riemann surface must be of constant
positive Gaussian curvature. For n = 3, Ivey [48] proved a similar result, namely any shrinking
soliton on a compact 3-manifold must have constant positive sectional curvature. However,
when n ≥ 4 there do exist nontrivial compact gradient shrinking solitons. Also, there exist
noncompact Ricci solitons (steady, shrinking and expanding) that are not Einstein. It turns
out that all the known examples, with one exception, are rotationally symmetric and found
by solving certain nonlinear ODE (system). Moreover, all the known examples of nontrivial
compact shrinking solitons so far are Kähler.

Example 1.1 For n = 4, the first example of compact shrinking soliton was constructed
independently by Koiso [49] and the author [11] on compact complex surface CP2#(−CP2),
where (−CP2) means the complex projective space with the opposite orientation. This is
a gradient Kähler-Ricci soliton and has U(2) symmetry and positive Ricci curvature. More
generally, they found U(n)-invariant Kähler-Ricci solitons on twisted projective line bundle
over CPn−1 for all n ≥ 2.

Example 1.2 Recently, Wang-Zhu [61] found another gradient Kähler-Ricci soliton on
CP2#2(−CP2) which has U(1)×U(1) symmetry. More generally, they found gradient Kähler-
Ricci solitons on certain toric varieties.
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Example 1.3 Also recently, Feldman-Ilmanen-Knopf [31] found complete noncompact
U(n)-invariant shrinking gradient Kähler-Ricci solitons, which are conelike at infinity and satisfy
quadratic decay for the curvature.

Example 1.4 In two dimensions Hamilton [43] wrote down the first example of a complete
noncompact steady soliton on R2, called the cigar soliton, where the metric is given by

ds2 =
dx2 + dy2

1 + x2 + y2

with potential function
f = − log(1 + x2 + y2).

The cigar soliton has positive curvature and is asymptotic to a cylinder of finite circumference
2π at ∞.

Example 1.5 In the Riemannian case, higher dimensional examples of noncompact steady
solitons were found by Robert Bryant [6] on Rn (n ≥ 3) which have positive sectional curvature.

Example 1.6 In the Kähler case, the author [11] found noncompact gradient steady
Kähler-Ricci solitons on Cn. These examples are complete, rotationally symmetric, of posi-
tive curvature. It is interesting to point out that the geodesic sphere S2n−1 of radius s is an
S1-bundle over CPn−1 where the diameter of S1 is on the order 1, while the diameter of CPn−1

is on the order
√

s. In addition, the author [11] found another example on Cn with blow-up at
the origin.

Example 1.7 Also the author [12] constructed a family of complete noncompact expanding
solitons on Cn. These expanding Kähker-Ricci solitons all have U(n) symmetry and positive
sectional curvature and are conelike at infinity.

Example 1.8 Additional examples of complete noncompact Kähler-Ricci expanding soli-
tons were found more recently by Feldman-Ilmanen-Knopf [31] (essentially on Cn with blow-up
at the origin). These examples are also U(n)-invariant and conelike at infinity.

1.3 Compact shrinking Kähler-Ricci solitons

We commented in last subsection that all known compact shrinking Ricci solitons are Kähler,
so the Kähler case is very special. Let Xn be a compact Kähler manifold with Kähler metric
gαβ̄ . Then the Kähler form

ω =
√−1

2
gαβ̄dzα ∧ dzβ

is a closed real (1,1)-form. Let [ω] ∈ H2(M,R) be the Kähler class of gαβ̄ . The Ricci form

Rc =
√−1

2
Rαβ̄dzα ∧ dzβ

is also a closed real (1,1)-form. In fact, it is well known that the first Chern class c1(X) is
represented by the Ricci form Rc:

c1(X) =
1
π

[Rc] ∈ H2(M,Z).

If the first Chern class c1(X) = 0, then by Yau’s celebrated solution (see [62]) to the Calabi
conjecture in each Kähler class on X there exists a unique Calabi-Yau metric (i.e., Ricci flat
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Kähler metric). Also, by the work of Aubin [2] and Yau [62], if c1(X) < 0 then there exists
a unique Kähler-Einstein metric gαβ̄ with Rαβ̄ = −gαβ̄ . On the other hand, from previous
discussions, we know that only possible nontrivial Kähler-Ricci solitons on Xn are shrinking
gradient solitons. If X admits such a gradient soliton g, then it would follow that

Ric− ρg + ∂∂̄f = 0

for some real-valued potential function f on X and some positive constant ρ > 0. Hence
c1(X) > 0 is a necessary condition for X to admit a gradient shrinking soliton.

Now assume that Xn is a compact Kähler manifold with c1(X) > 0 and that the Kähler
form ω is cohomologous to the Ricci form Rc. Let us first recall the definition of the Futaki
invariant (see [33]). Since ω and Rc represent the same cohomology class, by Hodge theory, we
have

Rαβ̄ − gαβ̄ = ∂α∂̄βf, or in short Rc− ω =
√−1

2
∂∂̄f,

for some real-valued function f on X. Let h(X) denote the Lie algebra of holomorphic vector
fields on X. For any V ∈ h(X), define

F (V ) =
∫

X

V f =
∫

X

∇f · V.

Futaki [33] showed that the definition of F : h(X) → C is independent of the choice of Kähler
metrics in the Kähler class [ω] = πc1(X). As a consequence, a necessary condition for X to
admit a Kähler-Einsten metric is Futaki invariant F = 0. Also, if X admits a nontrivial gradient
shrinking Kähler-Ricci soliton with potential function f , then F (∇f) =

∫
X
|∇f |2 > 0. Thus

the existence of a Kähler-Einstein metric and the existence of a nontrivial gradient shrinking
soliton is mutually exclusive. We would like to point out that in [59, 60], Tian-Zhu obtained
certain generalization of the Futaki invariant whose vanishing is a necessary condition for the
existence of gradient shrinking solitons. They also extended the uniqueness theorem of Bando-
Mabuchi [3] on Kähler-Einstein metrics to the case of gradient shrinking Kähler-Ricci solitons.
Very recently, a compactness theorem for compact shrinking Kähler-Ricci solitons has been
proved by Sesum and the author [16], extending the compactness theorem of Anderson [1],
Bando-Kasue-Nakajima [4], and Tian [58] for Kähler-Einstein metrics.

2 Variational Structures

In this section we consider Perelman’s F-functional and W-functional and the related λ-
energy and ν-energy respectively. We will see that critical points of the λ-energy (respec-
tively ν-energy) are precisely given by gradient steady (respectively shrinking) Ricci solitons.
Throughout this section we assume that Mn is a compact smooth manifold.

2.1 Perelman’s F -functional and λ-energy

In [54] Perelman considered the functional

F(gij , f) =
∫

M

(R + |∇f |2)e−fdV

defined on the space of Riemannian metrics and smooth functions on M . Here R is the scalar
curvature of the metric gij and f is a smooth function on Mn.



126 H. D. Cao

Lemma 2.1 (See [54, §1.1], also [17, Lemma 1.5.2]) If δgij = vij and δf = φ are variations
of gij and f respectively, then the first variation of F is given by

δF(vij , φ) =
∫

M

[
− vij(Rij +∇i∇jf) +

(v

2
− φ

)
(2∆f − |∇f |2 + R)

]
e−fdV,

where v = gijvij.

Next we consider the associated energy introduced by Perelman:

λ(gij) = inf
{
F(gij , f) : f ∈ C∞(M),

∫

M

e−fdV = 1
}

.

Clearly λ(gij) is invariant under diffeomorphisms. If we set u = e−
f
2 , then the functional F

can be expressed as

F =
∫

M

(Ru2 + 4|∇u|2)dV.

Thus
λ(gij) = inf

{∫

M

(Ru2 + 4|∇u|2)dV :
∫

M

u2dV = 1
}

.

Hence λ(gij) is just the first eigenvalue of the operator −4∆ + R. Let u0 > 0 be the first
eigenfunction of the operator −4∆ + R so that

−4∆u0 + Ru0 = λ(gij)u0.

Then f0 = −2 log u0 is a minimizer of λ(gij):

λ(gij) = F(gij , f0).

Note that f0 satisfies the equation

−2∆f0 + |∇f0|2 −R = λ(gij). (8)

Let h = hij be a symmetric 2-tensor and consider variations gij(s) = gij + shij . Then it is
an easy consequence of Lemma 2.1 and equation (8), that the first variation Dgλ(h) of λ(gij)
is given by

d

ds

∣∣∣
s=0

λ(gij(s)) =
∫
−hij(Rij +∇i∇jf)e−fdV, (9)

where f is a minimizer λ(gij). In particular, the critical points of λ are precisely steady gradient
Ricci solitons (which are necessarily Ricci flat by Proposition 1.1). Note, by diffeomorphism
invariance of λ, Dgλ vanishes on any Lie derivative hij = LV gij , and hence on 2∇i∇jf =
L∇fgij . Thus, by inserting h = −2(Ric + ∇2f) in (9) one recovers the following result of
Perelman [54].

Proposition 2.1 (See [54, §2.2], also [17, Corollary 1.5.4]) λ(gij(t)) is nondecreasing along
the Ricci flow and the monotonicity is strict unless we are on a steady gradient soliton. In
particular, any steady Ricci soliton is necessarily a gradient soliton.

We remark that by considering the quantity

λ̄(gij) = λ(gij)(Vol(gij))
2
n ,

which is a scale invariant version of λ(gij), Perelman [54] also showed the following result.



Geometry of Ricci Solitons 127

Proposition 2.2 (See [54, §2.3], also [17, Corollary 1.5.5]) λ̄(gij) is nondecreasing along
the Ricci flow whenever it is nonpositive; moreover, the monotonicity is strict unless we are on
a gradient expanding soliton. In particular, any expanding Ricci soliton is necessarily a gradient
soliton.

Combining with Proposition 1.1, we immediately get

Proposition 2.3 On a compact manifold, a steady or expanding Ricci soliton is necessarily
an Einstein metric.

See [28] for an alternative proof of Proposition 2.3.

2.2 Perelman’s W-functional and ν-energy

In order to study shrinking Ricci solitons, we consider the W-functional of Perelman [54]
defined by

W(gij , f, τ) =
∫

M

[τ(R + |∇f |2) + f − n](4πτ)−
n
2 e−fdV,

where gij is a Riemannian metric, f a smooth function on Mn, and τ a positive scale parameter.
Clearly the functional W is invariant under simultaneous scaling of τ and gij (or equivalently
the parabolic scaling), and invariant under diffeomorphism. Namely, for any positive number
a and any diffeomorphism ϕ, we have

W(aϕ∗gij , ϕ
∗f, aτ) = W(gij , f, τ).

Lemma 2.2 (See [54], also [17, Lemma 1.5.7]) If vij = δgij , φ = δf, and η = δτ , then

δW(vij , φ, η) =
∫

M

−τvij

(
Rij +∇if∇jf − 1

2τ
gij

)
(4πτ)−

n
2 e−fdV

+
∫

M

(v

2
− φ− n

2τ
η
)
[τ(R + 2∆f − |∇f |2) + f − n− 1](4πτ)−

n
2 e−fdV

+
∫

M

η
(
R + |∇f |2 − n

2τ

)
(4πτ)−

n
2 e−fdV.

Here v = gijvij as before.

Similarly to the λ-energy, we can consider

µ(gij , τ) = inf
{
W(gij , f, τ) : f ∈ C∞(M),

1
(4πτ)

n
2

∫

M

e−fdV = 1
}

.

Note that if we let u = e−
f
2 , then the functional W can be expressed as

W(gij , f, τ) =
∫

M

[τ(Ru2 + 4|∇u|2)− u2 log u2 − nu2](4πτ)−
n
2 dV,

and the constraint
∫

M
(4πτ)−

n
2 e−fdV = 1 becomes

∫
M

u2(4πτ)−
n
2 dV = 1.

Therefore µ(gij , τ) corresponds to the best constant of a logarithmic Sobolev inequality.
Since the nonquadratic term is subcritical (in view of Sobolev exponent), it is rather straight-
forward to show that

inf
{∫

M

[τ(4|∇u|2 + Ru2)− u2 log u2 − nu2](4πτ)−
n
2 dV

∣∣∣
∫

M

u2(4πτ)−
n
2 dV = 1

}
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is achieved by some nonnegative function u ∈ H1(M) which satisfies the Euler-Lagrange equa-
tion

τ(−4∆u + Ru)− 2u log u− nu = µ(gij , τ)u.

One can further show that u is positive. Then the standard regularity theory of elliptic PDE
shows that u is smooth. We refer the reader to Rothaus [56] for more details. To summarize,
µ(gij , τ) is achieved by a minimizer f satisfying the nonlinear equation

τ(2∆f − |∇f |2 + R) + f − n = µ(gij , τ).

Proposition 2.4 (See [54], also [17, Corollary 1.5.9]) µ(gij(t), τ − t) is nondecreasing
along the Ricci flow; moveover, the monotonicity is strict unless we are on a shrinking gradient
soliton. In particular, any shrinking Ricci soliton is necessarily a gradient soliton.

Finally, we define the ν-energy

ν(gij) = inf
{
W(g, f, τ) : f ∈ C∞(M), τ > 0,

1
(4πτ)

n
2

∫
e−fdV = 1

}
.

One checks that ν(gij) is realized by a pair (f, τ) that solve the equations

τ(−2∆f + |Df |2 −R)− f + n + ν = 0,
1

(4πτ)
n
2

∫
fe−fdV =

n

2
+ ν. (10)

Consider variations gij(s) = gij + shij as before. Using Lemma 2.2 and the equation (10),
one calculates the first variation Dgν(h) to be

d

ds

∣∣∣
s=0

ν(gij(s)) =
1

(4πτ)
n
2

∫
−hij

[
τ(Rij +∇i∇jf)− 1

2
gij

]
e−fdV.

A stationary point of ν thus satisfies

Rij +∇i∇jf − 1
2τ

gij = 0,

which says that gij is a gradient shrinking Ricci soliton.
As before, Dgν(h) vanishes on Lie derivatives. By scale invariance it vanishes on multiplies

of the metric. Inserting hij = −2(Rij +∇i∇jf − 1
2τ gij), one recovers Perelman’s formula that

finds that ν(gij(t)) is monotone on a Ricci flow, and constant if and only if gij(t) is a gradient
shrinking Ricci soliton.

3 Ricci Solitons and the Ricci Flow

3.1 Ricci solitons as special solutions of the Ricci flow

Let us first examine how Einstein metrics behave under Hamilton’s Ricci flow

∂gij(t)
∂t

= −2Rij(t). (11)

If the initial metric is Ricci flat, so that Rij = 0 at t = 0, then clearly the metric does not
change under the Ricci flow. Hence any Ricci flat metric is a stationary solution. This happens,
for example, on a flat torus or on any K3-surface with a Calabi-Yau metric.
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If the initial metric is Einstein with positive scalar curvature, then the metric will shrink
under the Ricci flow by a time-dependent factor. Indeed, since the initial metric is Einstein, we
have

Rij(0) = ρgij(0)

for some ρ > 0. Let
gij(x, t) = a(t)gij(x, 0).

Then it is easy to check that in this case the Ricci flow corresponds to the ODE

a′(t) = −2ρ

for the conformal factor a(t) whose solution is given by a(t) = 1−2ρt. Thus the evolving metric

gij(t) = (1− 2ρt)gij(0)

shrinks homothetically to a point as t → T = 1
2ρ , while the scalar curvature becomes infinite

like 1
T−t .

By contrast, if the initial metric is an Einstein metric of negative scalar curvature, the metric
will expand homothetically for all times. Suppose

Rij(0) = −ρgij(0)

at t = 0 with ρ > 0. Then the solution to the Ricci flow is given by

gij(t) = (1 + 2ρt)gij(0).

Hence the evolving metric gij(t) exists and expands homothetically for all time, and the curva-
ture will fall back to zero like − 1

t . Note that now the evolving metric gij(t) only goes back in
time to − 1

2ρ , when the metric explodes out of a single point in a “big bang”.
Now suppose that we have a steady Ricci soliton ĝij on a smooth manifold Mn so that

2Rij +∇iVj +∇jVi = 0, (12)

and suppose that the vector field V = (V i) generates a one-parameter group of diffeomorphisms
ϕt of M (this is always the case when M is compact). Then clearly

gij(t) = ϕ∗t ĝij

is a solution to the Ricci flow with ĝij as the initial metric, since the time derivative of gij(t)
is given by the Lie derivative LV gij of the evolving metric gij(t) which is equal to −2Rij(t)
in the case of a steady soliton. Conversely, if ϕt is a one-parameter group of diffeomorphisms
generated by a vector field V on M and

gij(t) = ϕ∗t ĝij

is a solution to the Ricci flow with the initial metric ĝij , then the Ricci term −2Ric in the
RHS of the Ricci flow equation is equal to the Lie derivative LV g of the evolving metric gij(t).
In particular, the initial metric gij(0) = ĝij satisfies the steady Ricci soliton equation (12).
Thus steady Ricci solitons are one-to-one correspondent to Ricci flow solutions they generate.
For this reason we often do not distinguish a steady Ricci soliton with the Ricci flow solution
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it generates. More generally, we can consider a solution to the Ricci flow which moves by
diffeomorphisms and also shrinks or expands by a (time-dependent) factor at the same time.
Such a solution corresponds to either shrinking or expanding Ricci soliton. For example, a
shrinking gradient Ricci soliton satisfying the equation

Rij +∇i∇jf − 1
2τ

gij = 0

corresponds to its Ricci flow solution gij(t) of the form

gij(t) := (T − t)ϕ∗t (gij), t < T,

where ϕt are the diffeomorphisms generated by the gradient vector field of f , and τ = T − t.

3.2 Ricci solitons and singularity models of the Ricci flow

Consider a solution gij(t) to the Ricci flow on Mn × [0, T ), T ≤ +∞, where either Mn is
compact or at each time t the metric is complete and has bounded curvature. We say that
gij(t) is a maximal solution of the Ricci flow if either T = +∞ or T < +∞ and the norm of
its curvature tensor |Rm| is unbounded as t → T . In the latter case, we say gij(t) is a singular
solution to the Ricci flow.

Clearly, a round sphere S3 will shrink to a point under the Ricci flow in some finite time,
so this gives rise to one type of singularities in the Ricci flow. On the other hand, if we take a
dumbbell metric on S3 with a neck like S2 × B1, we expect the neck will shrink because the
positive curvature in the S2 direction will dominate the slightly negative curvature in the B1

direction. In some finite time we expect the neck will pinch off. If we dilate in space and time at
the maximal curvature point, then we expect the limit of dilations converge to the round infinite
cylinder S2 ×R. As in the minimal surface theory and harmonic map theory, one usually tries
to understand the structure of a singularity by rescaling the solution (or blow up) to obtain a
sequence of solutions and study its limit. For the Ricci flow, the theory was first developed by
Hamilton in [46].

Denote by
Kmax(t) = sup

x∈M
|Rm(x, t)|gij(t).

According to [46], one can classify maximal solutions into three types; every maximal solution
is clearly of one and only one of the following three types:

Type I T < +∞ and sup(T − t)Kmax(t) < +∞;

Type II(a) T < +∞ but sup(T − t)Kmax(t) = +∞;

Type II(b) T = +∞ but sup tKmax(t) = +∞;

Type III T = +∞, sup tKmax(t) < +∞.

For each type of maximal solution, Hamilton defines a corresponding type of limiting sin-
gularity model.

Definition 3.1 A solution gij(x, t) to the Ricci flow on the manifold M , where either M is
compact or at each time t the metric gij(·, t) is complete and has bounded curvature, is called a
singularity model if it is not flat and of one of the following three types:

Type I The solution exists for t ∈ (−∞,Ω) for some constant Ω with 0 < Ω < +∞, and

|Rm| ≤ Ω/(Ω− t)
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everywhere with equality somewhere at t = 0;
Type II The solution exists for t ∈ (−∞,+∞), and

|Rm| ≤ 1

everywhere with equality somewhere at t = 0;
Type III The solution exists for t ∈ (−A,+∞) for some constant A with 0 < A < +∞,

and
|Rm| ≤ A/(A + t)

everywhere with equality somewhere at t = 0.

Definition 3.2 A solution of the Ricci flow is said to satisfy the injectivity radius condition
if for every sequence of (almost) maximum points {(xk, tk)}, there exists a constant c2 > 0
independent of k such that

inj (M, xk, gij(tk)) ≥ c2√
Kmax(tk)

for all k.

Here, by a sequence of (almost) maximum points, we mean {(xk, tk) ∈ M×[0, T )}, k = 1, 2, · · · ,
has the following property: there exist positive constants c1 and α ∈ (0, 1] such that

|Rm(xk, tk)| ≥ c1Kmax(t), t ∈
[
tk − α

Kmax(tk)
, tk

]

for all k.

In [54], Perelman proved an important result, called no local collapsing theorem (see also
Theorem 3.3.3 in [17]) for solutions to the Ricic flow on a compact manifold. Combining
this theorem of Perelman with the local injectivity radius estimate of Cheng-Li-Yau [25] and
Cheeger-Gromov-Taylor [20] immediately yields the following result, which is conjectured by
Hamilton in [46].

Theorem 3.1 (Little Loop Lemma, see [17, Theorem 4.2.4]) Let gij(t), 0 ≤ t < T < +∞,
be a solution of the Ricci flow on a compact manifold Mn. Then there exists a constant δ > 0
having the following property: if at a point x0 ∈ M and a time t0 ∈ [0, T ),

|Rm|(·, t0) ≤ r−2, on Bt0(x0, r)

for some r ≤ √
T , then the injectivity radius of M with respect to the metric gij(t0) at x0 is

bounded from below by
inj (M, x0, gij(t0)) ≥ δr.

Clearly by the above Little Loop Lemma a maximal solution on a compact manifold with the
maximal time T < +∞ always satisfies the injectivity radius condition. Also, by the Gromoll-
Meyer injectivity radius estimate (see [39]), a solution on a complete noncompact manifold with
positive sectional curvature also satisfies the injectivity radius condition. We refer the reader
to Chapeter 4 of [17] for more detailed discussions.

Theorem 3.2 (See [46, Theorem 16.2]) For any maximal solution to the Ricci flow which
satisfies the injectivity radius condition and is of Type I, II, or III, there exists a sequence of
dilations of the solution which converges in C∞loc topology to a singularity model of the corre-
sponding type.
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In the case of manifolds with nonnegative curvature operator, or Kähler metrics with non-
negative holomorphic bisectional curvature, we can bound the Riemannian curvature by the
scalar curvature R upto a constant factor depending only on the dimension. Then we can
slightly modify the statements in the previous theorem as follows.

Theorem 3.3 (See [46, Theorem 16.3]) For any complete maximal solution to the Ricci
flow with bounded and nonnegative curvature operator on a Riemannian manifold, or on a
Kähler manifold with bounded and nonnegative holomorphic bisectional curvature, there exists
a sequence of dilations which converges to a singular model.

For Type I solutions: the limit model exists for t ∈ (−∞,Ω) with 0 < Ω < +∞ and has

R ≤ Ω/(Ω− t)

everywhere with equality somewhere at t = 0;
For Type II solutions: the limit model exists for t ∈ (−∞,+∞) and has

R ≤ 1

everywhere with equality somewhere at t = 0;
For Type III solutions: the limit model exists for t ∈ (−A,+∞) with 0 < A < +∞ and has

R ≤ A/(A + t)

everywhere with equality somewhere at t = 0.

The following results obtained by Hamilton [45], the author [12], and Chen-Zhu [21] char-
acterize the Type II and Type III singular models of the Ricci flow and the Kähler-Ricci flow
with nonnegative curvature respectively.

Theorem 3.4 (See [45]) Any Type II singularity model of the Ricci flow with nonnegative
curvature operator and positive Ricci curvature must be a steady Ricci soliton.

Theorem 3.5 (See [12]) ( i ) Any Type II singularity model on a Kähler manifold with
nonnegative holomorphic bisectional curvature and positive Ricci curvature must be a steady
Kähler-Ricci soliton;

(ii) Any Type III singularity model on a Kähler manifold with nonnegative holomorphic
bisectional curvature and positive Ricci curvature must be a shrinking Kähler-Ricci soliton.

Theorem 3.6 (See [21]) Any Type III singularity model of the Ricci flow with nonnegative
curvature operator and positive Ricci curvature must be a homothetically expanding Ricci soliton.

We remark that the basic idea in proving the above theorems is to apply the Li-Yau-Hamilton
estimates for the Ricci flow (see [44]) and Kähler-Ricci flow (see [10]), and the strong maximum
principle type arguments.

By exploring Perelman’s µ-entropy, Sesum studied compact Type I singularity model and
obtained the following

Theorem 3.7 (See [57]) Let (M, gij(t)) be a Type I singularity model obtained as a rescaling
limit of a Type I maximal solution. Suppose M is compact. Then (M, gij(t)) must be a gradient
shrinking Ricci soliton.

It is possible that the compactness assumption of the rescaling limit in the above theorem
may not be needed and it is desirable to remove this assumption.
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4 Geometry of Complete Noncompact Ricci Solitons

We will now examine the structure of steady or expanding Ricci solitons of the sort we get
as a Type II or Type III limit.

In [46], Hamilton proved the following

Proposition 4.1 (See [46, Theorem 20.1]) Suppose that we have a complete noncompact
gradient steady Ricci soliton gij with bounded curvature so that

Rij = ∇i∇jF

for some potential function F on M . Assume that the Ricci curvature is strictly positive and
the scalar curvature R attains its maximum Rmax at a point x0 ∈ Mn. Then

|∇F |2 + R = Rmax

everywhere on Mn. Furthermore, F is a convex exhaustion function and attains its minimum
at x0. As a consequence, the underlying manifold Mn must be diffeomorphic to the Euclidean
space Rn.

Remark 4.1 Similar conclusions hold for a complete noncompact expanding gradient Ricci
soliton with positive Ricci curvature such that the scalar curvature R attains its maximum Rmax.
Namely, the potential function F is an exhausting and convex function and the underlying
manifold is diffeomorphic to the Euclidean space Rn.

The following result is observed in [14] and [13].

Proposition 4.2 (See [14, 13]) Suppose that we have a complete noncompact gradient
steady Kähler-Ricci soliton satisfying the same assumptions of Proposition 4.1. Then the un-
derlying complex manifold Xn is Stein and diffeomorphic to R2n.

Very recently, Bryant [7] and Chau-Tam [18] have shown

Theorem 4.1 (See [7, 18]) Under the same assumption as in Proposition 4.2, Xn is in
fact biholomorphic to the complex Euclidean space Cn.

Now we turn our attention to more geometric aspects of Ricci solitons. Suppose that Mn

is an n-dimensional complete noncompact Riemannian manifold with nonnegative Ricci curva-
ture. First let us recall two geometric concepts, the asymptotic scalar curvature ratio and the
asymptotic volume ratio, both defined by Hamilton [46].

Let O be a fixed point on a Riemannian manifold Mn, s the distance to the fixed point O,
and R the scalar curvature. The asymptotic scalar curvature ratio is defined by

A = lim sup
s→+∞

Rs2.

The definition is independent of the choice of the fixed point O and invariant under dilation.
Consider the geodesic ball B(O, r) centered at O of radius r. The well-known Bishop-

Gromov volume comparison theorem tells us that the ratio Vol(B(O, r))/rn is nonincreasing in
r ∈ [0,+∞). Thus there exists a limit

νM = lim
r→+∞

Vol(B(O, r))
rn

,
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which is called the asymptotic volume ratio of the Riemannian manifold M . νM is invariant
under dilation and is independent of the choice of the origin.

We remark that the concept of asymptotic scalar curvature ratio is particular useful on man-
ifolds with positive sectional curvature. The well-known gap theorems established by Greene-
Wu [38], Eschenberg-Shrader-Strake [30] and Drees [29] show that any complete noncompact
n-dimensional (except n = 4 or 8) Riemannian manifold of positive sectional curvature must
have A > 0. Similar results on complete noncompact Kähler manifolds of positive holomorphic
bisectional curvature were obtained by Mok-Siu-Yau [50], Chen-Zhu [22] and Ni-Tam [52].

Proposition 4.3 (See [46, Theorem 20.2]) For a complete noncompact gradient steady
Ricci soliton with bounded curvature and positive sectional curvature of dimension n ≥ 3 where
the scalar curvature assumes its maximum at a point O ∈ M , the asymptotic scalar curvature
ratio is infinite, i.e.,

A = lim sup
s→+∞

Rs2 = +∞,

where s is the distance to the point O.

In fact, one has the stronger conclusion that

lim sup
s→+∞

Rs1+ε = +∞

for arbitrarily small ε > 0.
A solution gij(t) to the Ricci flow is called ancient if it is defined for −∞ < t < T . By

definition, Type I and Type II singularity models are ancient, and so is a steady Ricci soliton.
In [54], Perelman proves a more general result for ancient solutions.

Theorem 4.2 (See [54, Proposition 11.4], also [17, Lemma 6.3.1]) Let gij(t) be a complete
non-flat ancient solution to the Ricci flow with bounded and nonnegative curvature operator on
a noncompact manifold Mn. Then the asymptotic volume ratio with respect to gij(t) is zero:
νM (t) = 0 for all t.

In the Kähler case, the same result is obtained independently by Chen-Zhu [23]. Moreover,
we have the following improved result, by Chen-Zhu [24] and the author [13] for n = 2 and Ni
[51] for all n, in which the assumption of nonnegativity of curvature operator is replaced by the
weaker assumption of nonnegative holomorphic bisectional curvature.

Theorem 4.3 (See [24], and [13] for n = 2, [51] for all n) Let gαβ̄(t) be a complete non-flat
ancient solution to the Kähler-Ricci flow with bounded and nonnegative holomorphic bisectional
curvature on a noncompact complex manifold Xn. Then the asymptotic volume ratio νX with
respect to gαβ̄(t) is zero for all t.

For complete noncompact ancient Type I-like solution, Chow and Lu [26] proved the follow-
ing result in dimensions three.

Proposition 4.4 (See [26]) If gij(t) is a complete noncompact ancient Type I-like solution(
i.e., sup

t∈(−∞,T )

(T − t) Kmax(t) < +∞)
to the Ricci flow with bounded and positive sectional

curvature on an orientable three-manifold, then the asymptotic scalar curvature ratio in gij(t)
is infinite for all t: A = ∞.

In fact, the above result of Chow and Lu can be extended to all dimensions. Namely,
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Proposition 4.5 Any complete noncompact ancient Type I-like solution to the Ricci flow
with bounded and positive curvature operator on an n-dimensional manifold must have infinite
asymptotic scalar curvature ratio.

Indeed one can argue by contradiction. Suppose a complete noncompact ancient Type I-like
solution to the Ricci flow with bounded and positive curvature operator has finite asymptotic
scalar curvature ratio. Then it follows from Theorem 19.2 of [46] that its asymptotic volume
ratio would be positive. This is then a contradiction to Theorem 4.2.

Note that, by the Hamilton-Ivey curvature pinching theorem and Perelman’s no local collaps-
ing theorem, the Type I singularity model of a Type I compact maximal solution is necessarily
κ-nocollapsed and of nonnegative sectional curvature.

Proposition 4.6 (See [55, Lemma 1.2]) There does not exist a three-dimensional complete
noncompact κ-noncollapsed gradient shrinking soliton with positive sectional curvature.

Based on the above Proposition 4.6 (see also the proof of Lemma 6.4.1 in [17]), Perelman [55]
obtained the following classification result (see also [17, Lemma 6.4.1]), which is an improvement
of a result of Hamilton (see [46, Theorem 26.5]).

Theorem 4.4 (Classification of Three-Dimensional Shrinking Solitons) Let gij(t) be a
nonflat gradient shrinking soliton to the Ricci flow on a three-manifold M3. Suppose that gij(t)
has bounded and nonnegative sectional curvature and is κ-noncollapsed on all scales for some
κ > 0. Then (M, gij(t)) is one of the following:

( i ) the round three-sphere S3, or one of its metric quotients;
(ii) the round infinite cylinder S2 × R, or its Z2 quotient.

In the Kähler case, we have the following result of Ni [51].

Proposition 4.7 (See [51]) In any complex dimension, there is no complete noncompact
gradient shrinking Kähler-Ricci soliton with positive holomorphic bisectional curvature.

We end this section by stating the following important uniqueness result of Hamilton for
2-dimensional complete steady Ricci solitons.

Theorem 4.5 (See [43]) The only complete steady Ricci soliton on a two-dimensional
manifold with bounded curvature which assumes its maximum 1 at an origin is the “cigar”
soliton on the plane R2 with the metric

ds2 =
dx2 + dy2

1 + x2 + y2
.

5 Stability of Ricci Solitons

In this section we describe the second variation formulas for Perelman’s λ-energy and ν-
energy due to Hamilton, Ilmanen and the author [15].

5.1 Second variation of λ-energy

Recall that the λ-energy is defined by

λ(gij) = inf
{
F(gij , f) : f ∈ C∞(M),

∫

M

e−fdV = 1
}
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and its first variation is given by

d

ds

∣∣∣
s=0

λ(g(s)) =
∫
−hij(Rij +∇i∇jf)e−fdV,

where f is the minimizer.
For any symmetric 2-tensor h = hij and 1-form ω = ωi, we write Rm(h, h) := Rijklhikhjl,

div ω := ∇iωi, (div h)i := ∇jhji, (div∗ω)ij = − 1
2 (∇iωj +∇jωi) = − 1

2Lω#gij .

Theorem 5.1 (See [15]) Let (Mn, g) be a compact Ricci flat manifold and consider vari-
ations g(s) = g + sh. Then the second variation D2

gλ(h, h) of λ at g is given by

d2

ds2

∣∣∣
s=0

λ(g(s)) =
∫
〈Lh, h〉dV,

where
Lh :=

1
2
∆h + div∗ div h +

1
2
∇2vh + Rm(h, ·),

and vh satisfies

∆vh = div div h.

Note that if we decompose C∞(Sym2(T ∗M)) as

ker div⊕ im div∗,

one verifies that L vanishes on im div∗, that is, on Lie derivatives. On ker div one has

L =
1
2
∆L,

where
∆Lh := ∆h + 2Rm(h, ·)− Rc · h− h · Rc

is the Lichnerowicz Laplacian on symmetric 2-tensors. We call a critical point g of λ linearly
stable if L ≤ 0.

Example 5.1 A Calabi-Yau K3 surface and more generally, any manifold with a parallel
spinor has ∆L ≤ 0 (see [40, 27]). So these manifolds are linearly stable in the sense presented
here.

Example 5.2 Let g be compact and Ricci flat. Following [9, 40] we examine conformal
variations. It is convenient to replace ug by

h = Su := (∆u)g −D2u,

which differs from the conformal direction only by a Lie derivative and is divergence free. We
have

∆LSu = (S∆u)g,

so ∆L has the same eigenvalues as ∆. In particular, N ≤ 0 in the conformal direction. This
contrasts with the Einstein functional.
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5.2 Second variation of ν-energy

Recall that the ν-energy is defined by

ν(gij) = inf
{
W(g, f, τ) : f ∈ C∞(M), τ > 0,

1
(4πτ)

n
2

∫
e−fdV = 1

}
,

and its first variation is given by

d

ds

∣∣∣
s=0

ν(gij(s)) =
1

(4πτ)
n
2

∫
−hij

[
τ(Rij +∇i∇jf)− 1

2
gij

]
e−fdV.

In [15], we stated the second variation of the ν-energy for general shrinking Ricci solitons.
Here, for simplicity, we only mention the formula for Einstein metrics, which are trivial shrinking
gradient solitons with f ≡ n

2 , normalized by Ric = g
2τ .

Theorem 5.2 (See [15]) Let (M, g) be an Einstein manifold of positive scalar curvature
and consider variations g(s) = g + sh. Then the second variation D2

gν(h, h) is given by

d2

ds2

∣∣∣
s=0

ν(g(s)) =
τ

vol(g)

∫
〈Nh, h〉,

where
Nh :=

1
2
∆h + div∗ div h +

1
2
∇2vh + Rm(h, ·)− g

2nτ vol(g)

∫
trgh,

and vh is the unique solution of

∆vh +
vh

2τ
= div div h,

∫
vh = 0.

As in the previous case, N is degenerate negative elliptic and vanishes on imdiv∗. Write

ker div = (ker div)0 ⊕ Rg,

where (ker div)0 is defined by
∫

trgh = 0. Then on (ker div)0 we have

N =
1
2

(
∆L − 1

τ

)
,

where ∆L is the Lichnerowicz Laplacian. So the linear stability of a shrinker comes down
to the (divergence free) eigenvalues of the Lichnerowicz Laplacian. Let us write µL for the
maximum eigenvalue of ∆L on symmetric 2-tensors and µN for the maximum eigenvalue of N

on (ker div)0,

Example 5.3 The round sphere is linearly stable: µN = − 2
(n−1)τ < 0. In fact, it is

geometrically stable (i.e. nearby metrics are attracted to it up to scale and gauge) by the
results of Hamilton [41, 42, 43] and Huisken [47].

Example 5.4 For complex projective space CPm, the maximum eigenvalue of ∆L on
(ker div)0 is µL = 1

τ by work of Goldschmidt [37], so CPm is neutrally linearly stable, i.e.
the maximum eigenvalue of m on (ker div)0 is µN = 0.

Example 5.5 Any product of two Einstein manifolds M = Mn1
1 ×Mn2

2 is linearly unstable,
with µN = 1

2τ . The destabilizing direction h = g1
n1
− g2

n2
corresponds to a growing discrepancy

in the size of the factors.
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Example 5.6 Any compact Kähler-Einstein manifold Xn of positive scalar curvature with
dimH1,1(X) ≥ 2 is linearly unstable. Indeed, we can compute µN as follows. Let σ be a
harmonic 2-form and h be the corresponding metric perturbation; then ∆Lh = 0, and if σ is
chosen perpendicular to the Kähler form, then as above we obtain µN = 1

2τ .

Example 5.7 Let Qm denote the complex hyperquadric in CPm+1 defined by
m+1∑

i=0

z2
i = 0,

a Hermitian symmetric space of compact type, hence a Kähler-Einstein manifold of positive
scalar curvature.

(a) Q2 is isometric to CP1×CP1, the simplest example of the above instability phenomenon.
(b) Q3 has dim H1,1(Q3) = 1, so the above discussion does not apply. But the maximum

eigenvalue of ∆L on (ker div)0 is µL = − 2
3τ by work of Gasqui and Goldschmidt [35] (or see

[36]). The proximate cause is a representation that appears in the sections of the symmetric
tensors but not in scalars or vectors. Therefore, Q3 is linearly unstable with

µN =
1
6τ

.

See further exploration of this example in [8].
(c) For Q4, the maximum eigenvalue of ∆L on symmetric tensors is µL = − 1

τ by work of
Gasqui and Goldschmidt [34] (or see [36]). So Q4 is neutrally linearly stable: µN = 0.

6 The Gaussian Density of Shrinking Ricci Solitons

In [15], the notion of Gaussian density (or central density) of a shrinking Ricci soliton is
introduced. In the case of a compact shrinking soliton (Mn, g), the Gaussian density is simply
given by

Θ(M) = Θ(M, g) := eν(M,g),

where ν(M, g) = ν(gij) is the ν-energy of the compact shrinking Ricci soliton (M, g).
In the following discussion, we will normalize Einstein manifolds of positive scalar curvature

by Ric = g
2τ , τ = 1

2(n−1) , so that the round sphere Sn has radius 1. As shown in [15], we have
the following facts.

(1) Θ(Sn) =
(n− 1

2πe

)n/2

vol(Sn).

(2) If M is an Einstein manifold of positive scalar curvature, then

Θ(M) =
( 1

4πτe

)n
2

volτ (M) ≤ Θ(Sn),

with equality if and only if M = Sn.

(3) Θ(CPm) =
(m + 1

πe

)N vol(S2m+1)
2π

.

(4) The Kähler-Einstein manifold M = CP2#k(−CP2), k = 0, 3, · · · , 8, has Θ(M) = 9−k
2e2 .

(5) Θ(M1 ×M2) = Θ(M1)Θ(M2).
As in [15], we say that one shrinking soliton decays to another if there is a small perturbation

of the first whose Ricci flow develops a singularity modelled on the second. Because the ν-
invariant is monotone during the flow, decay can only occur from a shrinking soliton of lower
density to one of higher density. This creates a “decay lowerarchy”. (It should be a partial
order.)
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7 4-D Einstein Manifolds and Shrinking Ricci Solitons

In this section we collect information about stability and Gaussian density values of all
known (orientable) positive Einstein 4-manifolds and 4-dimensional compact shrinking Ricci
solitons. Below is a list containing all those information. Note that we knew the Θ values
of all known examples except Wang-Zhu soliton (see [61]). We also remark that Koiso-Cao
soliton metric (see [49, 11]) and the Page metric (see [53]) are both U(2)-invariant metrics on
CP2#(−CP2). The former, but not the latter, is Kähler. At this point we do not know whether
Koiso-Cao soliton, Page metric, and Wang-Zhu soliton are stable or not, though we suspect
they are not. As pointed out in [15], the Page metric may well decay to the Koiso-Cao metric,
and, by the discussion in [31], either metric might decay to CP2 via a CP1 pinches off.

Shrinking Solitons Type Θ Θ Stability

S4 Einstein 6
e2 .812 Stable

CP2 Einstein 9
2e2 .609 Stable

S2 × S2 Einstein product 4
e2 .541 Unstable

CP2#(−CP2) Kähler-Ricci soltion (see [49, 11]) 3.826
e2 .518 Unknown

CP2#(−CP2) Einstein (Page metric) (see [53]) 3.821
e2 .517 Unknown

CP2#2(−CP2) Kähler-Ricci soltion (see [61]) < 7
2e2 ??? Unknown

CP2#3(−CP2) Kähler-Einstein 3
e2 .406 Unstable

CP2#4(−CP2) Kähler-Einstein 5
2e2 .338 Unstable

CP2#5(−CP2) Kähler-Einstein 2
e2 .271 Unstable

CP2#6(−CP2) Kähler-Einstein 3
2e2 .203 Unstable

CP2#7(−CP2) Kähler-Einstein 1
e2 .135 Unstable

CP2#8(−CP2) Kähler-Einstein 1
2e2 .068 Unstable

Finally, we remark that on any compact Einstein 4-manifold M4, the Hitchin-Thorpe in-
equality (see e.g., [5]) says that

2χ(M) ≥ 3|τ(M)|,

where χ(M) is the Euler characteristic and τ(M) is the signature of M4. An interesting
question is whether the Hitchin-Thorpe inequality holds for 4-dimensional compact shrinking
Ricci soliton.
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8 Open Problems

In conclusion, we collect the following open problems:
( i ) Is it true that linearly stable compact 4-dimensional shrinking solitons are necessarily

Einstein?
( ii ) Show that the only linearly stable Einstein 4-manifolds are either the round sphere S4

or the complex projective space CP2 with the Fubini-Study metric.
(iii) Does the Hitchin-Thorpe inequality hold for compact 4-dimensional shrinking solitons?
(iv) Compute the precise value of the Gaussian density Θ for the Wang-Zhu soliton metric

on CP2#2(−CP2).
( v ) For n ≥ 4, find a non-product, nontrivial, purely Riemannian, compact (or complete

noncompact) shrinking soliton. A lot of techniques have been developed in the last couple of
decades to construct Einstein metrics. It would be very interesting to explore and extend some
of these techniques to construct shrinking solitons.

(vi) Show that for n ≥ 4 there are no complete noncompact κ-noncollapsed shrinking
Ricci soliton with positive sectional curvature. For n = 3, this was proved by Perelman (see
Proposition 4.3).

(vii) Show that any Type I singularity model obtained as a rescaling limit of a Type I
maximal solution is necessarily a gradient shrinking soliton.
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[50] Mok, N., Siu, Y. T. and Yau, S. T., The Poincaré-Lelong equation on complete Kähler manifolds, Compo-
sitio Math., 44, 1981, 183–218.



142 H. D. Cao

[51] Ni, L., Ancient solution to Kahler-Ricci flow, arXiv:math:math.DG.0502494, 2005.

[52] Ni, L. and Tam, L. F., Plurisubharmonic functions and the structure of complete Kähler manifolds with
nonnegative curvature, J. Diff. Geom., 64(3), 2003, 457–524.

[53] Page, D., A compact rotating gravitational instanton, Phys. Lett., 79B, 1978, 235–238.

[54] Perelmann, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/
0211159 v1 November 11, 2002.

[55] Perelmann, G., Ricci flow with surgery on three manifolds, arXiv:math.DG/0303109 v1 March 10, 2003.

[56] Rothaus, O. S., Logarithmic Sobolev inequalities and the spectrum of Schrödinger opreators, J. Funct.
Anal., 42(1), 1981, 110–120.

[57] Sesum, N., Limiting behaviour of the Ricci flow, arXiv:DG.math.DG/0402194.

[58] Tian, G., On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., 101,
1990, 101–172.

[59] Tian, G. and Zhu, X. H., Uniqueness of Kähler-Ricci solitons, Acta Math., 184, 2000, 271–305.

[60] Tian, G. and Zhu, X. H., A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment.
Math. Helv., 77, 2002, 297–325.

[61] Wang, X. J. and Zhu, X. H., Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv.
Math., 188(1), 2004, 87–103.

[62] Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation,
I, Comm. Pure Appl. Math., 31, 1978, 339–411.


