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Abstract In educational practice, teachers often need to manually assemble an exercise collection as a class quiz or a

homework assignment. A well-assembled exercise collection needs to have the proper difficulty index and discrimination index

so that it can better develop students’ abilities. In this paper, we propose an exercise collection auto-assembling framework,

in which a teacher provides the target values of difficulty and discrimination indices and a qualified exercise collection is

automatically assembled. The framework consists of two stages. At the answer prediction stage, a knowledge tracing model

is utilized to predict the students’ answers to unseen exercises based on their history interaction records. In addition, to

better represent the exercises in the model, we propose exercise embeddings and design a pre-training approach. At the

collection assembling stage, we propose a deep reinforcement learning model to assemble the required exercise collection

effectively. Since the knowledge tracing model in the first stage has different confidences in the predicted answers, it is also

taken into account in the objective. Experimental results show the effectiveness and efficiency of the proposed framework.

Keywords exercise collection, knowledge tracing, reinforcement learning

1 Introduction

Currently, the online education system has been

widely applied in educational practice. In such plat-

forms, students are free to take exercises to reinforce

the learned knowledge and develop their skills. Mean-

while, teachers need to assign homework or organize

quizzes to students. A homework assignment or a quiz

paper consists of multiple exercises, and thus we refer

to it as an exercise collection in the paper.

In order to assemble an exercise collection, teachers

usually have to manually select several exercises from

the ones that students have not done. Additionally,

teachers also need to ensure that the assembled exer-

cise collection is neither too easy nor too difficult for

students, and it can distinguish students of different

levels well. Normally, the task of exercise collection as-

sembling is essential for teachers on most subjects for

primary and secondary education (e.g., Chinese, math-

ematics, English, and physics). Traditionally, this task

is highly dependent on the educational experience of

teachers and may take a great amount of time.

Therefore, this paper aims to propose a framework

for exercise collection auto-assembling. By using this

framework, teachers only need to provide a few para-

meters (including the number of exercises, the target

difficulty index, and the discrimination index) to auto-

matically obtain a required exercise collection, which

will save teachers a lot of time.

Because the exercises to be selected have not been

done by the students, it is first necessary to predict the

correctness of students’ answers to unencountered exer-

cises given their history interaction records in the sys-

tem, which can be done by a knowledge tracing model.

However, most of the existing models [1–4] only take the

knowledge concepts in the exercise and/or the exercise

text as input, which will cause other features of the ex-
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ercise (such as the difficulty) not to be modeled. There-

fore, how to efficiently represent these extra features of

the exercise and feed them into the knowledge tracing

model is a challenge.

Afterwards, we need to design an algorithm to se-

lect exercises from the exercise set based on the predic-

tion of the students’ answers, making the collection in

line with the teacher’s requirements. However, finding

the optimal exercise collection by simply traversing all

the candidates may cause an impractical time overhead.

Therefore, how to effectively and efficiently assemble

the exercise collection is another challenge of this task.

To address the above challenges, we propose an ex-

ercise collection auto-assembling framework that uti-

lizes students’ history interactions in the system to pre-

dict their answering results of unseen exercises, and

thus automatically assembles an exercise collection that

meets the teacher’s requirement. First, we embed each

exercise into a vector as the additional input of the

knowledge tracing model to represent the features of

the exercise. We also design a pre-training approach for

exercise embeddings to accelerate the training process.

In addition, we propose a deep reinforcement learning

model to select exercises and assemble an approximate

optimal exercise collection.

To summarize, this paper mainly makes the follow-

ing contributions.

• We propose a framework to automatically assem-

ble required exercise collections for teachers. To the

best of our knowledge, this paper is the first study

to propose the exercise collection auto-assembling task

and present an efficient solution.

• We introduce exercise embeddings into the know-

ledge tracing models, which will model the similarities

and differences of exercises based on history interaction

records of students. We also propose a pre-training

method for exercise embeddings to speed up the train-

ing process.

•We propose a reinforcement learning based model

to assemble an exercise collection efficiently and effec-

tively.

The rest of the paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 formally defines

the exercise collection auto-assembling problem. Sec-

tion 4 gives an overview of the framework. Section 5

proposes the exercise embeddings for knowledge tracing

models. Section 6 proposes the reinforcement learning

based model to assemble the exercise collection. Sec-

tion 7 conducts experiments on our framework. Sec-

tion 8 concludes the paper.

2 Related Work

2.1 Knowledge Tracing

Knowledge tracing is a task that models a stu-

dent’s knowledge level given his/her history exercises

and predicts whether the student can correctly answer

future exercises. Also, there exist some crowd-based

studies [5–8] that leverage workers’ historical experience

to deduce the answers of tasks accurately. We mainly

focus on the exercise scenario.

Statistical Knowledge Tracing Model. Bayesian

Knowledge Tracing (BKT) [9] is a classical method in

knowledge tracing, which models the knowledge state

of the student as a set of latent variables in a hidden

Markov model, and updates the variables by the result

of doing exercises. However, BKT treats every know-

ledge concept as independent, thus ignoring the corre-

lation between knowledge concepts.

Deep Learning Based Knowledge Tracing Model.

Deep Knowledge Tracing (DKT) [1] utilizes a recurrent

neural network to model the knowledge state of the

student. DKT takes the history interaction records

of the student as input and gives predictions for the

next exercise. DKVMN (Dynamic Key-Value Mem-

ory Networks) [2] applies a memory module to repre-

sent the knowledge concepts and discover the correla-

tion between them. Exercise-aware Knowledge Tracing

(EKT) [3, 4] leverages the exercise text to learn the se-

mantic information of each exercise. Recently, there has

also been some new development on graph-based know-

ledge tracing models [10–13], which utilize graph-based

models (such as graph neural networks, graph convo-

lutional networks) to organize the relationship among

the knowledge concepts.

However, these existing knowledge tracing models

only consider the knowledge concepts and the text in-

formation from the exercise, and thus some features of

the exercise (e.g., the complexity of the exercise) are

lost.

2.2 Reinforcement Learning

Reinforcement learning is an area of machine learn-

ing, which describes how an agent learns strategies to

maximize the total reward during the process of inte-

raction with the environment.

In the field of reinforcement learning, Q-learning [14]

is a representative value-based method, in which each

state has a Q-value representing the maximum reward
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that it can obtain in the future. Q-learning uses a Q-

table to store the Q-values of all possible states and

applies dynamic programming to decide which action

to take to finally reach the state with maximum re-

ward. However, when the number of states is quite

large, it needs long time and large memory to compute

and store the values in Q-table. Therefore, the DQN

(Deep Q-Network) model further improves Q-learning

by using a neural network to estimate the Q-value of

a state, which will take less time and memory than Q-

learning. There exist some studies focusing on improv-

ing the ML model [15–17] or system performance [18, 19]

using reinforcement learning. In this paper, we use a

DQN model (in Subsection 6.2) to select k exercises

from the candidate exercise set to ensure the difficulty

index and the discrimination index of the exercise col-

lection meet the teacher’s requirements.

3 Problem Definition

Definition 1 (Exercise). An exercise ej =

{w(j)
1 , w

(j)
2 , · · · , w(j)

M } is formed with a sequence of

words as its text. In addition, each exercise is tagged

with a set of knowledge concept labels, denoted as

KCj = {c1, c2, · · · , ck}, which is provided by experts

and each label c ∈ KCj represents a knowledge concept

involved in exercise ej.

Example 1. We consider the following math exercise.

“x and y are both complex numbers. It is known that x

and y are mutually conjugate. Also, x−y = 6, xy = 10.

Find the sum of x and y.” The knowledge concept set

of this exercise could be {“Complex Number”, “Com-

plex Conjugate”, “Arithmetic of Complex Numbers”,

“Equations with Complex Numbers”}.
Definition 2 (Student History Interaction Record).

In the online educational system, students will do exer-

cises (either self-determined or assigned by the teacher)

to develop their skills. The system records the ex-

ercising history of each student si, denoted as a list

H(si) =
((
ek1

, aik1

)
,
(
ek2

, aik2

)
, · · · ,

(
ekL

, aikL

))
, where

each item represents that the exercise has been done by

the student and the score is aij. Generally, if si answers

ej right, aij = 1; otherwise, aij = 0.

Definition 3 (Exercise Collection). An exercise

collection C =
{
e1, e2, · · · , e|C|

}
consists of a set of

exercises, which is usually collected by a teacher as a

homework assignment or a quiz paper.

Apparently, in teaching practice, the exercises in the

collection cannot all be extremely too difficult or too

easy for students to solve; otherwise the collection will

have little effect on developing students’ skills. In or-

der to evaluate the quality of the exercise collection, we

adopt two widely-used metrics in education: difficulty

index and discrimination index [20, 21].

Definition 4 (Difficulty Index). Given a student

set S and an exercise collection C, the difficulty index

is defined as the proportion of the average score to the

overall score. Formally,

P (C, S) =

∑
si∈S

∑
ej∈C

aij

|C| × |S|
.

The difficulty index measures the difficulty level of

the whole collection. The possible value varies from 0 to

1, where a higher value represents an easier collection.

Definition 5 (Discrimination Index). Given a stu-

dent set S and an exercise collection C, a high score

group and a low score group are collected in equal

amounts from the student set. Then the discrimina-

tion index is defined as the difference of the difficulty

index between the high score group and the low score

group. Formally,

D(C, S) = P (C, SH)− P (C, SL)

=

∑
ej∈C

( ∑
si∈SH

aij −
∑

si∈SL

aij

)
|C| × |SH |

,

where SH and SL denote the high and the low score

groups respectively, such that

1) SH , SL ⊂ S;

2) |SH | = |SL| = dτ |S|e, where τ is set to 27% in

practice;

3) ∀s ∈ SH , ∀s′ ∈ S\SH , P (C, {s}) > P (C, {s′});
4) ∀s ∈ SL, ∀s′ ∈ S\SL, P (C, {s}) 6 P (C, {s′}).
The discrimination index measures the degree to

which the collection discriminates among students. The

value ranges from 0 to 1, where a higher value indicates

more discrimination of the exercise collection.

The difficulty index and the discrimination index are

widely used by teachers to assess whether a quiz paper

(i.e., exercise collection) is qualified (i.e., with reason-

able difficulty and good discrimination ability). There-

fore, when assembling an exercise collection, teachers

will expect a result that meets the target values of

difficulty p and discrimination index d. For example,

a teacher may want an exercise collection that has a

difficulty index of 0.55 and a discrimination index of

0.6. Therefore, given a student subset (i.e., students in

the teacher’s class) and an exercise subset where none

of the exercises has been done by these students, the
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framework needs to select several exercises and assem-

ble an exercise collection that meets the teacher’s re-

quirements on the difficulty index and the discrimina-

tion index.

Next, we formally define the exercise collection

auto-assembling problem.

Exercise Collection Auto-Assembling Problem. In

an online educational platform, there is an exercise set

E and a student set S with their interaction history

H = {H(si)|si ∈ S}. Given a student subset S′ ⊂ S,

an exercise subset E′ ⊂ E (where ∀e ∈ E′, ∀s ∈ S′, e /∈
H(s)), a target collection size k, a target difficulty index

p and a target discrimination index d as query parame-

ters, the system aims to collect the optimal exercise

collection C∗ ⊂ E′ containing k exercises that has the

smallest difference from p in the difficulty index and d

in the discrimination index. Formally,

C∗ = argmin
{C|C⊂E′

∧
|C|=k}

(P (C, S′)− p)2 +

(D(C, S′)− d)
2
. (1)

Example 2. Considering an exercise subset E′ =

{e1, e2, e3}, and k = 2, p = 0.55, d = 0.6, there will

be three candidate collections: C1 = {e1, e2}, C2 =

{e1, e3}, and C3 = {e2, e3}. Suppose the result shows

that P (C1, S
′) = 0.6 and D(C1, S

′) = 0.6; P (C2, S
′) =

0.6 and D(C2, S
′) = 0.55; P (C3, S

′) = 0.58 and

D(C3, S
′) = 0.61. Then we should report C∗ = C3

as the optimal exercise collection.

4 Overview

At a high level, the exercise collection auto-

assembling framework can be divided into two stages,

as shown in Fig.1.

4.1 Answer Prediction

In the first stage (i.e., the answer prediction stage),

the main task is to predict the correctness of the stu-

dents’ answer on each candidate exercise in E′ based on

the history interaction records of students in S′. This

stage can be accomplished by training a knowledge trac-

ing model. By using the well-trained knowledge tracing

model, we can predict the probability of each student

s ∈ S′ correctly answering each exercise e ∈ E′.
In addition, since the knowledge tracing model fo-

cuses on modeling the knowledge state of students and

lacks the representation of the features of the exercises

(only the knowledge concepts and the text of the ex-

ercises are included), we propose to introduce exercise

embeddings into the model to improve the prediction

accuracy of the model (Subsection 5.1). In order to

accelerate the convergence of the knowledge tracking

model, a pre-training model of the exercise embeddings

is also designed in Subsection 5.2.

4.2 Collection Assembling

In the second stage (i.e., the collection assembling

stage), the main task is to select a certain number of

exercises from the candidate exercise set E′ according

to the predicted students’ answers in the previous stage

to form an exercise collection that satisfies the teacher’s

requirements on the difficulty index and the discrimi-

nation index.

First, by binarizing the predicted probabilities (that

Reinforcement Learning
ModelKnowledge Tracing Model

Exercise Embeddings
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Fig.1. Overview of the exercise collection auto-assembling framework.
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is, the probability greater than 0.5 is converted to 1;

otherwise it is converted to 0), the predicted values of

the knowledge tracing model can be used as an estimate

of the students’ answers.

However, considering that the predictions are not

100% accurate, it is necessary to minimize the influence

of the wrong predictions on exercise collection assem-

bling. Therefore, we introduce the concept of answer

prediction confidence in this stage (Subsection 6.1). By

selecting exercises with predictions of high confidence,

the influence of wrong predictions can be reduced.

In addition, to assemble the “optimal” exercise col-

lection that best meets the teacher’s requirements needs

to traverse all the candidate exercise collections, which

will result in huge time overhead and thus is unaccept-

able when the number of candidate exercises (i.e., |E′|)
is large. Therefore, we propose to apply a reinforcement

learning model in this stage, which iteratively selects

k exercises from the candidate exercise set |E′|. The

reinforcement learning model can ensure that the as-

sembled exercise collection meets the teacher’s require-

ments through self-supervised learning while the time

to assemble an exercise collection is acceptable. The

details of the reinforcement learning model will be de-

scribed in Subsection 6.2.

5 Answer Prediction Using Knowledge Tracing

Model

In this section, we introduce the structure of the

knowledge tracing model used to predict the correctness

of a student’s answer to an exercise (Subsection 5.1).

We also propose the exercise embeddings technique to

enhance the model and provide a pre-training method

for exercise embeddings (Subsection 5.2).

5.1 Knowledge Tracing Model with Exercise

Embeddings

Knowledge Tracing Model. Given the history inte-

raction records of a student, the knowledge tracing

model can predict the correctness of the student’s an-

swer to the next exercise. With the development of

deep learning and neural network, many studies on deep

learning based knowledge tracing models [1–4] are pro-

posed and show better performance than traditional

methods (e.g., Bayesian knowledge tracing). Although

existing deep learning based knowledge tracing mod-

els use different techniques in detail, most of them have

similar model structures and almost the same input and

output.

Fig.2 shows the common structure of the knowledge

tracing model. For a student si, the knowledge tracing

model will intercept a sequence from his/her history

interaction records, taking the features of each exercise

(i.e., the knowledge concepts KCj and/or the exercise

text ej) and the student’s answer aij as model inputs.

The model then will learn a sequence of hidden states

of the student hj , representing the student’s knowledge

state after exercise ej is done. After the last exercise

eT is inputted into the model, it uses the student’s lat-

est hidden state hT and features of the next exercise

eT+1 to predict whether the exercise will be answered

correctly.

Answer Prediction. The knowledge tracing model

will be trained on all the history interaction records of

all students in S. After the knowledge tracing model

is trained, given a student subset S′ and an exercise

subset E′ by the teacher, the model can predict the

probability of student si ∈ S correctly answering the

exercise ej ∈ E′, (denoted as pij) by inputting the his-

tory records H(si) and the information of exercise ej

h h

H↼si↽

h hT

eT⇁aTeTe e KCTKC KC KCT⇁

aT⇁
i

ia
i a

i

... ... ...

...

...

Fig.2. Simplified structure of knowledge tracing models.
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into the model. For convenience, all probabilities are

represented by matrix P ∈ R|S′|×|E′|, where the ele-

ment of the i-th row and the j-th column is pij .

However, we argue that these models miss some fea-

tures of exercises. Since most of them only take know-

ledge concepts of the exercise as input, the model can-

not effectively distinguish different exercises with the

same knowledge concepts. Although EKT [4] introduces

the exercise text into the model as additional model in-

put, it still cannot recognize these features of the exer-

cise, for instance, whether the exercise contains “traps”

for students, the complexity of the exercise calculation,

and required reasoning skills.

Exercise Embeddings. In order to address these limi-

tations, we propose a simple but effective modification,

in which an embedding vector is created for each exer-

cise to embed the extra features of the exercise. The

exercise embeddings can carry the similarities and diffe-

rences among exercises. Formally, Given an exercise set

E, we embed each exercise ej ∈ E into a d-dimensional

vector space as a vector ej . The embedding matrix is

denoted as ME =
(
e1; e2; · · · ; e|E|

)
. When an exercise

needs to be inputted into the knowledge tracing model,

the corresponding embedding vector will be concate-

nated with the representation of knowledge concepts

and exercise text to learn the knowledge state of the

student. The exercise embeddings will also be treated

as parameters of the knowledge tracing model, which

will be updated during the training process.

The exercise embeddings can provide more side in-

formation to the knowledge tracing model, which will

enhance the model’s fitting ability, and it can be eas-

ily applied to most of the existing deep learning based

knowledge tracing models (e.g., DKT, DKVMN, and

EKT).

However, if the exercise embeddings are initialized

randomly, it may take a long time for the model to

learn the similarities and differences among these exer-

cises. Therefore, we also propose a pre-training method

in Subsection 5.2 to capture the feature of the exercise

ahead and accerlate the training process.

5.2 Exercise Embeddings Pre-Training

As discussed above, exercise embeddings are used

to represent the similarity between exercises. In order

to accelerate the training process, we design a method

to pre-train the exercise embeddings.

To pre-train the exercise embeddings, we consider

the relationship between exercises and students. Given

all the history interaction records, there are two pos-

sible types of connection between a student and an

exercise: right answer and wrong answer. Thus, for

each exercise ej , we maintain two student sets SR(ej)

and SW (ej), where SR(·) contains all students who an-

swered this exercise right and SW (·) contains all stu-

dents who answered this exercise wrong.

Exercise Similarity. Inspired by the idea of the

second-order proximity in LINE [22], we evaluate the

similarity of the exercises by the similarity of the con-

nected student sets. Specifically, for two exercises, if

there are students who answered both of them right

or wrong, the two exercises should be considered with

a larger similarity; but if there are students who an-

swered one exercise right and the other wrong, they

should be considered with a smaller similarity.

As a consequence, the similarity of exercises ei and

ej is defined as follows.

rij =
|SR(ei) ∩ SR(ej)|+ |SW (ei) ∩ SW (ej)|

|S|
−

|SR(ei) ∩ SW (ej)|+ |SW (ei) ∩ SR(ej)|
|S|

, (2)

where |S| is the normalizing factor, mapping the value

range of rij into [−1, 1].

Next, we illustrate the process of computing the ex-

ercise similarity using an example.

Example 3. There are three exercises and four stu-

dents in the example dataset, as shown in Fig.3. In the

figure, a solid line between an exercise and a student

represents the student answering this exercise right in

the history interaction records while a dotted line rep-

resents a wrong answer. Then we compute SR(e1) =

{s1, s2}, SW (e1) = {s3};SR(e2) = {s2, s4}, SW (e2) =

{s3};SR(e3) = {s3}, SW (e3) = {s4}. Therefore the

similarity between e1 and e2 can be further computed

as r1,2 = (1 + 1 − 0 − 0)/4 = 0.5 since they both have

s2 in the SR set and s3 in the SW set but no common

students in their opposite sets. Similarly, r1,3 = (0 +

0−1−0)/4 = −0.25 and r2,3 = (0+0−1−1)/4 = −0.5.

Pre-Training Model. After the similarity between

exercises is defined, we use inner products of the corre-

sponding exercise embeddings to estimate the similarity

in the embedding space,

r̂ij = tanh (ei · ej) ,

where tanh(x) = ex−e−x

ex+e−x is the hyperbolic tangent func-

tion. Note that we do not use the Sigmoid function like

LINE because the value range of the tanh function is

(−1, 1), which matches the range of rij .
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Exercise

Student

Wrong Answer

Right Answer

e

e

e

s

s

s

s

Fig.3. Relationship between exercises and students.

We then use a modified cross-entropy loss function

to enforce the model r̂ij to be close to the defined simi-

larity rij ,

L(E,ME) = −1

2

|E|∑
i=1

|E|∑
j=1

( (1− rij) log(1− r̂ij) +

(1 + rij) log(1 + r̂ij)).

We apply the loss function to the pre-training model

and use the stochastic gradient descent algorithm to

continuously update the exercise embeddings. Algo-

rithm 1 illustrates the pre-training process of the ex-

ercise embeddings. After the pre-training, we can feed

the embedding vector into the knowledge tracing model

as discussed in Subsection 5.1.

6 Exercises Collection Assembling Using Deep

Reinforcement Learning

In this section, we first discuss the criteria for as-

sessing how well an exercise collection meets the re-

quirements when only the probabilities of each student

correctly answering each exercise are known in Sub-

section 6.1. Then we propose the deep reinforcement

model to assemble the exercise collection in Subsec-

tion 6.2.

6.1 Estimated Optimal Exercise Collection

As proposed in Subsection 5.1, given the student

subset S′ and the exercise subset E′, we can use the

knowledge tracing model to predict the probability ma-

trix P , where each element pij denotes the probability

of student si ∈ S′ answering exercise ej ∈ E′ correctly.

Then we can predict the student answer ãij based

on the corresponding probability pij by a simple trans-

formation: if pij > 0.5, ãij = 1; otherwise ãij = 0. All

the predicted answers form as a matrix Ã ∈ R|S′|×|E′|,
where the element of the i-th row and the j-th column

is ãij .

Answer Prediction Confidence. Although the pre-

dicted student answers are obtained, it is not appropri-

ate to use them as the sole basis for exercise collection

assembling. The reason is that the knowledge tracing

model does not have accurate predictions on all answers

and the probability pij outputted by the model actually

reflects the model’s confidence in the prediction of this

answer. For instance, supposing the knowledge trac-

ing model predicts p11 = 0.9 and p12 = 0.55, although

both of these answers will be predicted as correct (i.e.,

ã11 = ã12 = 1), the model is more confident about the

success on the former prediction.

We utilize the entropy to represent the answer pre-

diction confidence. Formally, given a student answer

prediction ãij with a probability pij , the confidence of

the prediction is defined as:

Conf(ãij) = 1− pij log(pij)− (1− pij) log(1− pij),

where a higher value indicates more confidence on the

prediction. Further, given the student subset S′ and

an exercise collection C ⊂ E′, the confidence of the

prediction on the whole answer matrix Ã is defined as

follows.

Conf(C, S′) =

∑
si∈S′

∑
ej∈C

Conf(ãij)

|C| × |S′|
.
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Estimated Optimal Exercise Collection. In order

to evaluate whether an exercise collection matches the

teacher’s requirements on the difficulty index and the

discrimination index, we can predict the difficulty index

and the discrimination index of the exercise collection

by (3) and (4) respectively.

P̃ (C, S) =

∑
si∈S

∑
ej∈C

ãij

|C| × |S|
. (3)

D̃(C, S) = P̃ (C, SH)− P̃ (C, SL). (4)

Meanwhile, since the above indices are computed

based on the predicted answers of the knowledge trac-

ing, it is reasonable to also consider the prediction con-

fidence when evaluating an exercise collection. Thus,

we use (5) to evaluate an exercise collection C ⊂ E′.

R(C|S′, E′,P , p, d) =(P̃ (C, S′)− p)2+

(D̃(C, S′)− d)2+

λ× Conf(C, S′),

(5)

where λ is a coefficient controlling the trade-off between

the difference on two indices and the prediction confi-

dence. A smaller value of R(C|S,E,P , p, d) indicates

an exercise collection that meets the requirements bet-

ter.

Therefore, under the answer prediction of the know-

ledge tracing model, given the collection size k, we can

use the following formula to select the estimated opti-

mal exercise collection C̃∗.

C̃∗ = argmin{C|C⊂E′
∧
|C|=k}R(C|S′, E′,P , p, d). (6)

However, if we directly use (6) to retrieve the es-

timated optimal solution, we will have to traverse all

Ck
|E′| candidates (e.g., over 1035 when |E′| = 500 and

k = 20), which may take an impractical long time to

process. Therefore, in Subsection 6.2, we propose a

deep reinforcement learning based approach to select

appropriate exercises and return the collection.

6.2 Exercise Collection Assembling Model

Näıvely assembling the estimated optimal exercise

collection is rather expensive in terms of time. How-

ever, we can model the exercise collection assembling

as the following process. 1) Initially, the exercise col-

lection is created as an empty set and the exercise can-

didate set is created as the exercise subset E′. 2) At

each step, one exercise is selected by the model and

then removed from the candidate set, and added into

the collection. 3) Finally, when the exercise collection

contains k exercises, it will be reported as output.

The above process can be treated as a Markov deci-

sion process, in which the state at the current moment

is only influenced by the previous state and the chosen

action. Note that when the model selects an exercise,

it needs to consider the long-term reward brought by

the exercise, that is, the effect of the exercise in the

final exercise collection. Therefore, we use a DQN [23]

to model the process and generate an approximate op-

timal solution.

States. In this problem, a state is an exercise col-

lection (that may not be fully collected), denoted as

Ĉ = {ej1 , ej2 , · · · , ej|Ĉ|} (s.t. Ĉ 6 k), and it is repre-

sented by a matrix PĈ of size |S| × k, where the value

of each element is as follows.

(PĈ)i,j =

{
pij , if j 6 |Ĉ|,
0, otherwise.

(7)

To explain (7) in detail, in the matrix PĈ , the first

|Ĉ| columns correspond to all exercises in Ĉ and each

column stores the probability of being answered cor-

rectly by students (i.e., the corresponding column in

the probability matrix P ); the rest of the columns are

filled with zeros, which are equivalent to k − |Ĉ| hypo-

thetical exercises that cannot be correctly answered by

students and will be replaced by other exercises in the

future. Specially, the initial state is an empty exercise

collection Ĉ = ∅, and the state matrix PĈ = 0|S
′|×k. In

order to be further inputted into the DQN model, the

representation of the state is vectorized into vec(PC).

Actions. In this problem, an action is considered

as adding an exercise ej ∈ E′\Ĉ into the exercise col-

lection Ĉ. By performing an action, the agent will

transition from the current state Ĉ into another state

Ĉ ′ = Ĉ ∪ {ej}.
Q-Value. In Q-learning [14], the Q-value of a state

indicates the “goodness” of the state. In this problem,

we define the Q-value (i.e., Q(Ĉ)) as the expected small-

est value of (5) of all the possible exercise collections.

Formally, the Q-value can be computed as:

Q(Ĉ) =

R(Ĉ|S′, E′,P , p, d), if |Ĉ| = k,

min
e∈E′\Ĉ

Q(Ĉ ∪ {e}), if |Ĉ| < k.

However, directly computing the Q-values of all the

states is impractical, because the number of the states

is rather large. Therefore, the DQN (Deep Q-Network)

model is utilized to estimate the Q-value of a state.
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DQN Model. The DQN model uses a forward-feed

neural network (named Q-network) to estimate the Q-

value of a state. The Q-network takes the representa-

tion of a state Ĉ (i.e., vec(Ĉ)) and the target values p

and d as input, and outputs the estimated Q-value of

the state, denoting as Q̃(Ĉ;θ), where θ is the parame-

ters of the Q-network.

DQN Model Training. In reinforcement learning,

an episode is a complete process of the agent from the

initial state (i.e., an empty exercise collection) to a ter-

minating state (i.e., a collection with k exercises). The

R-value of the terminating state (computed by (5)) is

denoted as r. For a state Ĉ in the episode, the loss

function is defined as (8), indicating the squared error

between the target Q-value and the predicted Q-value.

L(Ĉ;θ)

= (min(r, min
e∈E′\Ĉ

Q̃(Ĉ ∪ {e};θ))− Q̃(Ĉ;θ))2. (8)

The DQN model can automatically acquire the training

data by observing many episodes. Then all the observed

training data (i.e., transitions) will be stored in an expe-

rience replay memory [23]. Batches of the training data

are randomly sampled from the replay memory to avoid

data correlation, and then fed into the Q-network. The

stochastic gradient descent algorithm is used on the loss

function to update the DQN parameters. The model

training process is shown in Fig.4.

DQN Model Inference. In the inference stage, the

initial state is created as an empty exercise collection.

Then, the state will be iteratively updated based on the

following policy function:

π(Ĉ) = argmin
e∈E\Ĉ

Q(Ĉ ∪ {e}).

Each updating operation selects an exercise π(Ĉ) and

adds it into the current state Ĉ. After k updates, the

model will report the terminating state (containing k

exercises) as the output.

7 Experiments

7.1 Dataset and Experimental Settings

Dataset. The dataset is supplied by TAL Educa-

tion Group 1○ and collected from XueErSi 2○, which is

a widely-used online learning system in China. The

details of the dataset are listed in Table 1.

Experimental Settings. The experiments in the

paper are implemented using PyTorch 1.11.0 with

AgentEnvironment

Deep Q Network

Action

Selection

State

P

Compute R(CS↪ E↪ P↪ p↪ d) Replay Memory

Terminating

State

Training

State Representation

0.20.90.5 0.8

0.60.40.8 0.7

0.20.60.50.9

e

s

s

sm

e e en

Fig.4. DQN model training.

1○https://en.100tal.com/, Aug. 2022.
2○https://www.xueersi.com/, Aug. 2022.
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Table 1. Summary of the Dataset

Dataset #Students #Exercises #Knowledge Concepts #Interactions #Average Exercises per Student

Training 4 918 1 948 86 1 130 651 229.9

Test 374 674 86 252 076 674.0

Note: # means “number of”.

Python 3.9. All the experiments are conducted in

a machine with 3.10 GHz Intel Xeon CPU 6242R,

256 GB RAM, and an NVIDIA RTX 3090 GPU, run-

ning Ubuntu 20.04.

Implementation Details. The exercise embeddings

dimension is set to 256. DQN is implemented by a 3-

layer neural network, where the sizes of the hidden lay-

ers are 512 and 256 respectively. All the parameters of

the models are initialized with Gaussian distributions.

An Adam [24] optimizer is used to train the exercise pre-

training model and the knowledge tracing model, where

the settings are: initial learning rate α = 0.005 and mo-

mentum parameters β1 = 0.9, β2 = 0.999 and ε = 10−8.

The learning rate is decayed by γ = 0.5 during train-

ing. An RMSProp optimizer is used to train the deep

Q-network. The number of exercises in an exercise col-

lection is set as k = 20. The coefficient of the answer

prediction confidence is set as λ = 0.05.

7.2 Evaluating Answer Prediction

In this subsection, we evaluate the effectiveness of

the exercise embeddings and the pre-training model

proposed in this paper.

Comparison Methods. In the experiments, we imple-

ment the following different knowledge tracing models.

• DKT [1]. It only takes the knowledge concepts of

exercises as the model input and an RNN model is used

to represent the student’s state and predict the answers.

• DKVMN [2]. It also only takes the knowledge con-

cepts of exercises as the model input. It applies a mem-

ory module to store the knowledge concepts and the

mastery of the student.

• EKT [4]. It takes the knowledge concepts and the

text of exercises as the model input. A BiLSTM model

is used to encode the exercise text. Like DKVMN, it

also uses a memory module to encode the knowledge

concepts.

For each model, we create three variants: 1) Vanilla

Model: the original model structure; 2) Model+E-

mbeddings: the proposed exercise embeddings are

also inputted into the knowledge tracing model

and the embeddings are randomly initialized; 3)

Model+Embeddings+Pre-Train: the exercise embed-

dings are first pre-trained before the training of the

knowledge tracing model. We evaluate the performance

of these models by measuring the AUC (area under

curve) and the accuracy of answer prediction. All the

models are trained for 50 epochs.

Effectiveness on Answer Prediction. The experi-

mental results are shown in Fig.5. We make the follow-

ing observations. 1) EKT performs better than DKT

and DKVMN (about 3%–6% on AUC and accuracy).

That is because EKT takes the extra exercise text in-

formation into the model. 2) After applying exercise

embeddings, all these three models have a slight im-

provement in AUC and accuracy (about 1%–3%). The

reason is that the exercise embeddings learn to rep-

(b)

A
c
c
u
ra

c
y

A
U

C

(a)

Vanilla Model
Model+Embeddings
Model+Embeddings+Pre-Train

Vanilla Model
Model+Embeddings
Model+Embeddings+Pre-Train

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.80

0.75

0.70

0.65

0.60

DKT DKVMN EKT DKT DKVMN EKT

Fig.5. Experimental results on answer prediction. (a) AUC. (b) Accuracy.
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resent other features of the exercise other than know-

ledge concepts and text. 3) Models with pre-trained

exercise embeddings have a higher AUC and a higher

accuracy than those with randomly initialized exercise

embeddings. That is because the proposed pre-training

model for exercise embeddings can well capture the re-

lationship among exercises, thus reducing the burden

of training the exercise embeddings for the knowledge

tracing model.

7.3 Evaluating Exercise Collection Assembling

In this subsection, we evaluate the effectiveness

and the efficiency of the exercise collection assembling

model proposed in this paper.

Comparison Method. In the experiments, we im-

plement a heuristic method HEU as the baseline and

compare it with the reinforcement learning based exer-

cise collection assembling model proposed in the paper.

• DQN. The model is proposed in Subsection 6.2.

• HEU. Initially, k exercises are randomly selected

from the set E′ and assembled into the initial exercise

collection C. Then, we update the collection by re-

moving an exercise from the collection and adding an

exercise from outside the collection. To decide which

exercise to remove and which exercise to add, among

all cases (i.e., exercise pairs), we choose the one that

gives the greatest descent in R-value (computed by 5)

of the updated collection. The exercise collection is

iteratively updated until the R-value stops descending.

Finally, the updated exercise collection is reported as

output.

• DQN w/o Conf. The DQN model without the

answer prediction confidence is proposed in Subsec-

tion 6.1.

• HEU w/o Conf. It is the HEU model without the

answer prediction confidence.

Effectiveness on Exercise Collection Assembling.

The average errors on the difficulty index and the dis-

crimination index are shown in Fig.6 and the overall er-

rors (average sum of squares for two errors) are shown

in Fig.7. We make the following observation. 1) DQN

has smaller errors than HEU on the difficulty index

and the discrimination index. The reason is that the

DQN model can automatically learn from the experi-

ence and try learning to assemble a global optimal ex-

ercise collection, but the heuristic baseline can only ob-

tain a local optimal exercise collection from a random

initialization solution. 2) DQN and HEU have much

smaller errors than DQN w/o conf and HEU w/o conf

correspondingly. That is because the proposed answer

prediction confidence can be relatively efficient to cap-

ture the difference between confident predictions of the

model and unconfident ones. Without it, the model is

likely to select exercises with many mispredictions on

students’ answers into the exercise collection, thus re-

sulting in a large error on the difficulty index and the

discrimination index.

DQN

0.25

0.20

0.15

0.10

0.05

0.00
HEU

Difficulty Index
Discrimination Index

DQN w/o
Conf

HEU w/o
Conf

E
rr

o
r

Fig.6. Average error on the difficulty index and the discrimina-
tion index.
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Fig.7. Average sum of squares for errors.

Effect of λ. We study the effect of the coefficient of

the answer prediction confidence λ and the overall er-

rors of the assembled exercise collection with different

values of λ are shown in Fig.8. We make the follow-

ing observation. 1) First, as the value of λ gets larger

(i.e., from 0.005 to 0.05), the error gets smaller. The

reason is that a small λ indicates the answer prediction

confidence has not been given enough attention when

assembling the exercise collection and thus some of the

selected exercises may still contain many wrong predic-

tions. 2) As λ continues to increase (i.e., from 0.05 to

5), the errors get larger. The reason is that a large λ in-

dicates the model pays too much attention to selecting

exercises with few wrong predictions, and ignoring the

difference of the difficulty index and the discrimination

index of the exercise collection from the target values.
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Fig.8. Effect of λ.

Efficiency on Exercise Collection Assembling. Fig.9

shows the average running time of DQN and HEU with

a varying number of exercises in E′. We make the fol-

lowing observation. 1) DQN takes much less running

time (about 0.01x) than HEU. The reason is that i)

HEU may take many iterative steps to reach the lo-

cal optimal but DQN only takes k steps to select exer-

cises and assemble collection; and ii) as a deep learning

based model, DQN can utilize the parallel computing

power of GPU to speed up the model. 2) Both DQN

and HEU require longer running time to assemble the

exercise collection as the number of exercises in E′ in-

creases. That is because both methods will have to

select exercises from more candidates, which increases

the time cost of each decision step in both DQN and

HEU. 3) As the number of candidate exercises increases

from 100 to 300, the increasing trend of HEU running

time (about 130%) is faster than that of DQN (about

39%). The reason is that with more candidate exercises

in E′, HEU usually has to iterate over much more steps

to converge while DQN only takes fixed k selection ac-

tions to accomplish the assembling process.

Number of Exercises in E'

100

T
im

e
 (

s)

200

HEU
DQN

300

102

101

100

Fig.9. Efficiency on exercise collection assembling.

In summary, the exercise collection auto-assembling

framework proposed in the paper can output exercise

collections that are close to the teacher’s requirements

on the difficulty index and the discrimination index,

and the proposed framework is proved to be effective.

8 Conclusions

In this paper, we studied the problem of exercise

collection auto-assembling, where the difficulty index

and the discrimination index of the assembled exer-

cise collection are close to teachers’ requirements. We

proposed a two-stage framework to solve the problem.

First, a knowledge tracing model is utilized to predict

students’ answers to exercises based on their history

interaction records. We also introduced exercise em-

beddings and a pre-training approach to enhance the

model. This approach can improve the accuracy on an-

swer prediction by about 3%–5%. Then, we proposed

a deep reinforcement learning model to select exercises

and assemble a collection based on the predicted stu-

dents’ answers, which enables the framework to assem-

ble the exercise collection in a short time (about 100

times faster than a heuristic baseline) and with a small

error (about 0.02) on the difficulty index and the dis-

crimination index. In conclusion, the proposed frame-

work can auto-assemble exercise collections effectively

and efficiently while satisfying the teacher’s require-

ments on the difficulty index and the discrimination

index.
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