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Abstract Oblivious polynomial evaluation (OPE) is a two-party protocol that allows a receiver, R to learn an evaluation

f(α), of a sender, S’s polynomial (f(x)), whilst keeping both α and f(x) private. This protocol has attracted a lot of

attention recently, as it has wide ranging applications in the field of cryptography. In this article we review some of these

applications and, additionally, take an in-depth look at the special case of information theoretic OPE. Specifically, we

provide a current and critical review of the existing information theoretic OPE protocols in the literature. We divide these

protocols into two distinct cases (three-party and distributed OPE) allowing for the easy distinction and classification of

future information theoretic OPE protocols. In addition to this work, we also develop several modifications and extensions

to existing schemes, resulting in increased security, flexibility and efficiency. Lastly, we also identify a security flaw in a

previously published OPE scheme.

Keywords oblivious polynomial evaluation, unconditionally secure, information theoretic

1 Introduction

Oblivious polynomial evaluation (OPE) was first

discovered in 1999 by Naor and Pinkas [1]. Similar to

oblivious transfer [2], OPE involves two participants, a

sender S and a receiver R. An OPE protocol allows R
to privately learn an evaluation of a polynomial held by

S, in such a way that neither the evaluation point nor

the polynomial is revealed publicly.

Definition 1 [3, 4]. An OPE protocol is composed of

two parties, S who has a polynomial f(x) over a finite

field F and R who has an input value α ∈ F. Correct-

ness is achieved if, at the end of the protocol, R learns

f(α). Security is guaranteed if the following two condi-

tions are met after the protocol has been executed.

1) S cannot reduce the sender’s uncertainty of α.

2) R does not learn any information related to f(x),

other than f(α).

An extensive amount of research has been con-

ducted on this protocol since it was first discove-

red [5–11]. This valuable tool has been used in protocols

such as multi-party computation (MPC) [3, 12], secure

mean computation [13], oblivious neural learning [4, 14],

oblivious keyword search [15], and privacy preserving

data mining [16], to name a few. In fact, OPE is an

integral part of many protocols utilised in modern cryp-

tography. In general we can divide these protocols into

two categories.

1) Multi-Party Computation (MPC) Protocols.

MPC allows a set of n participants to securely compute

any given function over their privately-held informa-

tion. More formally, a set of n participants, P1, · · · , Pn
with respective private inputs, x1, · · · , xn, can compute

a given function f(x1, · · · , xn) without revealing any

information related to their inputs.

2) Privacy Preserving Protocols. We choose to use

this term to refer to protocols that solve a specific func-

tion or problem, with the same level of privacy utilised

in MPC. We can actually view these sorts of protocols,

and OPE itself, as a subset of MPC protocols.

1.1 OPE and Multi-Party Computation

Many of the recently proposed MPC protocols

within the literature ( [12, 17–19]) utilise OPE as an

offline protocol for the generation of correlated random
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data. To clarify this statement, in such protocols an

MPC is split into two phases.

1) Offline Phase. In this phase participants com-

pute some effectively random and shared data.

2) Online Phase. This phase is where participants

are able to compute a function across their private data.

MPC can be computed efficiently using the correlated

random data computed in the offline phase.

Using OPE in such a fashion allows for a fast online

phase, resulting in an efficient MPC protocol.

Cianciullo and Ghodosi [3] utilised OPE in a slightly

different fashion; they showed that a certain type of

multiplication could be computed efficiently and se-

curely by utilising a modified OPE protocol in the on-

line phase. Their work is based on the OPE protocol

of Tonicelli et al. [11].

1.2 OPE and Privacy Preserving Protocols

As stated previously, a privacy preserving protocol

can be seen as a subset of MPC. These types of pro-

tocols compute a specific function with great efficiency,

and many such privacy preserving protocols utilise OPE

as an essential building block.

Lindell et al. [20] utilised OPE as an integral part of

their secure data mining protocol, which allows partici-

pants to securely run standard data mining algorithms

across their privately-held information. Similar to this,

Chang and Lu [4, 14] utilised OPE for the purpose of

oblivious neural learning, i.e., training a neural network

across private data. In [21] Hazay showed how a set

of participants could securely compute the intersection

of their privately-held sets. Ogata and Kurosawa [15]

utilised OPE to develop an oblivious keyword proto-

col, wherein a participant can search among a secure

database whilst keeping the information he/she was

searching for private. Lastly, a secure voting scheme

was developed from OPE in [22] by Otsuka and Imai.

1.3 Outline and Contributions

It is evident that OPE is a valuable protocol that

has many applications and uses. However, to the best

of the authors’ knowledge there has not yet been any

surveys or reviews published on this deeply interesting

topic. We seek to rectify this by presenting a thorough

review of a specific class of OPE protocols. Namely,

we focus on the specific case of information theoretic

(or unconditionally secure) OPE, wherein it is assumed

that each of the participants (and any given adversary)

has unlimited computational resources (see Section 2

for more information).

In particular, we review the current results present

within the literature and then modify some of these

protocols to gain improvements in efficiency, flexibility

and security. To summarise, our results are threefold.

1) We provide a thorough description and critical re-

view of all currently-known information theoretic OPE

protocols. Furthermore, we show that each of the in-

formation theoretic OPE protocols within the literature

can be classified under two sub-fields, three-party OPE

and distributed OPE.

This result, or classification, directly corresponds to

the already well known and researched area of informa-

tion theoretic oblivious transfer [23–25].

2) We do not merely describe and review each pro-

tocol. We also develop modified versions of specific pro-

tocols, extending their capabilities, efficiency and secu-

rity.

Additionally, we further prove the link between OT

and OPE by demonstrating that a previously published

distributed oblivious transfer (DOT) protocol can eas-

ily be adapted to a distributed OPE protocol.

3) Lastly, we show that a previously published “un-

conditionally secure OPE” scheme does not, in fact,

achieve unconditional security.

The rest of this paper is organised as follows. Sec-

tion 2 provides some background on information the-

oretic OPE. Section 3 and Section 4 investigate the

two distinct categories of information theoretic OPE,

reviewing current results and also describing our own

research in this field. Section 5 examines the OPE

scheme shown in [26] and demonstrates that it is not

secure. Finally, Section 6 concludes the article.

2 Background

An information theoretic OPE is a two-party pro-

tocol that is secure against an adversary, or par-

ticipants, who have unlimited computational power

and resources. We take the same approach given by

Rivest [25], such that if the sender or receiver needs to

be computationally bounded in order to achieve secu-

rity, then OPE is computationally secure. Otherwise

security is information theoretic (or unconditional). In-

formation theoretic OPE is formerly defined below.

Definition 2. Given Definition 1, we define the

output of an OPE protocol (i.e., the value R computes

as his/her desired evaluation) as fα. Let A define the

set of all possible evaluation points such that α ∈ A
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and let E be the set of all possible evaluations such that

fα ∈ E. Lastly, let VR denote R’s view (i.e., all infor-

mation known and held by R) upon the completion of

OPE and let VS denote S’s view.

Assuming that all participants are honest, an OPE

protocol obtains information theoretic security if the fol-

lowing conditions hold.

• Correctness.

Pr[fα = f(α)] = 1.

• Security for R. Let β ∈ A be a possible value for

α chosen by S.

Pr[β = α|VS ] = Pr[β = α] =
1

A
.

• Security for S. Given that R has obtained the

evaluation point fα = f(α), we define b ∈ A where

b 6= α and let fb ∈ E be a possible output value chosen

by R.

Pr[f(b) = fb|VR] = Pr[f(b) = fb] =
1

E
.

The above definition is a more expanded version of

Definition 1 that formalises the security requirements

for OPE. Put simply, Definition 2 states that, if all

participants are honest, then the value computed by R
at the end of the protocol will be equal to f(α). In

terms of security, the above definition states that upon

the completion of OPE, S cannot reduce their uncer-

tainty of R’s evaluation point (α) and R cannot reduce

their uncertainty of S’s polynomial, i.e., for any given

input all possible outputs are equally likely.

Computationally secure protocols need not rely on

such stringent measures of security. Instead, in a com-

putationally secure protocol, security is assured if S or

R can reduce their uncertainty of (respectively) α and

f(x) only by expending some (defined) limit of com-

putational power and/or time. For example, an OPE

scheme could be considered secure if R could reduce

his/her uncertainty of f(x) in exponential time only.

We note that although information theoretic proto-

cols have a far higher level of security, this comes with a

trade-off in communication complexity and the number

of participants. Specifically, most purely information

theoretic protocols within the literature tend to have

a high communication complexity. The upside to this,

however is that information theoretic protocols are of-

ten computationally efficient. Additionally, it has long

been understood that it is not possible to have informa-

tion theoretic security with only two participants [27, 28].

This very statement seems to preclude any possibil-

ity of an information theoretic OPE protocol. However,

numerous researchers have cleverly avoided this conun-

drum by introducing a third party (or a set of third

parties) who takes part in, but gains no information

from the OPE protocol. We specifically refer to what

we dub as both three-party OPE and distributed OPE

which are (informally) described below.

1) Distributed OPE (DOPE). A DOPE protocol

consists of n + 2 participants, the sender and the re-

ceiver, along with n servers. In this type of protocol R
and S compute OPE by communicating with n servers.

At the start of the protocol S distributes some infor-

mation among the servers. Later, R contacts a subset

of these servers, who provide him/her with enough in-

formation to compute his/her evaluation.

As before, both the evaluation point and the poly-

nomial should remain private, and furthermore a coali-

tion of servers should not be able to compute anything

related to either R’s or S’s private information. An

additional requirement is that a coalition composed of

a subset of servers and R cannot compute anything re-

lated to S’s polynomial.

The benefit of this type of protocol is that after S
distributes the sender’s data, the sender needs not (and

is not expected) to take any further part in the protocol.

This provides a high level of availability for R in that

he/she is able to compute his/her OPE at any given

time, without waiting on S. This is further improved

when we consider that R needs to only contact a subset

of servers; thus if some servers are not available, R may

still compute their evaluation.

2) Three-Party OPE (TOPE). A TOPE protocol

involves a single third party who takes part in the pro-

tocol alongside S and R. This third party is mutually

trusted and provides information to both participants

which allow them to efficiently and securely compute

an OPE.

As with the servers in DOPE, the third party should

not be able to compute any information related to S’s

polynomial or R’s evaluation point. However, unlike

DOPE, it is expected that the third party will not ac-

tively try to cheat by sharing (private) information with

either S or R. We note that TOPE protocols are far

more efficient than DOPE protocols and often a lot sim-

pler and easier to understand.

In this work, we examine information theoretic OPE

schemes that are secure in the presence of a semi-honest

(a.k.a. honest but curious) adversity. This assumes

that all of the participants will follow the protocol ex-
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actly, but will try to learn as much extra information

as possible. In the case of DOPE this means that coali-

tions of servers will attempt to compute some informa-

tion, whilst in TOPE we assume that no coalitions are

formed, but both R and S will individually attempt

to compute information related to both α and f(x)

(whichever they themselves do not directly know).

Within the literature, there currently exist very few

information theoretic OPE protocols. However, the

usefulness of these protocols (as seen in Section 1) is

not in doubt. TOPE has been used in both MPC

and privacy preserving protocols, whilst DOPE draws

strong parallels to distributed oblivious transfer (DOT)

which is a well established and thoroughly researched

field with many rich applications and protocols.

Thus, it is our hope to further illuminate informa-

tion theoretic OPE by reviewing the current protocols

and providing our own research in this field. In Sec-

tions 3–5 we formally define DOPE and TOPE and

investigate the protocols present within the literature.

3 Distributed OPE

To the best of the authors’ knowledge there exist

only two DOPE protocols within the literature, the

“distributed oblivious function evaluation” (DOFE) of

Li et al. [9] and the DOPE protocol of Cianciullo and

Ghodosi [5]. Although both DOPE protocols in the

literature differ in their security requirements and defi-

nitions, we can provide a blanket model that suffices to

broadly explain the requirements of both DOPE pro-

tocols. We will, of course, specify the specific require-

ments of each DOPE protocol before examining them.

Our broad model and security requirements of a DOPE

protocol are given below.

3.1 Model

A DOPE protocol is an OPE protocol (as per Def-

inition 1) with a set of n > 2 additional participants,

s1, · · · , sn called servers. We assume the presence of

private synchronous communication between all exist-

ing participants (standard in MPC and other such pro-

tocols). The sender, S’s polynomial (f(x)) is of a degree

k > 1 over the field F, whilst R has the value α ∈ F,

where |F| = q such that q > max(n, k) is a prime num-

ber. A DOPE protocol can be split into two phases [5].

1) Initialisation. S privately distributes information

to the set of servers. After sending this information S
takes no further part in the protocol.

2) Evaluation. R contacts a subset of the n servers

who then respond to R by sending him/her some in-

formation. R uses this information to compute the re-

quired evaluation, f(α).

We can divide the security requirements of a DOPE

protocol into a set of four conditions. These conditions

were given in [5, 29], which, in turn were adapted from

the conditions of Blundo et al. [30].

1) Correctness. R is able to compute the requested

evaluation after receiving information from t or more

servers.

2) Receiver’s Privacy. A coalition of t − 1 servers

cannot compute any information related to α.

3) Sender’s Privacy. After the initialisation phase

(but before the evaluation phase) a coalition composed

of t− 1 servers and R cannot compute any information

related to f(x).

4) Sender’s Privacy After Protocol Execution. After

the communication between R and the servers has oc-

curred and R has computed f(α), a coalition composed

of t− 1 servers and R cannot compute any information

related to f(x), other than what the evaluation of R’s

chosen value (i.e., f(α)) has already revealed.

For the most part, research in this area (and DOT)

has focused on producing protocols that achieve se-

curity against the highest possible group or coalition,

something that is, oftentimes, quite hard to achieve. As

we will see, the security for one participant (R or S)

often comes at a price, i.e., lower security for the other

participant.

3.2 Shamir’s Secret Sharing Scheme

Before we begin evaluating the DOPE protocols, we

must first describe a key building block of many dis-

tributed protocols, known as secret sharing. A secret

sharing scheme is a cryptographic primitive that con-

sists of n participants and a dealer D. The specific case

we are concerned with is known as a (t, n) threshold

secret sharing scheme which is defined as follows.

Definition 3. A (t, n) threshold secret sharing

scheme allows a dealer D with secret value S to dis-

tribute a set of shares among n participants, in such a

way that any t or more of these participants can use

their shares to compute S. Security is maintained if

a set of t − 1 or less participants cannot compute any

information related to S.

Below we present the well known secret sharing

scheme given by Shamir in his seminal work [31], which

is based on polynomials over a finite field.
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Let all computations be performed in the field Fq,
where q > n is a prime number. We label the n partic-

ipants as P1, · · · , Pn and their respective shares of S as

V1, · · · , Vn; then Shamir’s scheme is as follows.

Sharing Phase. 1) The dealer, D constructs a ran-

dom polynomial, g(x), of a degree at most t − 1, such

that g(0) = S. 2) A given participant, Pi, is privately

assigned the share Vi = g(i).

Reconstruction Phase. 1) A set of t or more partici-

pants pool their shares and perform Lagrange interpo-

lation to compute g(x). 2) The participants take g(0)

as the secret.

3.3 DOFE Protocol

Li et al. [9] described a set of three DOPE protocols,

each with varying levels of security and flexibility. For

our purposes, we examine their second scheme; how-

ever in Subsection 3.5 we show that a sub-protocol for

a DOT scheme shown in [32] can be slightly altered

to produce the first DOPE scheme described by Li et

al. [9].

In the DOPE protocol of Li et al. [9] the sender’s

security is guaranteed against a coalition composed of

l − 1 servers and R. Whilst the receiver’s privacy is

guaranteed against a subset of b−1 servers and S, such

that b+ l < t 6 n where the security of both R and S
is guaranteed against a coalition composed of t − 1 or

less servers. The full protocol is given in Fig.1. This

is a flexible scheme that can be easily altered to suit a

given environment. However, it is evident that increas-

ing the security or privacy threshold for S would result

in a decrease of security for R and vice versa. Li et

al. [9] showed how to avoid this, achieving a threshold

of b = l = t, unfortunately though this increase in secu-

rity comes with a cost to both privacy and complexity.

Aside from the overall complexity of the scheme

increasing, the security modifications also allow R to

learn extra information about f(x). Although this in-

formation is not enough for R to compute anything in

an isolated setting, it does mean that this scheme may

not be suitable for implementation as part of a larger

protocol.

To overcome the privacy and complexity concerns

we noted above, Cianciullo and Ghodosi [5] proposed a

DOPE protocol secure (for both S and R) against t−1

servers where t 6 n. However, we note that this pro-

tocol is not without faults of its own, which we shall

examine in Subsection 3.4. Before doing so we briefly

list the communication overhead of the DOFE protocol,

to serve as a comparison to the scheme of [5] investi-

gated in Subsection 3.4.

Overhead. In the initialisation phase the sender has

a communication overhead of O(kn), sending O(k) val-

ues to each of the n servers. In the evaluation phase

the receiver must send k+ 1 values to a set of t servers,

Input: S has the polynomial f(x) = a0 + a1x+ · · ·+ akx
k and R the value α.

Output: R receives f(α) and S gets nothing.

Initialisation

1. S selects and broadcasts k + 1 random, distinct values: x0, x1, · · · , xk.

2. Using these values S privately computes y0, y1, · · · , yk such that yi = f(xi) where i = 0, · · · , k.

3. Next, S computes k+1 random polynomials, f0(x), f1(x), · · · , fk(x) where f0(0) = y0, f1(0) = y1−y0, · · · , fk(0) = yk−y0
such that the degree of f0(x) is at most t− 1 and the other k polynomials have a degree at most l − 1.

4. S sends to each server, sj , the share Aj = (f0(j), · · · , fk(j)).

Evaluation

1. R computes the random values d0, · · · , dk such that they satisfy α = d0x0 + d1x1 + · · ·+ dkxk. Here, for any value x, the
value xi denotes (1, x, x2, · · · , xk).

2. R then uses these values to compute a set of random polynomials, Q1(x), · · · , Qk(x), of a degree at most b − 1, where
Qi(0) = di for i = 1, · · · , k.

3. R selects a subset of t servers denoted as ω. He/she then sends to each sj ∈ ω the values Bj = (1, Q1(j), · · · , Qk(j)).

4. Each sj ∈ ω computes and sends to R the value R(j) = 〈Aj , Bj〉, i.e., the inner (dot) product of the two vectors.

5. R computes f(α) by interpolating over the set of R(j) values he/she received to compute the polynomial R(x). He/she
takes R(0) as his/her evaluation.

Fig.1. DOFE protocol [9].
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and R then receives O(1) messages from these t servers,

achieving a communication complexity of O(kt) where

t 6 n.

3.4 Cianciullo and Ghodosi’s DOPE Protocol

DOPE presented in this subsection is given by Cian-

ciullo and Ghodosi in [5]. This protocol is both simple

and efficient, achieving the highest level of security pos-

sible, i.e., S’s privacy is guaranteed against a coalition

composed of t − 1 servers and R and R’s privacy is

guaranteed against a coalition of t − 1 servers, where

t 6 n. The protocol does not need secure communi-

cation channels that allow R to privately communicate

to the servers. It only needs a one-way private channel

that allows each server to privately communicate to R.

So R communicates using a public channel (broadcast)

to all the servers. Whilst the servers can each privately

communicate information to R.

This allows for a more robust scheme in which R
simply broadcasts (publicly) some information to which

a set of servers then respond. This means that R does

not necessarily need to pick the specific servers they

communicate with, but the servers can either all re-

spond or just a minimum subset of required servers can

respond. The full protocol is given in Fig.2.

Whilst the security benefits of this scheme are obvi-

ous, it is not without flaws. For instance, this protocol

requires S to communicate directly with R during the

initialisation stage. The author’s shown how this can

be rectified, however, this modification also results in

more communication complexity.

Furthermore, and perhaps more alarmingly, the pro-

tocol requires (like many previously published DOT

protocols) that S does not communicate with any of

the servers after the initialisation phase. It is easy to

see that if this were to occur it would be a trivial matter

for S to compute the exact value of α.

Specifically, all it would take is one server revealing

to S the value of εi. This would allow S to compute

α = i
√
εi + ri, the result of which is a complete loss of

privacy for R.

Unfortunately this predicament is an inherent prob-

lem present in all such schemes that achieve the maxi-

mum level of security. As noted by Cheong et al. [32],

achieving this level of security in a DOT protocol also

results in the same issue. To overcome this problem

within the field of DOT, Cheong et al. [32] developed

a robust and flexible DOT scheme that achieved what

they described as the maximum security a DOT scheme

could possibly achieved. One in which the security is-

sue is highlighted above does not exist. As before we

Input: S has the polynomial f(x) = a0 + a1x+ · · ·+ akx
k and R the value α.

Output: R receives f(α) and S gets nothing.

Initialisation

1. S creates a set of random values r1, · · · , rk and computes k values of the form γi = ri × ai for i = 1, · · · , k.

2. For each coefficient, ah (h = 0, · · · , k), S computes a random polynomial, Ah(x) of a degree at most t − 1 such that
Ah(0) = ah. He/she does the same for each γi value, computing k polynomials of the form Γi(x) with free term Γi(0) = γi.

3. Using Shamir’s secret sharing scheme S distributes these values among the servers, giving server sj (j = 1, · · · , n) the
following information:

• k shares of the form γij = Γi(j),

• k + 1 shares of the form ahj
= Ah(j).

4. S privately sends to R the values r1, · · · , rk and then takes no further part in the protocol.

Evaluation

1. R broadcasts to all servers a set of k values of the form εi = αi − ri.
2. A set of t or more servers, denoted as W respond to R’s broadcast values. Each server, sj ∈ W, computes and sends to R

the share:

zj = a0j +

k∑
i=1

(aij × εi + γij ).

3. As per Shamir’s secret sharing scheme, R performs Lagrange interpolation across each zj value to compute the polynomial
Z(x) with free term Z(0) = f(α).

Fig.2. DOPE protocol [5].
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examine the communication complexity of this proto-

col.

Overhead. As with the DOFE scheme, the sender

has a communication overhead of O(kn), sending O(||)
values to each of the n servers. In the evaluation phase

the receiver broadcasts a set of k values and then is

answered by a set of t servers which each send a sin-

gle value. If we assume that the broadcast message

is simply R sending each server a message, then the

communication complexity of this protocol is given as

O(kn+t). Interestingly, the communication complexity

of this protocol is slightly more than that of the DOFE

protocol; however since t 6 n we note that the over-

all complexity is roughly the same. Furthermore the

efficiency of this protocol also depends greatly on the

method used to achieve the broadcast channel utilised

in the first step of the evaluation.

In Subsection 3.5 we show that an interesting sub-

protocol used in the DOT scheme by Cheong et al. [32]

can be modified to provide a secure DOPE protocol,

with the flexible security thresholds of the DOFE pro-

tocol. In fact, we show that this sub-protocol can be

adapted into the first DOPE protocol described in [9]

by Li et al. with minimal effort.

3.5 Flexible DOPE from DOT

The security parameters of the DOT protocol de-

vised by Cheong et al. [32] operate in much the same

fashion as the DOFE protocol, in that security is guar-

anteed against two different thresholds. Put simply, R’s

privacy is guaranteed against a group consisting of γ1

servers and S, whilst S’s privacy is guaranteed against

a set of γ2 servers and R, where γ1 + γ2 < t 6 n.

Furthermore, a group of t − 1 or less servers cannot

compute anything related to either S’s or R’s private

information. In this subsection we show how to adapt

a sub-protocol of their DOT scheme, in order to pro-

duce a DOPE protocol with exactly the same highly

desirable security guarantees.

The core building block of this DOT scheme (the

aforementioned sub-protocol, given in Fig. 3) can be

viewed as a special case of a DOPE protocol, in which

the degree of S’s polynomial is 1. Such a scheme is

commonly called an oblivious linear evaluation (OLE);

thus, in our case, the sub-protocol is essentially a dis-

tributed OLE (DOLE).

To create a DOPE from this DOLE protocol we

simply extend the protocol, substituting the bivari-

ate polynomial, Q(x, y) with a multivariate polynomial

Q(x, y1, · · · , yk). The full DOPE protocol is given in

Fig.4.

Interestingly enough, the resulting protocol is ex-

actly equivalent to the first of the three DOPE proto-

cols given in [9] by Li et al. (as such, we point the

reader to [9], for a security proof of this protocol). In

fact, we note that both of these schemes (the DOT

protocol of [32] and the DOPE protocol of [9]) actually

utilise techniques given in the seminal work of Naor

and Pinkas [33] which first introduced DOT. This result

clearly shows the relationship between DOPE and DOT

and establishes DOPE as an interesting field in its own

right.

Input: S has the polynomial f(x) = a0 + a1x and R the value α.
Output: R receives f(α) and S gets nothing.

Initialisation

1. S computes two random polynomials, B0(x) and B1(x), such that B0(x) is of a degree at most t − 1 with B0(0) = a0
and B1(x) is of a degree at most γ2 with B1(0) = a1. He/she combines these two polynomials to compute the bivariate
polynomial Q(x, y) = B0(x) +B1(x)y.

2. Each server, sj (for j = 1, · · · , n) receives from S the values (B0(j), B1(j)).

Evaluation

1. R computes the random polynomial S(x), of a degree at most γ1, where S(0) = α.

2. Each server, sj receives from R the value S(j).

3. Let Q(x, S(x)) = R(x), then a set of t or more servers (denoted by sj) compute and send to R the value R(j) =
B0(j) +B1(j)S(j). sj denotes one of the servers from the set of t or more servers.

4. R interpolates over these values to compute R(x). Taking the value R(0) = B0(0)+B1(0)α = f(α) as the receiver’s desired
evaluation.

Fig.3. DOLE protocol given in [32].
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Input: S has the polynomial f(x) = a0 + a1x+ · · ·+ akx
k and R the value α.

Output: R receives f(α) and S gets nothing.

Initialisation

1. S computes k + 1 random polynomials, B0(x), · · · , Bk(x), such that B0(x) is of a degree at most t − 1 with B0(0) = a0
and B1(x), · · · , Bk(x) are of a degree at most γ2 with Bi(0) = ai, for i = 1, · · · , k. As before, he/she combines these
polynomials to compute the multivariate polynomial Q(x, y1, · · · , yk) = B0(x) +B1(x)y1 + · · ·+Bk(x)yk.

2. Each server, sj (for j = 1, · · · , n) receives from S the values (B0(j), B1(j), · · · , Bn(j)).

Evaluation

1. R computes the random polynomials S1(x), · · · , Sk(x), of a degree at most γ1, where Sj(0) = αj .

2. Each server, sj receives from R the values (S1(j), · · · , Sk(j)).

3. Let Q(x, S1(x), · · · , Sk(x)) = R(x), and then a set of t or more servers (denoted by sj) computes and sends to R the value

R(j) = B0(j) +B1(j)S1(j) + · · ·+Bk(j)Sk(j).

4. R interpolates over these values to compute R(x). Taking the value R(0) = B0(0) + B1(0)α = f(α) as their desired
evaluation.

Fig.4. Flexible DOPE Protocol from DOT [32]. This is Equivalent to the first DOPE protocol given in [9].

Overhead. Since the sender computes a multivari-

ate polynomial from a set of k random polynomials and

each of the servers receives a value from said polynomi-

als, the sender has a communication overhead of O(kn).

The receiver sends a set of k values to each of the servers

and receives a value from t or more of these servers, giv-

ing a communication complexity of O(kn+ t), identical

to the previously examined DOPE protocol.

In Section 4 we examine the existing TOPE proto-

cols within the literature.

4 Three-Party OPE

TOPE substitutes the n servers of DOPE for just

one extra participant who takes part in the protocol.

As with the servers in DOPE, this third participant

should learn nothing related to either f(x) or α, and

furthermore it is expected that the third party does

not actively collaborate with either R or S.

The major benefit that a TOPE protocol has over

a DOPE protocol is the need for only one extra par-

ticipant. This drastically cuts down on communication

complexity as there is no need to send/receive messages

from a large set of servers. The downside to TOPE is,

of course, that there is a central point of failure. To

clarify, if the third party is compromised and/or cor-

rupted in some way and freely shares information with

either S or R, then all security is lost. Another issue

is that the third party must be available and present

throughout the entire protocol. As such, if there is no

single trusted third party available then the protocol

cannot be computed. DOPE overcomes these issues

by essentially spreading out the function of the third

party among the set of n servers, achieving security and

availability at a far higher cost to efficiency (namely, ef-

ficiency of communication).

Of the two TOPE protocols reviewed in this sec-

tion, the first uses the third participant as an active

and ever present party who takes full part in the proto-

col, whilst the second simply uses the third participant

to provide some unrelated and random information at

the start of the protocol. For this reason we shall not

present an overall model of security and communication

for TOPE, and rather, the security and communication

requirements for each of these protocols are given as re-

quired. However, we can provide a broad and informal

definition that covers both TOPE protocols reviewed

here.

Definition 4. A TOPE protocol is an OPE pro-

tocol with an extra participant who does not (illegally,

i.e., in secret or against the protocol) collaborate with

either S or R. Security is maintained as per the require-

ments stated in Definition 1, along with the additional

requirement that the extra participant cannot compute

anything related to either f(x) or α.

4.1 Active Third-Party TOPE

The TOPE protocol given by Chang and Lu [14] re-

quires an active third party who takes full part in, and

is present for the entire TOPE protocol. We call this

third party the mediator, denoted as M. There are
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three rounds of communication in this protocol, in the

first round R sends some information to the other par-

ticipants, the second round has S sending information

and lastly M sends information to R who then com-

putes his/her evaluation. All computations are per-

formed over a finite field F. The full protocol is given

in Fig.5.

Overhead. As would be expected in an OPE pro-

tocol utilising a polynomial of a degree k, the commu-

nication complexity is just O(k), which is extremely

efficient, especially in contrast to the previously ex-

amined DOPE protocols. Furthermore this protocol

utilises finite fields of characteristics at most k + 1,

whereas DOPE protocols require fields of characteris-

tics q > max(k, n). The net result is that for a small

k value the TOPE protocol would be far more efficient

than a DOPE protocol where n > k. However, this ac-

tive TOPE requires a total of six messages to be sent

between the participants.

Evidently, the use of an actively involved third party

allows for an extremely efficient protocol; however, M
has an integral role that is tied in with the entire pro-

tocol. As such, there may be issues with both security

and availability. To elaborate, if M is not available for

the entire protocol then the OPE cannot be computed.

Furthermore, the fact that M is present for the entire

protocol may result in some security concerns. To rec-

tify these problems, Hanoaoka et al. [34] and Tonicelli et

al. [11] developed a TOPE protocol in which the third

party does not receive communications from either of

the other two participants and only needs be present

for the start of the protocol.

4.2 Commodity-Based TOPE

In this subsection we look at what is known as the

commodity-based TOPE given in [11,34]. Commodity-

based cryptography was originally described by Beaver

in [35] and involves the participants “buying” or being

assigned some (essentially random) information from a

neutral third party at the start of (or before, i.e., “of-

fline”) a given protocol. We dub this third party the

initialiser, denoted as I, and divide the TOPE protocol

into two phases.

1) Setup. In this phase the initialiser individually

assigns some correlated random information to both S
and R.

2) Computation. Here, S and R securely and pri-

vately compute an OPE using the correlated informa-

tion assigned to them by I.

As with the previously depicted OPE protocols, se-

curity is maintained if, after the protocol has been ex-

ecuted, R cannot compute any information related to

f(x) (other than f(α)) and S cannot compute any in-

formation related to α. All computations are performed

in the finite field Fq where q > k is a prime number,

and the protocol is given in Fig.6.

Hanaoka et al. [34] and Tonicelli et al. [11] proved that

their TOPE is (for the conditions that they have de-

fined) optimal in terms of communication complexity

and overall efficiency.

Overhead. As before the communication complexity

of this protocol is bounded by the size of the sender’s

polynomial, O(k). In contrast to the active TOPE

protocol, however, this commodity-based protocol only

requires sending four messages to achieve OPE. Simi-

larly the protocol operates in a field of characteristic

q > k, thereby achieving greater communication effi-

ciency than the active TOPE protocol.

This commodity-based scheme is elegant in its sim-

plicity and does away with the restrictions of the active

third party TOPE given in [14]. Specifically, we note

that the setup phase of the protocol can be done at any

time, even before either S or R has their respective pri-

vately held information (f(x) and α). Tonicelli et al. [11]

Input: S has the polynomial f(x) = a0 + a1x+ · · ·+ akx
k and R the value α.

Output: R receives f(α) and S gets nothing.

TOPE Protocol

1. R sends to S a set of random values, r1, · · · rk ∈ Fk. He/she also sends to M the values, α′1, · · · , α′k where α′i = αi + ri
for i = 1, · · · , k.

2. S sends to R a set of random values, s0, · · · , sk ∈ Fk+1. Additionally, M gets a set of k + 1 values, a′0, · · · , a′k from S,

where a′0 = a0 + s0 +
∑k

i=1 airi and a′i = ai + si.

3. M sends to R the value y = a′0 +
∑k

i=1 a
′α′i. Finally, R computes f(α) = y − (s0 +

∑k
i=1 a

′
isi).

Fig.5. TOPE with active third party [14].
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Input: R has a value α and S the polynomial f(x) of a degree at most k.
Output: R obtains f(α) and S gets nothing.

Setup I privately sends:

1. A random polynomial, S(x), of a degree at most k to S.

2. A random value, d and the value g = S(d) to R.

Computation

1. R sends the value l = α− d to S.

2. S then computes and sends to R the polynomial V (x) = f(l + x) + S(x).

3. R computes f(α) = V (d)− g.

Fig.6. Commodity-based TOPE [11, 34].

also rigorously proved the security of their scheme un-

der the simulation-based paradigm and their work has

been used as a building block in protocols for MPC [3]

and secure voting [22].

In the next subsection we take the TOPE protocol

shown here and extend its capabilities further modify-

ing the underlying scheme. Our modifications are rela-

tively simple and do not result in any dramatic changes

to the efficiency of the protocol.

4.3 Extending TOPE

We demonstrate three modifications to the

commodity-based TOPE displayed in Subsection 4.2.

1) Multivariate Polynomial Capabilities. Without

any loss of security, we extend the protocol to handle

multivariate polynomials. Our modified scheme is just

as efficient as the original scheme achieving a communi-

cation complexity of O(hk) where h denotes the number

of variables within the multivariate polynomial.

2) Randomised Multi-Evaluation Capabilities. We

show howR can compute not only the receiver’s desired

evaluation (f(α)), but also a random set of k− 1 extra

evaluations, simply by having I send extra informa-

tion to S and R in the setup phase. Our modification

does not add any extra communication or complexity

to the computation phase, achieving an overall commu-

nication complexity of O(k) with the same amount of

messages sent as the original protocol.

3) Multi-Evaluation Capabilities. By relaxing the se-

curity constraints and slightly adapting the above mod-

ified scheme, we show how to allow R to compute a

given set of k evaluations (that are not randomised).

This protocol is also extremely efficient, achieving the

same communication complexity as the original, at the

cost of sending only one extra message (for a total of

five messages sent).

4.3.1 TOPE with Multivariate Polynomial

Our first modification is to allow the commodity-

based TOPE protocol to handle multivariate polyno-

mials. In this case S has the multivariate polyno-

mial f(x1, · · · , xh), whilst R holds a range of val-

ues, α1, · · · , αh and wishes to learn the evaluation of

f(α1, · · · , αh). All computations are performed in the

finite field Fq, where q > max(h, k) is a prime number.

The full multivariate protocol is given in Fig.7.

Evaluation. The security and correctness of this ext-

ended protocol is an obvious extension of the original

protocol (see [11] for its full proof). It is easy to see that

our protocol is still extremely efficient, only adding a

multiplicative factor h onto the communication comple-

xity of the original univariate protocol.

The probability of error for R, i.e., the chance that

S correctly guesses α1, · · · , αh (or d1, · · · , dh), is given

as 1
qh

. As to do this S would have to correctly guess

h values over the finite field Fq. S has a 1
q chance

to correctly guess the evaluation value, as this requires

only guessing one number. However, we note that secu-

rity/privacy for R is reliant on S not being able to cor-

rectly compute R’s privately-held values, α1, · · · , αh.

Thus the probability of error here is 1
qh

.

We note, however, that if this value is lowered to
1
q , then we can achieve even a greater efficiency. To do

this, we simply have I send one d value to R in the

setup phase of the protocol. In the computation phase

of the protocol R utilises the same d value as a mask for

all of his/her α1, · · · , αh values. This modification re-

sults in a more communication efficient protocol, at the
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Input: R has a set of values α1, · · · , αh and S the multivariate polynomial f(x1, · · · , xh) of a degree at most k in any variable.
Output: R obtains f(α1, · · · , αh) and S gets nothing.

Setup I privately sends:

1. A random multivariate polynomial, S(x1, · · · , xh), of a degree at most k in all variables, to S.

2. A set of random values, d1, · · · , dh and the value g = S(d1, · · · , dh) to R.

Computation

1. R sends the values l1, · · · , lh to S, where li = αi − di for i = 1, · · · , h.

2. S then computes and sends to R the polynomial:

V (x1, · · · , xh) = f(l1, x1, · · · , lh, xh) + S(x1, · · · , xh).

3. R computes:
f(α1, · · · , αh) = V (d1, · · · , dh)− g.

Fig.7. Commodity-based multivariate TOPE.

cost of security. The full extension to the multivariate

protocol is given in Fig.8.

As discussed, the probability of error here is only 1
q

as all S has to do is to correctly guess d ∈ Fq to easily

compute all α1, · · · , αh values.

4.3.2 TOPE with Randomised Multi-Evaluation

Our next modification allowsR to compute not only

his/her evaluation f(α), but also a set of k − 1 extra

(random) evaluations as well.

This modification is extremely efficient and only ef-

fects the setup phase, allowing for a computation phase

that is just as efficient as the original unmodified proto-

col. The benefit is evident when we consider that often-

times in protocols such as MPC, a lot of computation is

delegated to the offline or setup phase in order to make

the actual computation phase (or the “online” phase)

as efficient as possible. This is because the setup/offline

phase can be carried out at any time, well in advance

of the actual online protocol.

When the setup phase I sends to R a set of extra

values, d1, · · · , dk−1, this will allow R to compute the

extra (random) evaluations. The computation phase

then proceeds (from a communication point of view) ex-

actly as before, with the only change being some small,

extra, computations performed privately by R. The full

protocol is given in Fig.9.

The main benefit of our protocol is that we are able

Input: R has a set of values α1, · · · , αh and S the multivariate polynomial f(x1, · · · , xh) of a degree at most k in any variable.
Output: R obtains f(α1, · · · , αh) and S gets nothing.

Setup I privately sends:

1. A random multivariate polynomial, S(x1, · · · , xh), of a degree at most k in all variables, to S.

2. The values d and g = S(d, · · · , d) to R.

Computation

1. R sends the values l1, · · · , lh to S, where li = αi − d for i = 1, · · · , h.

2. S then computes and sends to R the polynomial:

V (x1, · · · , xh) = f(l1, x1, · · · , lh, xh) + S(x1, · · · , xh).

3. R computes:
f(α1, · · · , αh) = V (d, · · · , d)− g.

Fig.8. A more efficient commodity-based multivariate TOPE.
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Input: R has the value α and S the polynomial f(x) of a degree k or more.
Output: R obtains f(α) as well as k − 1 random evaluations of S’s polynomial of the form: f(β1), · · · , f(βk−1). As before, S

gets nothing.

Setup I privately sends:

1. A random polynomial, S(x), of a degree k or more to S.

2. A set of random values, d0, · · · , dk−1, and the values gi = S(di) to R, for i = 0, · · · , k − 1.

Computation

1. R computes and sends to S the value l = α − d0. Privately, R computes k − 1 values, of the form βi = l + di, for
i = 1, · · · , k − 1.

2. S then computes and sends to R the polynomial V (x) = f(l + x) + S(x).

3. R computes their evaluation as: f(α) = V (d0)−g0. The k−1 random evaluations are computed in much the same fashion:
f(βi) = V (di)− gi.

Fig.9. Commodity-based randomised multi-evaluation TOPE.

to compute k evaluations for the same communication

complexity (in the computation phase) as the origi-

nal protocol. A naive approach to this would result

in a multiplicative increase of k, something our proto-

col manages to avoid by simply designating all extra

communication to the setup phase.

Evaluation. From S’s point of view the actual pro-

tocol is unchanged from the original protocol. Thus it

only remains to show that R cannot compute anything

extra from the multiple evaluation points he/she has

received.

Theorem 1. The randomised multi-evaluation

TOPE protocol maintains privacy for S.

The proof is quite simple and is a result of Shamir’s

secret sharing scheme [31].

Proof. At the end of the modified OPE protocol

R will have obtained k evaluations of a k-degree poly-

nomial: f(x) = a0 + a1x + · · · + akx
k. As such, R

holds a system composed of k + 1 unknowns and k in-

dependent equations. In other words, R has k shares

of a Shamir polynomial of a degree k. As per Shamir’s

scheme [31], it is known that k + 1 shares are needed to

compute the polynomial. Therefore, R cannot compute

anything extra about S’s polynomial, other than what

his/her evaluation points have already told him/her. �
The benefits of this protocol are evident when look-

ing at the use of the original protocol. For example

the original OPE is used as a multiplication proto-

col in MPC [3] and is also the backbone of a secure

voting protocol [22]. Our modifications would allow

for increases in efficiency, for both of these purposes,

i.e., computing multiple multiplications simultaneously

and/or evaluating multiple votes simultaneously in each

respective protocol.

To be more specific, the multiplication of numbers

in [3] is carried out via each participant carrying out

an OPE protocol with the other participants. Using

this new scheme participants in the MPC could com-

pute multiple multiplication results with just the one

OPE, rather than one result per OPE. The secure vot-

ing scheme of [22] uses the commodity-based OPE to

verify the ballots of voters. With some modifications

to their underlying protocol and the replacement of the

original OPE scheme with our enhanced version, the

verification process could be conducted more efficiently,

verifying multiple votes using just the one OPE.

4.3.3 TOPE with Multi-Evaluation

In this final extension to the commodity-based

TOPE protocol we show that by lessening the original

security requirements of the protocol, we can modify

the previously discussed randomised multi-evaluation

scheme to allow R to actually choose all evaluation

points. To do this we modify the setup phase and allow

R to communicate with I. This modification does not

actually lessen security in any fashion, as I will still

not be able to learn anything related to either S’s or

R’s private information. Furthermore, this new pro-

tocol has the same communication complexity as the

randomised multi-evaluation protocol and we still do

not require I to be an active participant throughout

the protocol (as in [14]), i.e., I is only present for the

setup phase.

To summarise our modification, we take the ran-

domised multi-evaluation protocol and add an extra
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level of communication in the setup phase, whereby R
sends to I a specific set of d1, · · · , dk points to be eval-

uated by S(x). This allows R to choose the evaluation

points he/she requires, as opposed to them being ran-

dom. The full protocol is given in Fig.10.

As with the randomised protocol, the benefits of this

scheme have applications in both MPC and privacy pre-

serving protocols. However, with this scheme there is

no need to use randomised evaluations, and rather a

set of predetermined evaluations can be chosen, allow-

ing for a far more useful and versatile protocol.

Evaluation. From a security perspective this proto-

col is (for S and R) exactly the same as the randomised

protocol, in that neither R nor S can compute any in-

formation they are not explicitly assigned. To put this

in another way, the protocol is identical in terms of

the messages and information shared between R and

S. As a result, we need only to prove that the extra

information shared between I and R does not lead to

any breakdown of security.

When looking at the extra information given to I
by R it is easy to see that I cannot compute anything

related to any of R’s evaluation points. Because each

of the di values is essentially random from I’s point of

view, to correctly guess any αi the initialiser would have

to guess l ∈ Fq. This gives I a 1
q chance of correctly

computing any extra information, the same probability

as in the original scheme given by Tonicelli et al. [11],

and the same probability that S has of correctly guess-

ing the evaluation points.

We note that performing k OPEs would result in an

overall probability of 1
qk ; however this comes at a far

greater cost to communication.

5 Flaws in Bo et al.’s OPE Scheme

In this section we show that the OPE protocol de-

vised by Bo et al. [26] is not secure. The essential

premise of this scheme (as per the authors’ claims) is

that it achieves unconditional security with only two

participants, R and S. However, as we mentioned in

Section 2, it has long been established that a two-party

unconditionally secure protocol is impossible [27, 28]. To

demonstrate this fact we display Bo et al.’s protocol [26]

in Fig.11 and then discuss the flaws in their proposed

OPE.

The idea behind this protocol is to utilise a series

of random values as masks, in order to preserve the

privacy of both S and R. However, after learning the

evaluation (f(α)) the receiver, R, is able to go back

and actually compute the masks used by S. This then

allows R to break the protocol by computing f(x). The

exact method by which this is possible is given below

in an example in which we set k = 1 (the degree of S’s

polynomial).

As stated, k = 1, so l = 1 as well. Assume that

the protocol has been completed and R has computed

f(α). We now draw the reader’s attention to step 3 of

the protocol, in which R is assigned the following pieces

of information:

1) D0 = Ha0,

2) D1 = Ha1∆11 (as a2 = 0),

where H, a0 and a1 are unknown. Now, at the end of

the protocolR also has the equation f(α) = a0+αa1, as

before a0 and a1 are unknown. Combining these pieces

of information gives the following system of equations:

D0 = Ha0,

Input: R has the values α1, · · · , αk and S the polynomial f(x) of a degree k or more.
Output: R obtains f(α1), · · · , f(αk). As before, S gets nothing.

Setup

1. I sends a random polynomial, S(x), of a degree k or more to S.

2. R computes and sends to I the values d1, · · · , dk, where di = l−αi for i = 1, · · · , k and l is a random, private value chosen
by R.

3. I sends to R the values g1, · · · , gk where gi = S(di).

Computation

1. R sends to S the value l.

2. S then computes and sends to R the polynomial V (x) = f(l − x) + S(x).

3. R computes his/her k evaluations as: f(αi) = V (di)− gi for i = 1, · · · , k.

Fig.10. Commodity-based TOPE with multi-evaluation capabilities.
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Input: R has the values α and S the polynomial f(x) of a degree k or more.
Output: R obtains f(α) and S gets nothing.

Preliminaries: Let l =
⌊
k
2

⌋
+ 1 if k is odd and l = k

2
if k is even. All values are drawn from the field Zq \ {0} where q is a large

prime.

OPE Protocol

1. R privately selects the random values β1, β2, T1, T2 and r1, · · · , rl. He/she uses these values to compute l values of the
form r′1, · · · , r′l, such that r′j = T−1

2 rj for j = 1, · · · , l.

2. R then sends to S the values ∆j = (∆j1 ,∆j2 ) where:

∆j1 = T1rjα
2j−1 + β1r

′
j ,

∆j2 = T1rjα
2j + β2r

′
j .

3. S privately computes the random value H and sends to R the values D0, · · · , Dl where D0 = Ha0 and Dj =
Ha2j−1∆j1 +Ha2j∆j2 , where j = 1, · · · , l and a2l = 0 if k is odd.

4. R computes M = T1T2D0 +
∑l

j=1Dj(r′j)−1 and then sends to S the value M1 = Mβ−1
1 .

5. S sends to R the value S1 = M1 −H
∑l

j=1 a2j−1.

6. Using this value, R sends to S the value M2 = S1β1β
−1
2 .

7. Following this, S sends to R the value S2 =

(
M2 −H

∑l
j=1 a2j

)
H−1.

8. Finally, R computes f(α) = S2β2T
−1
1 T−1

2 .

Fig.11. Flawed OPE protocol [26].

D1 = Ha1∆11 ,

f(α) = a0 + a1α.

To solve this system, we multiply the third equation by

H and substitute the first two equations into this new

third equation. Doing so gives, f(α)H = D0 + αD1.

Solving this gives the value of H = (D0+αD1)(f(α))−1.

Now that H is known we can compute a0 and a1 with

ease:

a0 = H−1D0,

a1 = H−1∆−111
D1.

As a result of this R is able to compute the entirety

of S’s polynomial f(x), thereby resulting in a flawed

scheme that does not ensure either security or privacy.

We note that our attack will also work with all possi-

ble cases; however k = 1 was used in order to easily

demonstrate the flaws in this protocol.

6 Conclusions

In this article we critically reviewed the exiting in-

formation theoretic OPE protocols. Additionally we

made several key contributions to the field of informa-

tion theoretic OPE.

1) We adapted a DOT protocol into a flexible DOPE

protocol that is equivalent to an existing DOPE proto-

col presented in [9], displaying the strong link between

the relatively new field of DOPE and the existing and

well researched field of DOT.

2) We created three extensions of a well known

TOPE protocol, resulting in the following improve-

ments:

• multivariate capabilities;

• randomised multi-evaluation capabilities;

•multi-evaluation capabilities with relaxed security.

3) Demonstration of the flaws inherent in the OPE

given by Bo et al. [26].

OPE is a relatively new field which is continuing

to grow, with new results and applications appearing

frequently. As such, there is still many more opportu-

nities for research within this field, particularly in terms

of the myriad of applications to which this protocol can

be put towards.
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