
Mouakher I, Dhaou F, Attiogbé JC. Event-based semantics of UML 2.X concurrent sequence diagrams for formal verification.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(1): 4–28 Jan. 2022. DOI 10.1007/s11390-021-1673-5

Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams
for Formal Verification

Inès Mouakher1, Fatma Dhaou1, and J. Christian Attiogbé2

1Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
2Institute of Technology, University of Nantes, Nantes 44 322, France

E-mail: {ines.mouakher, fatma.dhaou}@fsegt.utm.tn; christian.attiogbe@univ-nantes.fr

Received June 1, 2021; accepted November 16, 2021.

Abstract UML 2.X sequence diagrams (SD) are among privileged scenarios-based approaches dealing with the complexity

of modeling the behaviors of some current systems. However, there are several issues related to the standard semantics of

UML 2.X SD proposed by the Object Management Group (OMG). They mainly concern ambiguities of the interpretation of

SDs, and the computation of causal relations between events which is not specifically laid out. Moreover, SD is a semi-formal

language, and it does not support the verification of the modeled system. This justifies the considerable number of research

studies intending to define formal semantics of UML SDs. We proposed in our previous work semantics covering the most

popular combined fragments (CF) of control-flow alt, opt, loop and seq, allowing to model alternative, optional, iterative

and sequential behaviors respectively. The proposed semantics is based on partial order theory relations that permit the

computation of the precedence relations between the events of an SD with nested CFs. We also addressed the issue of

the evaluation of the interaction constraint (guard) for guarded CFs, and the related synchronization issue. In this paper,

we first extend our semantics, proposed in our previous work; indeed, we propose new rules for the computation of causal

relations for SD with par and strict CFs (dedicated to modeling concurrent and strict behaviors respectively) as well as

their nesting. Then, we propose a transformational semantics in Event-B. Our modeling approach emphasizes computation

of causal relations, guard handling and transformational semantics into Event-B. The transformation of UML 2.X SD into the

formal method Event-B allows us to perform several kinds of verification including simulation, trace acceptance, verification

of properties, and verification of refinement relation between SDs.

Keywords UML 2.X sequence diagram, formal semantics, nested combined fragment, partial order theory, Event-B

1 Introduction

With the increasing complexity of current dis-

tributed systems, their modeling, analysis and verifi-

cation become more and more complex. Formal meth-

ods, based on mathematical foundations, contribute to

improving the criteria of reliability and integrity. How-

ever, they remain difficult to adopt in early stages of

modeling, where scenario-based approaches are widely

used since they are more intuitive.

UML 2.X sequence diagrams (SDs) have gained in-

creased popularity and have become a de facto stan-

dard scenario-based language for modeling interactions

of systems. The interactions describe the behavior of a

system with the exchanged messages between its com-

ponents, which are modeled by lifelines. The semantics

of interactions is usually described with traces com-

posed of event occurrences. Interaction specifications

are partial ordering to constrain allowed and disallowed

traces; combined fragments (CFs) can be used to allow

a compact syntactic representation of the interactions

or alter the orderings of occurrences of the events. In

the standard specification of SDs and in the most re-

viewing approaches, proposed semantics refer only to

the valid traces because they describe the behavior of

modeled systems; however, invalid traces describe intu-

itively some system properties or counter examples.

Although the Object Management Group (OMG) 1○

Regular Paper

Special Section on Software Systems 2021—Theme: Dependable Software Engineering
1○OMG Unified Modeling Language, Version 2.5.1, 2017. https://www.omg.org/spec/UML/2.5.1/PDF, Oct. 2021.

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-021-1673-5

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 5

has defined an official standard semantics for UML 2.X

SDs, some shortcomings still persist, which explains the

diversity of the studies [1–6] proposing various kinds of

semantics to remedy with them. However, none of them

is complete even if we consider only valid interactions

defined by basic SDs or by the most popular CFs: alt,

opt, loop, seq, strict and par modeling alterna-

tive, optional, iterative, sequential, strict and parallel

behaviors respectively. These issues are mainly due to

the fact that the standard semantics is informal; thus

the interpretation and analysis of the SDs is ambigu-

ous. Indeed, numerous challenges connected with mak-

ing semantics for sequence diagrams and choices must

be made, such as: 1) computing the partial order re-

lation between the occurrence specifications (i.e., the

events); 2) the asynchronous communication between

the events; 3) the presence of multiple CFs, their com-

position (with weak sequencing) and their nesting;

4) the ambiguities related to the evaluation of the in-

teractions constraints (i.e., guards) for some combined

fragments; for instance the ambiguities for alt CF are

the exact time of the evaluation, which lifeline must eva-

luate the guard, which operand to choose when several

guards are true, etc.; and 5) the synchronization be-

tween components of the system after the guard evalua-

tion.

Our work aims at improving the coverage of the

formal verification of UML-based models. In our pre-

vious work, we proposed an interpretation semantics of

UML 2.X SDs [7–9] that gives a close interpretation of

the standard description of the UML 2.X sequence dia-

grams while admitting more valid traces compared with

the standard interpretation. Indeed we have proposed:

1) an intuitive formalization of UML 2.X SDs, covering

the most popular CFs (seq, alt, opt and loop) as

well as their composition and their nesting, and rules

for the computation of the partial order relation be-

tween events [7]; 2) a solution for guard evaluation and

synchronization issues [8]; 3) an operational semantics [9]

which is independent of any target formalism. We now

propose additional contributions. We first extend our

interpretation semantics by: 1) generalizing the formal-

ization of UML 2.X SDs for covering more important

CFs (par and strict) as well as their composition and

their nesting, and 2) defining new rules for the generali-

zation of the previous ones for both the computation of

precedence relations between the events of UML 2.X

SD, and the solution for guard evaluation and synchro-

nization issues.

UML 2.X SD is a semi-formal language, and the

analysis, the expression and the verification of impor-

tant properties of the modeled system can be done

by the coupling with formal methods offering power-

ful tools dedicated to these goals. Event-B [10, 11] is a

well-known formal method, offering a wide range of

verification tools (theorem provers and model check-

ers). The second contribution of this paper consists in

proposing a transformational semantics for UML 2.X

SD with nested guarded CFs, modeling the behaviors of

distributed systems, in Event-B [10] formalism. Indeed,

Event-B, as a modeling method for discrete transition

systems, allows to capture intuitively the proposed in-

terpretation semantics of SDs, since it uses the set the-

ory as modeling notation. Also, it offers an available

toolset that enables us to verify trace acceptance, well-

formedness properties of SDs, to validate properties ex-

pressed in LTL[e] 2○ (standing for linear temporal logic),

as well as the animation and simulation of the behavior

of the SD. Finally, Event-B embeds a fundamental con-

cept: refinement allowing the stepwise development of

complex systems, which deserves for our ongoing work

that is the checking of the correctness of refinement re-

lation between SDs.

The paper is organized as follows. Section 2 intro-

duces the main concepts related to this work. Section 3

discusses related work and presents the key features of

our approach. Section 4 introduces the interaction lan-

guage, its behavior described by event structure and

the computation of partial order relation. Section 5 de-

scribes our transformational semantics in Event-B. Sec-

tion 6 presents the verification and validation of UML

2.X SDs and with Rodin/ProB frameworks [11, 12]. Fi-

nally, Section 7 provides concluding remarks and per-

spectives.

2 Preliminaries

2.1 Brief Introduction to Event-B

Event-B [10] is a formal method used in numerous

industry projects and in academia [13]. It is dedicated

to the modeling of critical systems. The basis for the

mathematical language in Event-B is the first-order

logic and the typed set theory. The set-theoretical no-

tation of Event-B defines different kinds of relations

and functions enhanced by different properties. The

Event-B method is supported by the Rodin toolkit [11]

which comprises editors, theorem provers, animators

2○https://prob.hhu.de/w/index.php?title=LTL Model Checking, Jan. 2022.

6 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

and model checkers (ProB) [12]. In addition, Event-B

provides flexible refinement techniques.

Table 1 illustrates some Event-B notations, where S

and T are sets, and R is a relation. Intuitively, a binary

relation from S to T is a set of mapping (x, y) where

x ∈ S and y ∈ T , a many-to-many mapping. A partial

function is a relation where each element of the domain

is related at most to a unique element in the range,

which is a many-to-one mapping. A total function is a

partial function from S to T where each element x in S

has exactly one mapping in the range. A surjection is

a function from S to T which maps all elements in T .

A bijection is a surjection and one-to-one mapping.

Table 1. Examples of Event-B Notations

Name Notation

Cartesian product of sets S and T S × T
Power set of set S P(S)

Binary relation symbol ↔
Bijective function symbol ��

Total surjection symbol �

Irreflexive transitive closure of R R+

Partial function symbol 7→
Range of relation R ran(R)

2.2 UML 2.X Sequence Diagrams

In the OMG specification, SD is introduced as the

most common kind of interaction. The syntax of SD is

presented by graphical notations and by a metamodel.

Fig.1 illustrates an example of an interaction. The

lifelines represent the individual participants in the

interaction, which interact with messages. For each

message m, there are two events !m and ?m that de-

note the send and the receive events of the message m

respectively. CFs allow the modeling of sophisticated

interactions. We consider the following CFs, seq, alt,

opt, par, strict, and loop. Table 2 summarizes the

description of each of them according to the standard

semantics. The constituent CFs can be nested, and the

weak sequencing 3○ operator is the default composi-

tion operator for CFs.

2.3 Motivating Example

Fig.2 illustrates a concurrent access by an adminis-

trator and a client to an application server. The system

is composed of the components Admin, Client, Applica-

tion Server, Master Database Server, Database Server1

and Database Server2. The administrator can connect

to perform some specific administrative tasks. In this

SD, the administrator requests to the application server

the list of the queries, and then the server transmits

this request to the master database server. This lat-

ter returns the list of the queries to the application

server, which displays the list to the administrator. At

the same time, a client can connect to the application

server through a specific profile, and then it inputs a

query. The application server processes the query; two

alternatives are possible: if the query is success fully

found, the server transmits the result to the client; oth-

erwise it displays the message “not found”. The server

can do at most two searches for a query. The server can

iterate the processing of the query at most three times.

Interaction-
Constraint

Interaction-
OperatorKind

Combined
Fragment (CF)

Interaction-
Operand

Lifeline

Message

Occurence-
Specification
(send)

Occurence-
Specification
(receive)

Nested CF

alt

loop (2)

[g]

[g]

m

m

L L L L

m

m

m

Fig.1. Example of sequence diagram.

3○See Table 2 for the definition of weak sequencing.

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 7

Table 2. Description of CFs According to OMG Standard 4○

CF Description

seq seq CF represents a weak sequencing between the behaviors of the operands. Weak sequencing is defined
by the set of traces with these properties: 1) the ordering of OccurrenceSpecifications (occurrences of the
events) within each of the operands is maintained in the result, 2) OccurrenceSpecifications on different
lifelines from different operands may come in any order, and 3) OccurrenceSpecifications on the same lifeline
from different operands are ordered such that an OccurrenceSpecification of the first operand comes before
that of the second operand.

alt alt CF represents a choice of behavior. At most one of the operands will be chosen.

opt opt CF permits to model a choice of behaviors where either the (unique) operand happens or nothing hap-
pens. An opt CF is semantically equivalent to an alt CF with two operands such that the first one has a
non-empty content and the second one is empty.

par par CF represents a parallel merge between the behaviors of the operands. The occurrence of the events of
the different operands can be interleaved in any way as long as the ordering imposed by each operand as
such is preserved.

loop loop CF permits to model an iterative behavior. The loop operand will be repeated a number of times.
The guard may include a lower (min) and an upper number (max) of iterations of the loop as well as a
boolean expression. The semantics is such that a loop will iterate at least the minimum number of times
(given by the iteration expression in the guard) and at most the maximum number of times. After the
minimum number of iterations are executed and the boolean expression is False, the loop will terminate.

strict strict CF designates a strict sequencing between the behaviors of the operands. The semantics of strict
sequencing defines a strict ordering of the operands.

list_queries

ClientAdmin
Application

Server
Master

Database Server
Database
Server 1

Database
Server 2

Par connect1

return_list

view_list

display_list

connect

loop (0, 2)

loop (0, 3)

[G]

[G]

[G]

[G]

input_query

seek_query
seek_query1

seek_query2

res_query1

res_query2

OP

OP

OP

OP

OP

OP

OP

result_query

transmit_result

not_found

display_not_found

alt

Fig.2. SD of interaction with concurrent access to a database.

3 Discussion and Related Work

Subsection 3.1 presents and discusses the informal

semantics defined in the OMG specification. In Subsec-

tion 3.2, we discuss some approaches supporting algo-

rithms and tools for the verification of SDs. In Subsec-

tion 3.3, we present the key features of our approach.

3.1 Interpretation in Standard Semantics

The UML 2.X SDs standard definitions and seman-

tics are informal and ambiguous. This leads to several

4○OMG Unified Modeling Language, Version 2.5.1, 2017. https://www.omg.org/spec/UML/2.5.1/PDF, Oct. 2021.

8 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

subtle choices in the interpretation of the language con-

structs. These variations points are intentional to adapt

its use according to the application field. The standard

proposes trace-based semantics for SDs, where the trace

is defined as a set of occurrence specifications. The

trace semantics is a very intuitive semantics; however it

leads to exponential blow-up of the representation that

is accentuated in the context of distributed systems.

Interpretation of Basic Interactions. The standard

semantics of UML 2.X SDs interprets the order of

events on each lifeline by reading the diagram from

top to bottom. In context of distributed systems, the

objects are independent, the communication is asyn-

chronous and in the general model of communication,

the reception of messages is not ordered. Then, im-

posing a total order of the events in each lifeline leads

to the loss of some possible valid behaviors that causes

the emergence of unspecified behaviors in the imple-

mentation. In Fig.1, we consider messages m1, m2 and

m3 according to the rules of the standard semantics:

the events !m1, !m2 and !m3 on L4, L3 and L1 life-

lines respectively are not ordered; even if L4, L3 and

L1 are independent, on the L2 lifeline the events ?m1,

?m2 and ?m3 are ordered. The constraint of the total

ordering of the events on each lifeline can be relaxed

by the use of the coregion operator, which is applied

on one lifeline, and permits an implicit parallelism 5○.

However, in some cases (see Fig.3), the coregion ope-

rator cannot solve the issue of the total ordering of the

events along a lifeline, and additional messages must

be added to restore some precedence relations between

some events [2].

As a result we have an overcrowding of the graphical

representation due to the overlapping between the ex-

isting combined fragments (CFs) and the added core-

gion operator. This leads to difficulties for the delimi-

tation of the beginning and the end of each coregion

operator, especially if we have several nested CFs.

Combined Fragments. We focus especially on a sub-

category of CFs: alt, opt, loop, seq, strict and

par, allowing to model alternative, optional, iterative,

sequential, strict and parallel behaviors respectively;

the first four CFs permit a compact syntactic represen-

tation of behaviors, and the last ones alter the order-

ings of occurrences of the events [1]. The standard does

not specify synchronization points at the entering and

exiting of a CF. To illustrate this, let us consider the

example in Fig.1. Message m1 is located above the alt

fragment, but there is no precedence relation between

the event !m1 and the events !m2 and !m3: !m1 can oc-

cur independently of events !m2 and !m3. The standard

semantics is “compositional in the sense that the se-

mantics of an interaction is mechanically built from the

semantics of its constituent interaction fragments. The

constituent interaction fragments are ordered and com-

bined by the weak sequencing operator.” The loop

operator is defined as a recursive application of the seq

operator, and then there is weak sequencing between

the iterations of a loop (see Fig.4). In alt CF, at most

one of the operands will be non-deterministically chosen

from its operands that have implicit (or explicit) true

guards; then an alt operator offers more expressive

power than an if operator in programming languages.

Multiple CFs in an SD and their nesting further compli-

cate the determination of precedence relations between

events. In the standard semantics, an arbitrary nest-

ing of CFs is allowed. Nevertheless, the combination of

some kinds of CFs is very complex, and it may lead to

hidden issues for some combinations.

Interaction Constraints (Guards). It may be con-

tained in some operands and influence the computation

According to the standard semantics,

on L lifeline the events ?m1 , !m2, ?m3, ?m4

are ordered. If the lifelines L1, L2, L3 , L4 are

independent, the events ?m1, !m2,?m3, ?m4

are not ordered. However, the message m2

can be sent only after the reception of the

message m1. The addition of the coregion

permits to relax the ordering of the events

on L1 lifeline. To restore the order of the

reception of m1 and the sending of m2 we

should add a message

L

m

m

m

m

L L L

Fig.3. Basic SD with the addition of coregion.

5○The covered events by the coregion operator occur in any order.

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 9

L L L L L L

m

m m

m

m

m

1st Iteration

2nd Iteration

loop (2)

Fig.4. Processing of an SD with loop CF. With the weak sequencing, we can have: the sending events of the messages m1 and m2
of all the iterations can occur, and then the receiving events come after. With the strict sequencing, all the sending events and all the
receiving events of the first iteration must occur, and then the events of the second iteration can occur.

of partial order relations between events. For instance

in the alt CF composed of several guarded operands,

all guards can be evaluated to false; hence the CF is

omitted. Moreover we can have one, or several guards

evaluated to true. The unique mention in the standard

semantics of guard is the following: “guard has to be

evaluated before the occurrence of the first event of each

operand”. This is problematic, since the first event of

an operand has not been clearly defined. Moreover,

guards can be placed on different lifelines, and several

guards can be true simultaneously. In Fig.1, the first

operand of alt CF has two possible first events: !m2 on

the L3 lifeline and !m3 on the L1 lifeline. The second

operand has one first event: !m4 on the L2 lifeline. This

illustrates a non-local choice among the L1, L2 and L3

lifelines. Another aspect that should be considered af-

ter the guard evaluation, is the synchronization issue

between the lifelines. We should deal with the synchro-

nization correctly to preserve the standard meaning of

the alt CF and the loop CF. For the alt CF and the

loop CF, the synchronization must be ensured between

the lifelines respectively, once the choice of an operand

among several potential operands is made, and once

the guard changes its value during the iterations and

becomes false.

Processing the Diagram. To master the complexity

of partial order’s computation between the events of

the SDs with CFs, the UML semantics adopts a pre-

processing that consists in transforming the SD with

CF into basics SD by flattening the CF. The partial

order between events of each construct is computed in-

dependently, and then they are composed by the weak

sequencing operator. Note that usually, the interme-

diate representation of SDs is not given in detail, which

introduces many possible variations of interpretation.

Furthermore, with this, pre-processing the benefits of

the compact syntactic graphical representation is lost.

3.2 Reviews of Existing Semantics

In the literature, there are a considerable number

of research studies intending to verify UML diagrams.

Existing methods dealing with the sequence diagrams

focused on various purposes: the checking of properties,

consistency of multi-view models (MVM), containment

and refinement relationship among sequence diagrams,

trace acceptance, etc. Table 3 summarizes some ex-

isting studies offering tools allowing the verification of

SDs. We distinguish tools based on trace analysis and

model checking tools (such as SPIN, nuSMV, CADP,

and so on). All the cited approaches in Table 3 con-

sider basic interactions based on the standard inter-

pretation (seq). The third column (sem.) indicates

the proposed semantics by authors, and we use the

acronyms MT, Op. and Den. to indicate Model Trans-

formation, Operational and Denotational respectively.

The “SD Concepts” column indicates the SD concepts

that we cover: alt, loop, strict, par, guard and

nesting. Xindicates that the feature is covered by the

work and × indicates it is not. Otherwise, the fea-

ture is covered with some restrictions: Det. indicates

determinist choice for an alt CF, FL for finite loop

(i.e., without guard), SL for strict sequencing between

loop iterations, Const. indicates the guard is defined

as constraint (nonstandard guard definition), Global

for global evaluation of guards, SP for synchronization

point between CFs, and WR for with restriction, i.e.,

not all nesting of CFs is allowed. Most of the existing

formalizations are incomplete such that they consider

10 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

Table 3. Comparison of Approaches Supporting the Verification of Sequence Diagram

Reference Sem. SD Concepts Tool Purpose Formalism

alt loop strict par Guard Nesting

Trace Lund Op. X FL X X Const. X Escalator Refinement Maude

analysis (2007) [4] Test

André et al. MT Det. × × X X SP X Test TERMOS

(2017) [5]

Mahe et al. Op. X X X X × X Python Tr. acceptance Set of

(2020) [6] Den. script rules

Model Rasch and Wehrheim MT × × × × X × FDR Consistency CSP

checking (2005) [14] of MVM

Knapp and Wuttle MT X X X X Global WR HUGO/RT V. Properties Automata

(2007) [15]

Lima et al. MT Det. FL × X Global X SPIN V. Properties PROMELA

(2009) [16] Simulation LTL

Cunha et al. MT × × × × × × MCKit & V. Properties PN

(2011) [17] nuSMV CTL

Zhu et al. MT X SL × X X X Algorithms V. Properties TTS4SDT

(2012) [18]

Miyazaki et al. MT X X X X × × LTSA V. Properties FSP

(2012) [19] Refinement LTL

Remenska et al. MT × × × × × × mCRL2 V. Properties µ-calculus

(2014) [20] LTL

Muram et al. MT X X X X Global X NuSMV Containment SMV

(2019) [21] LTL

Lima et al. MT Det. SL X X Global X FDR3 Consistency CML

(2016) [22] of MVM

Pan et al. MT Det. X × × Global SP ISDChecker V. Properties IA

(2019) [23] SpaceEx

Chen et al. MT X X X X Global SP MyCCSL V. Properties CCSL

(2020) [24] Simulation

Ours MT X X X X X X ProB V. Properties Event-B

Tr. acceptance LTL

Animation

Simulation

Refinement

only the subset of CFs or make assumptions that depart

from the standard interpretation of sequence diagrams.

In the following, we categorize different choices taken

mainly by the approaches introduced in Table 3. In

particular, we discuss how these approaches dealt with

basic SDs and on the more popular CFs: alt, opt,

loop, seq, strict and par.

Semantics of SD. Several previous studies have pro-

posed approaches for applying model transformation

(MT) from UML SDs to formal formalisms such as

Integration Automata (IA) [23], Petri Nets (PN) [17],

COMPASS Modelling Language (CML) [22], Finite

State Processes (FSP) [19], Clock Constraint Specifi-

cation Language (CCSL) [24], Symbolic Model Lan-

guage (SMV) [21], Timed Transition System for SDT

(TTS4SDT) [18], Communicating Sequential Processes

(CSP) and Linear Temporal Logic (LTL) [21]. Although

these translations allow reusing advantageously the tar-

get formal formalism’s tools, relying on them to capture

semantics of SDs sometime leads to imposing restric-

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 11

tions of the SD interpretations and reasoning on foreign

concepts. There are a few approaches proposing tools

based on Operational (Op.) and Denotational (Den.)

semantics for SDs. These approaches offer a rather in-

teresting interpretation of SDs; however they propose

transformation rules from the proposed semantics into

the language of the target tools and they usually sup-

port a subset of the proposed semantics. Compared

with transformational semantics, these approaches are

based on more complicated process. In [4], the authors

defined, first, an operational semantics based on an exe-

cution system. Then, the operational semantics is im-

plemented by the use of rewriting rules in Maude that

implement the rules of both the execution system and

the projection system. In the Maude implementation,

the guards are not supported and some restrictions are

made for the loop operator. In [6], the authors pro-

posed denotational semantics that serves as mathemat-

ical foundation and operational semantics. A trace ana-

lysis tool is adapted from the Op. semantics.

Partial Order Relation Between Events. Most of

the existing approaches are based on the definitions of

the standard semantics for the computation of traces

that imposes the total ordering of the events on each

lifeline. Only few approaches propose a different par-

tial order relation between events to interpret SDs. For

example in [25], the authors showed that the partial

order relation between events depends on the consi-

dered architecture. Different partial orders defined are

visual order, enforced order (i.e., the order of the events

that the underlying architecture can guarantee to oc-

cur), and inferred order. In [26], the authors proposed

causal semantics for basic SDs modeling behaviors of

distributed systems. They defined rules for the com-

putation of partial order relations taking into account

the independence between the components (modeled by

lifelines) involved in the interactions. Even if in UML

we can alter the orderings of occurrences of the events

by the use of the coregion or par constructs, adopt-

ing a reading semantics customized with respect to the

type of the studied systems allows to alleviate the rep-

resentation of the diagram, and it remains easier and

more intuitive for the specifier.

Combined Fragments. Introducing CFs disturbs the

interpretation of the SDs and complicates the compu-

tation of the partial order between the events. To ease

the processing of the SDs with CFs, some of the existing

approaches do not properly deal with some CFs. An-

other challenge with CFs is the consideration of nesting

CFs. Indeed, the combination of some kinds of CFs is

very complex, and it may lead to hidden issues. To

avoid ambiguous cases resulting from nesting CFs, the

existing studies [5, 15,23,24] adopt some assumptions, for

instance by limiting the depth of nesting CFs, and by

considering the combination of a small number of CFs.

Some of them do not consider CFs and deal only with

basic SDs [14, 17].

Due to the weak sequencing, events that do not

belong to the same CF can occur independently and

they overlap. This generates non-intuitive behaviors.

To avoid this issue many approaches propose to re-

strict weak sequencing. On the one hand, this restric-

tion increases causal dependency between the events,

which leads to the loss of some possible traces; on the

other hand it considerably limits the expressive power

of the language. Other approaches do not support the

composition or nesting of CFs. In [24], the authors

defined transformation rules for formally representing

constructs of SDs in the CCSL constraints. They did

not specify how the constructs of SDs can be composed

or nested. They specify synchronization points for alt,

and loop CFs. In [20], the authors presented a pro-

perty assistant wizard (PASS) as part of a UML-based

front-end to the mCRL2 toolset: the tool supports µ-

calculus, which is an event-based formalism, making it

a good match for SDs; however the authors had not for-

mally given the rules of this matching. The approach

proposed in [19] integrates multiple SDs using hMSC

(high-level Message Sequence Chart) into a SD. Then,

the diagram is translated into Finite State Processes

(FSP) representation to support model checking with

the Labeled Transition System Analyzer (LTSA) tool.

The authors did not give the interpretation to the com-

position or nesting of CFs. The translation of a CF

consists in defining actions at its beginning and end.

Some approaches adopt a non-standard and restric-

tive interpretation that forces the lifelines to synchro-

nize at decision points of alt, opt and loop CFs.

In [23], the authors considered only three CFs, which

are loop, alt and opt. They enforced strict sequenc-

ing on the fragments and they imposed that a fragment

covers all lifelines. Hence, when the execution control of

flow enters a fragment, all lifelines enter the fragment.

In [5], the authors interpreted the entering and exiting

of a CF as a synchronization point for the participat-

ing lifelines. In [22], the authors proposed translation

rules that are recursively applied (top-down) into the

COMPASS Modelling Language (CML). They trans-

lated CFs by imposing the synchronization point on

each CF. In [21], the authors used the model checker

12 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

NuSMV to verify the containment relationship between

SDs. They translated both high-level and low-level SDs

into temporal logic based constraints (LTL) and sym-

bolic model language (SMV) respectively. They de-

fined the alt operator as an if-then-else statement, and

they imposed a strict sequencing between the iterations

of loop CFs, and restricted the use of weak sequenc-

ing loops to contain only a basic interaction. In [15],

the authors restricted the loop CF to contain only a

basic interaction and they proposed a new construct

(sloop) that considers strict sequencing of loop itera-

tions. In [18, 22], strict sequencing is used between the

successive iterations of loop.

Interaction Constraints. In the literature, the guard

evaluation issue is handled in different ways [1]. Simi-

larly, to the guard evaluation, the synchronization is-

sue is addressed in several ways by existing studies

that adopt sometimes some restrictions which limit the

expressive power of these CFs. For instance in some

approaches [3, 6, 19], guards are not explicitly evaluated.

In [15, 16, 21–23], the guard is evaluated globally. In

[22], a guard is evaluated by all lifelines. This approach

can raise an issue if a guard is evaluated at different

times. In TERMOS [5], the authors imposed a global

time point when all participating lifelines evaluate the

guards and choose one alternative (this will be repre-

sented by a common transition in the formal semantics).

Moreover, only a deterministic form of guarded choice

is allowed (similar to an if-then-else construct). In [16],

the guard variable is globally declared to enforce all life-

lines to get the same decision at the choice point. The

loop CF works only with a fixed number of repetitions.

In [4], resolving operators (e.g., choosing the branch of

an alt) are considered by silent events. Furthermore,

rules and special events are defined to handle guarded

choices. Guarded choices are defined as special appli-

cations of the local constraint construct (i.e., local to a

lifeline); thus a trace with a false guard is invalid. The

loop is considered by flattening it recursively with the

seq operator and a counter is used and decreased by 1

at each iteration.

3.3 Key Features of Our Approach

Our approach brings together two semantics for

UML 2.X SDs. Indeed we propose an appropriate se-

mantics of interpretation for UML 2.X SDs with nested

guarded CFs allowing the computation of partial or-

der relations. Based on this semantics, we propose a

transformational semantics, into Event-B [10].

The main advantage of this approach compared with

existing approaches in the literature to formal seman-

tics for UML, is two-fold. First, the computation of

partial order relations between events induces a weaker

scheduling constraints, and supports SDs with guarded

nested CF; it results in more expressive SDs, as each

SD describes a larger number of acceptable behaviors.

Second, the transformational semantics allows us to en-

able several kinds of analysis and verification on SDs

including simulation, trace acceptance, verification of

properties, verification of refinement relation between

SDs, and so on. Indeed, with the Event-B tools Rodin

and ProB [12], we support different types of the SD veri-

fication while existing approaches allow the verification

of one or two types.

Computation of Causal Relations. We extend and

generalize our previous work [7], where we introduced a

new formal definition of UML 2.X SD based on set the-

ory. As interpretation semantics, we have considered a

kind of existing semantics named causal semantics. It

was proposed by [26] for basic SDs modeling behaviors

of distributed systems. Its rules, permitting the com-

putation of partial order relation, take into account the

independence of the components involved in the inter-

actions. This high expressive power facilitates the task

of the designer since a great number of cases can be

described, and it prevents the issue of the emergence of

unspecified behaviors in the implementation. The rules

of causal semantics for basic SDs, as defined in [26] are:

1) synchronization relationship <Sync ensures that each

message m is received only if it was previously sent; 2)

reception-emission relationship <RE ensures that re-

ceiving a message causes the sending of the message

that is directly consecutive to it; 3) emission-emission

relationship <EE guarantees that if two messages are

sent by the same lifeline, their sending events are or-

dered; 4) reception-reception relationship <RR ensures

that in the case where two messages sent by a lifeline l

are addressed to the same lifeline l′: if they are emitted

in this order by l, they are treated in the same order

by l′. Then, the causal order relation <caus is defined

as follows: <caus = <Sync ∪ <RE ∪ <EE ∪ <RR.

The event occurrence depends on the partial order re-

lationship <caus. In Fig.2, we consider the reception of

the messages res query1 and the reception of the mes-

sage res query2 on the Master Database Server lifeline,

according to the definitions of the standard semantics

these events are ordered; however in the considered se-

mantics they are not.

Guard Handling. We extend our previous work [9]

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 13

to deal with guards. Fictitious events (τ events) are

used to evaluate guards as well as to ensure the syn-

chronization between the lifelines that are covered by

the considered operands. Our approach is appropriate

in the context of SD modeling behaviors of the dis-

tributed system, since the components of distributed

systems are independent and some special events are

needed to synchronize them. We propose an approach

for the guard evaluation that is faithful with the stan-

dard semantics. For each guarded operand of a CF (for

instance Alt or loop) we associate a positive fictitious

event when the guard is evaluated to True, and a neg-

ative fictitious event when guard is evaluated to False.

Each fictitious event belongs to the same lifeline of the

first event of the considered operand; it is placed above

the first event. The guard of an operand is evaluated

one time by the fictitious event. For the SD in Fig.2, we

introduce two fictitious events for each guarded operand

of the set {OP21, OP31, OP41, OP42}.
Transformational Semantics in Event-B. The main

purpose of the definition of formal semantics is to im-

plement it and automate the analysis and the verifica-

tion process. The transformational semantics is more

simple to implement since the semantics is defined with

the input language of used tools. Our transformational

semantics is based on Event-B. The Event-B method

is dedicated to describing event-driven reactive sys-

tems; it allows us to describe intuitively interactions.

We take advantage of the Event-B method refinement,

which permits to support refinement between SDs. The

Event-B method and its tools support (Rodin/ProB)

are used to specify, animate, verify and simulate our

semantics.

4 Formalization of Sequence Diagram

The event-based semantics of an SD consists in ex-

pressing and ordering all the events of this SD.

The events are associated with messages exchanged

between the components interacting in the SD. For each

message of the SD, we associate a sending and a receiv-

ing event. Moreover, we consider fictitious events that

are required for guard handling and synchronization be-

tween lifelines. Our semantics is based on the causal

relationships allowing the computation of partial order

relations between events of the SD. In Subsection 4.1,

we introduce the formal definition for UML 2.X SDs. In

Subsection 4.2, we introduce the event-based semantics

of SD as labeled transition systems (LTS). In Subsec-

tion 4.3, we define the rules for computing the causal

relationships.

4.1 Interaction Language

In this subsection, we propose an abstraction of SD

with a nested CF in the form of tree, and then we give

formal definitions based on set theory and tree struc-

ture. Moreover, we have defined different functions and

relations that allow the navigation in this structure and

the determination, straightforwardly, of the required re-

lationships between the operands. We consider a subset

of SDs containing CFs of control-flow alt, opt, loop,

seq, par and strict CF. They can be nested or se-

quential. We assume that the operands of the CF do

not overlap, but can be nested. Our approach supports

multiple nesting levels of fragments. The UML stan-

dard defines the graphical notation of SDs and the ab-

stract syntax of the UML standard. We introduce for-

mal definition for SDs. It is suited as basis for defining

semantics, and it is abstract and contains only informa-

tion required for the semantics and the hypotheses on

the considered SDs. We use the same set theory nota-

tion as that of the Event-B method. We introduce the

following definition for SDs.

Definition 1 (Sequence Diagram). A sequence di-

agram SD is a tuple
〈
L,M,<SD,L, OP,F, tree OP

〉
,

where:

• L is a non-empty set of lifelines,

• M is a non-empty set of asynchronous messages,

• <SD,L =
⋃
li∈L

<SD,li is the union of the partial

order relation between messages on each lifeline li,

• OP is a set of operands,

• F is the set of combined fragments, and

• tree OP is a partial function that allows to struc-

ture the SD in the form of a tree of operands.

4.1.1 Operands and Combined Fragments

The general definitions of operands and combined

fragments are given as follows.

Definition 2 (Operand). We define a set of

operands OPi in a CF Fi as:

OPi

= {OPij={1..k} | OPij =
〈
guardij , weightij ,M Dij

〉
},

where k is the number of operands in the CF Fi, guardij
is the guard of the operand OPij, weightij is the weight

of the operand OPij, and M Dij is the messages that

are directly contained in the operand OPij.

Each operand in an SD has a weight. For instance,

each operand of seq, alt, opt, par or strict CF has

a weight equal to 1; an operand of a loop CF has a

14 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

weight equal to a value of the maximum number of it-

erations of the considered loop CF. For an operand of

alt CF, we reinforce the guard guardij , by adding the

constraint that none of the other operands is chosen.

Definition 3 (Combined Fragments). We define a

set of combined fragments, F = {F1, F2, ..., Fn} is the

set of n combined fragments, Fi =
〈
OPi, operatori, Li

〉
,

where OPi is a set of operands, operatori is an ope-

rator, and Li is the set of lifelines that are covered

by the combined fragment. The operator operatori is

one of the operators seq, alt, opt, par, strict, and

loop.

4.1.2 Abstract Structure for Sequence Diagrams

The tree structure is well-suited to capture the

nested structure of SDs. A non-empty tree is a root

node connected to 0 or more sub-trees. The descen-

dants of a node n are all nodes reached from n to the

leaf nodes. A path is a sequence of nodes, where there

is a unique edge from one node to another. The path

can be only downward and it connects a node with a de-

scendant. The length of a path is the number of edges

in the path. The depth of a node n is the length of the

path from the root to node n. The ancestors of a node

n are all nodes found on the path from the root to node

n.

We associate a label to each operand. Two operands

with the same first part of the index (prefix i) belong

to the same combined fragment; for instance, in Fig.2,

OP41 and OP42 belong to the same alt CF. The whole

SD is transformed to a root operand that we note OP00;

the set OP is defined as (
⋃

i={1..n}
OPi)∪{OP00}, where

n is the number of CFs. Fig.5 illustrates the associated

tree for the SD in Fig.2.

We define the tree structure for SD operands as

follows [10, 27].

Definition 4 (Tree Structure for SD Operands).

The tree structure related to an SD is defined by the

root operand OP00 and the total function tree OP

mapped from all operands except OP00 to their parent

operand. The function tree OP satisfies these prop-

erties: acyclic, non-reflexive and connectivity (i.e., all

operands are connected to the root). Formally, the tree

structure is defined as:
OP00 ∈ OP,
tree OP ∈ OP \ {OP00} → OP,

(tree OP)+ ∩ id(OP) = 0/,

(OP \ {OP00}) ⊆ ((tree OP)+)−1[{OP00}].

The third line of the formal definition expresses the

acyclic and non-reflexive properties, since the intersec-

tion between the transitive closure of the tree OP func-

tion and the identity function is an empty set, and

thus there are no loops in the tree structure. The

last line guarantees the connectivity property, and since

((tree OP)+)−1[{OP00}] gives all operands connected

to the root operand OP00, then all operands except the

root are connected to the root. We consider the follow-

ing functions.

• anc gives a set of ancestor operands.{
anc : OP → P(OP),

anc(X) = tree OP+(X).

• LCA is a function that gives the first ancestor in

common for two operands:

LCA : (OP ×OP)→ OP,

LCA(X,Y) = X, if X = Y or X ∈ anc(Y),

LCA(X,Y) = Y, if Y ∈ anc(X),

LCA(X,Y) = LCA(tree OP (X), tree OP (Y)),

otherwise.

• weight is a function that gives the weight of each

operand: weight : OP → NAT+. For example in Fig.2

()

() ()

()()

() ()

T

T T

Fig.5. Tree associated with the SD in Fig.2. T: true.

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 15

weight(OP12) = 1 and weight(OP31) = 3. We over-

load the function weight to associate the weight of the

path between two operands X and Y , where Y is a

descendant of X.

weight : (OP ×OP)→ NAT+,

weight(X,Y) = 1, if X = Y,

weight(X,Y) = weight(Y)×
weight(X, tree OP (Y)),

if Y ∈ anc(X).

For example in Fig.2 weight(OP12, OP42) = 3.

4.2 Semantics of Sequence Diagrams

The semantics of SDs is centered on the notion of

events. First, we define the set of events associated with

an SD in Subsection 4.2.1, and the different states of

these events in Subsection 4.2.2. Then, we introduce

the event-based semantics of SDs as LTS in Subsec-

tion 4.2.3.

4.2.1 Basic Definitions

Let EV TG be the set of events associated with an

SD, E s = {!m | m ∈ M} and E r = {?m | m ∈ M}
be the set of sending events and the set of receiving

events respectively. We consider EV T = E s ∪ E r a

set of ordinary events. The fictitious events deal with

the guard evaluation, and they ensure the synchroniza-

tion between the lifelines. The fictitious events give

us a high flexibility in defining execution strategies of

the events, and defining a generic shape for the normal

events of the SD. We consider Fic a set of the fictitious

events. For each guarded operand, we define fictitious

events. For each first event of the guarded operand X,

we define a positive fictitious event τ+X and a negative

fictitious event τ−X associated with the guard evalua-

tion True and False respectively. To simplify the for-

malization afterward, we assume that each non-empty

guarded operand of a CF has only one first event. We

consider EV TG = EV T ∪Fic. In the following, we de-

fine some sets and functions that are used in the sequel.

• For a set of messages M we define two bijective

functions. F s : E s��M that associates for each send-

ing event one message, and F r : E r��M that asso-

ciates for each receiving event one message.

• F l : EV TG � L is a total surjective function

that gives to each event one lifeline. For normal events,

the associated lifeline is the sender or the receiver of

the considered message. For fictitious events, the asso-

ciated lifeline is the lifeline that executes the fictitious

event, i.e., the lifeline of the first event of the considered

operand.

• F D gives the operand that directly contains an

event: F D : EV TG → OP .

• F G gives all the events that are contained in

an operand including those contained in its nested

operands:{
F G : OP → P(EV T),

F G(X) = F D−1[((tree OP)+)−1[{X}]].

• The sibling binary relation relates two events, if

they belong to distinct operands (directly or nested) of

the same alt, par or strict CF. For example in Fig.2,

if the operands OP41 and OP42 belong to the same CF

alt, then they are siblings. The operands OP11 and

OP12 belong to the same CF par, and then they are

siblings.

We overload the relation <SD,L to support the par-

tial order relation on each lifeline li between events.

The relation <SD,l includes only the pairs of events

that are directly consecutive with regard to the lifeline

l; it is a minimal acyclic relation that contains no tran-

sitive implicates. By considering the transitive closure

of the local order inside a lifeline l <+
SD,l, we obtain all

the visual precedence relation between events with re-

gard to the lifeline l. We overload the function weight

that permits to associate with each event its maximal

number of occurrence:
weight : EV TG → NAT+,

weight(e) = weight(OP00, X),

where X = F D(e).

4.2.2 Event States

According to a run, an event which belongs to a ba-

sic SD can have two obvious states: occurred or not yet

occurred. However, these basic states are not enough

to express the state of an event in an SD with com-

plex structures (nested CF). Indeed, each event that

belongs to such an SD can be: either not yet oc-

curred, or occurred or ignored once or several times,

or consumed. The variable state is defined as follows:

state : EV T → NAT . The initial value of the state of

each event is its weight that corresponds to its maximal

value of occurrence in each run. The state of an event

is decreased whenever it was occurred or ignored. To

describe the state of an event e, we use the following

vocabulary:

• not yet occurred: when state(e) = weight(e),

16 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

• occurred: if event e is executed or ignored once or

several times: when 0 < state(e) < weight(e),

• consumed: when state(e) = 0.

4.2.3 Event-Based Semantics of Sequence Diagrams

Definition 5. The semantics of the sequence dia-

gram SD is defined as an LTS: 〈EV TG, S, s0, sF , C,

<causG,→〉, where:

• EV TG is a set of events associated with SD,

• S is a set of states,

• s0 is the initial state, when all the events are not

yet occurred,

• sF is a final state, when all the events are con-

sumed: state = EV TG × {0},
• C is a set of constraints,

• <causG⊆ EV TG ↔ EV TG denotes the causality

relation between events computed from SD, and

• →⊆ S ×C ×EV TG × S is the transition relation

corresponding to the occurrence of the events.

The events represent incidents that cause SDs to

transition from one state to another. The transition

(s, [g]evt, s′) can be fired from state s if the following

trigger conditions (TC) are checked: 1) the preceding

events of the event evt are occurred (executed or ig-

nored) (TC1), 2) the event evt is not yet consumed

(TC2), and 3) the guard constraint [g] is True (TC3).

When transitions between states occur, some updating

actions are performed as follows: 1) updating the state

of the event evt (EE1), and 2) others variable updating

required to deal with the synchronization issue (EE2).

The computation of the causality relation <causG is pre-

sented in Subsection 4.3. The Event-based semantics

of SDs expressed by LTS is modeled in Event-B (Sec-

tion 5), where the formal definitions of the conditions

TC1, TC2 and TC3 as well as the updating actions EE1

and EE2 are expanded in Subsection 5.2.

4.3 Computation of Causal Relations

In this subsection, we propose to generalize and to

extend the causal relationship <caus firstly introduced

in [26] for basic SDs, and extended in our previous

work [7] dealing with SDs with some CFs (seq, alt,

loop, seq), to deal with new CFs (par and strict).

4.3.1 Global Causal Relation

The causal relation <caus is the union of the prece-

dence relations (that we also call causal relations) be-

tween events of an SD. For a given event, its preceding

events are the set of events whose execution enables its

execution.

The causal relation <caus is redefined as:

<caus = <Sync ∪ <RE ∪ <EE ∪ <RR ∪
<Hcaus ∪ <strict .

The causal relations <Sync, <RE , <EE and <RR al-

low to compute the precedence relations for each event

of an SD. The synchronization relationship (<Sync) is

unchangeable. The relationships <EE , <RE (Subsec-

tion 4.3.2) and <RR (Subsection 4.3.3), are extended.

We define the new relations <Hcaus (Subsection 4.3.4)

and <strict (Subsection 4.3.5). In the next step, we

introduce the relation <τ induced by fictitious events.

The relation <τ permits to generate new precedence re-

lations that must be considered with relationship <caus.

Then, the global causal order relation is defined as fol-

lows: <causG = <caus ∪ <τ .

The relation <causG and all its subrelations are re-

flexive. The relation <causG expresses the causal de-

pendency between events. It includes preceding events

for each event: if we have e <causG e′, e′ is an imme-

diate preceding event of e; the transitive closure of the

global relation <+
causG provides all preceding events.

Note that some events in the relation <causG are

in conflict with each other (i.e., we have e1 <causG e′

and e2 <causG e′ where e1 and e2 are located in dis-

tinct operands of the same alt CF; hence they cannot

be executed in the same trace). We will see later that

this constraint will be ensured by the synchronization.

Indeed, for an event to be enabled, its preceding events

must be either executed or disabled.

The relation <causG − <Hcaus is an acyclic relation.

Indeed, the relation <Hcaus can contain a cycle depen-

dency between events, because in the relation <causG
we do not distinguish between events from different iter-

ations (of a loop CF) associated with the same sending

(resp. receiving) message. This will be considered, as

we will see later by using a counter variable (the weight

of the event) that decrements in each iteration.

We consider the function first that gives the first

event of each operand: first : OP → EV T . A first

event is an event that has no preceding events in the

considered operand:

first

= {(X, e′)|X ∈ OP ∧ e ∈ EV T ∧ e′ ∈ F G(X) ∧
(∀e)[e ∈ EV T ∧ e ∈ F G(X) ∧ (e, e′) /∈<+

caus]}.

4.3.2 Causal Relations <EE and <RE

To alleviate the presentation of the formalization

of the relations <EE and <RE , we introduce the re-

lation succ that relates two events that belong to the

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 17

same lifeline and they are successive. We admit be-

tween them, events that belong to an operand that can

be omitted (i.e., the events between successive events

do not belong to any ancestor operand of the operand

of the considered event), and receiving events.

The relation succ is defined as:

succ

= {(e, e′)|(e, e′) ∈ EV T 2 ∧
(∃l)[l ∈ L ∧ (e <+

SD,l e
′) ∧

(∀e′′)[(e <+
SD,l e

′′) ∧ (e′′ <+
SD,l e

′)⇒ e′′ ∈ Er ∨
F D(e′′) /∈ (anc(F D(e)) ∪ anc(F D(e′)))]]}.

The relationship <EE permits to order two sending

events, if they are successive and they are not siblings

operands:

<EE = {(e, e′)|(e, e′) ∈ E s2 ∧
(e, e′) /∈ sibling ∧ (e, e′) ∈ succ}.

The relationship <RE permits to order two events such

that the first one is a receiving event and the second

one is a sending event, and both of them satisfy the

conditions expressed in not sibling and succ relations.

The relationship <RE is defined as:

<RE = {(e, e′)|e ∈ E r ∧ e′ ∈ E s ∧
(e, e′) /∈ sibling ∧ (e, e′) ∈ succ}.

4.3.3 Causal Relation <RR

If the communication between distributed compo-

nents ensures a first in first out delivery order, then two

messages coming from the same lifeline to the same tar-

get lifeline are received in the same order of their emis-

sion. The relationship <RR permits to compute this

precedence relation:

<RR

= {(e, e′)|(e, e′) ∈ E r2 ∧ F l(e) = F l(e′) ∧
(∃e1)(∃e′1)[(e1, e

′
1) ∈ E s2 ∧ (e1 <

+
EE e′1) ∧

F r(e) = F s(e1) ∧ F r(e′) = F s(e′1)]}.

4.3.4 Causal Relation <Hcaus

The identification of precedence relationships in a

loop CF is rather fastidious. Indeed the events inside

a loop CF, from the second iteration, can have pre-

ceding events that can be located in the same loop CF

of the previous iterations. We call hidden precedence

relations <Hcaus, the relations between the events of

loop CF of the current iteration and the events of the

previous iterations. In order to compute the hidden

precedence relations loop operand named X, we pro-

pose the following steps (see the example in Fig.6): we

flatten the loop CF only once; we obtain an inter-

mediate sequence diagram SD’. In SD’, we rename the

operands as well as the events of the second iteration

with the same name as those of the preceding iteration

by labelling them with a single quote. We define the set

EV T ′ to represent the events of the next iteration and

we compute the causal relations <′RE , <′EE and <′RR
between EV T and EV T ′. We denote by <HcausX , the

hidden precedence relations of a given loop CF named

m
m

m'

m'
m'

SD SD'

m
mm

m

?m1

<causG

?m2

?m3 !m3

!m2

!m1 !m1'

!m2'

!m3'?m3'

?m2'

?m1'

loop (5)

L L L L L L

OP

Fig.6. Processing of an SD with a loop CF.

18 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

X and we give the following formalization.

<HcausX = {(e, e′)|(e, e′) ∈ (EV T × EV T ′) ∧
(e, e′) ∈ (<′RE ∪ <′EE ∪ <′RR)}.

In the case where we have several loop CFs that can

be sequenced or nested, we apply the same process-

ing by computing for each loop CF its precedence

relations; the entire hidden precedence relation is the

union of the hidden precedence relations of each loop

CF. We present in Fig.6 the sequence diagram SD1,

the sequence diagram SD1′ that represents the flat-

tening of the loop CF and the causal order relation

associated with SD1. For each iteration the order rela-

tion between events {(!m1,?m1), (!m2,?m2) (!m3,?m3)

(!m2,!m3)} must be respected and between the iter-

ations we compute this order relation <HcausOP11
=

{(?m3, !m1′), (!m3, !m2′)}.

4.3.5 Causal Relation <strict

There is no interleaving of the occurrence of the

events that belong to different operands of a strict CF.

The events of an intermediate operand can only occur

when all the events of the previous operand occurred.

There is no interleaving of the occurrence of the events

that belong to different operands of a strict CF. The

events of an intermediate operand can only occur when

all the events of the previous operand occurred. This

causality relationship is defined by the relation named

<strict: for each strict CF named CFi with a set of

operands OPi = {OPi1, ..., OPik}, we compute:

<stricti

= {(e, e′)|(∀j)[j ∈ [2, k] ∧
e ∈ F G(OPij−1) ∧ e′ = first(OPij)]}.

Then <strict is the union of all computed <stricti .

4.3.6 Relations for Fictitious Events

The insertion of fictitious events in the SD leads to

new precedence relations. In a guarded operand, the

two associated fictitious events have the same preced-

ing events and are inserted between the first event and

the preceding events of the first event. In a nested CF,

we assume that the guard evaluation of a child operand

should be made after that the evaluation of the parent

operand guard is True. These precedence relations are

computed from a relation that we denote <τ . The re-

lation <τ is defined as the union of the sub-relations

<τ1, <τ2 and <τ3 that are detailed in the following.

For an operand X, the fictitious events τ+X and τ−X
are located between the first event of the considered

operand and all its preceding events. Then, it inher-

its all the preceding events of the first event of OPij
operand. These new precedence relations are computed

in the relation <τ1:

<τ1 = {(e, e′)|e ∈ EV T ∧ e′ ∈ Fic ∧
(e <caus first(F D(e′)))}.

The fictitious events τ+X and τ−X become preceding

events of the first event of the operand X; this is com-

puted from <τ2 relation:

<τ2 = {(e, e′)|e ∈ Fic ∧ e′ ∈ EV T ∧
e′ = first(F D(e))}.

The fictitious events of the nested operand should be

run after the execution of the fictitious events of the

parent operand. This causality relationship is defined

by the relation named <τ3:

<τ3 = {(e, e′)|e ∈ Fic2 ∧
first(F D(e)) = first(F D(e′)) ∧
tree OP (F D(e′)) = F D(e)}.

From now, in Section 5 we define how the formal

definition of SDs together with their interpretation se-

mantics is encoded within Event-B.

5 Translation of SDs into Event-B

In this section, we translate UML 2.X sequence di-

agrams into Event-B specifications. The formal defini-

tion of an SD (Subsection 4.1) is captured in the con-

texts (Subsection 5.1); the behavior of an SD (Subsec-

tion 4.2) is captured in a machine (Subsection 5.2) by

means of variables whose values are modified by events.

Hence, we propose a generic architecture of the trans-

lation of any SD with nested CFs into Event-B speci-

fication, as depicted in Fig.7. For each SD, we define

three contexts and a machine. In the sequel, we detail

the contents of each component of the architecture.

Extends
Sees

Machine i

CTXi (Theorems)

VARIABLES

Events

CTXiP (Constants)

CTX (Constants)

Fig.7. Generic architecture of the translation.

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 19

5.1 Construction of the Contexts

Consider the following sequence diagram:

SD =
〈
L,M,<SD,L, OP, F, tree OP

〉
,

and its associated LTS〈
EV TG, S, s0, sF , C,<causG,→

〉
.

We translate the formal definition of the SD into con-

texts, in which we define the sets, the constants, the

axioms, as well as the precedence relations. Indeed, in

the first and the second context (CTX, CTXiP), we

express the concrete values of the components of the

considered SD (lifelines, messages, events, operands,

etc.) that are defined by sets and constants. An ex-

ample of the context CTXiP is given in Fig.8. The

contents of the context CTXi is unchanged for any en-

coded SD; this context contains the typing of constants

and their properties. The context CTXi is detailed in

Subsection 6.1. The context CTXiP extends the con-

text CTX and it is extended by the context CTXi.

The sets L, OP , M and EV T are translated as

carrier sets in CTX by LIFELINES, OPERANDS,

MSG and EV T respectively. Table 4 illustrates the

translation of each component of the SD formal defini-

tion, as well as the precedence relations, into constant

relations in CTXiP .

Fig.8. Context CTX1P with some axioms of the specification.

20 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

Table 4. Mapping Between Elements of an SD and Event-B
Encoding

SD Event-B

<SyncG causyncG

FCT r FCT EV T R

<Sync causync

<EE causEE

<causG causG

<EEG causEEG

<HcausG HcausG

<REG causREG

FCT s FCT EV T S

E r EV T R

E s EV T S

FCT l FCT l

<RE causRE

<Hcaus Hcaus

<τ1 causT1

<τ2 causT2

<τ3 causT3

Fig. 8 depicts the implementation of the context

CTX1P associated with the SD in Fig.2. In the context

CTX1P , the axioms axm10..axm15 express the com-

putation of the precedence relations <Sync, <RE , <EE ,

and hidden precedence relations <Hcaus. To facilitate

the computation of some precedence relations (Fig.8),

we define new sets: for instance, in axiom 10, to com-

pute relation causT1, we define in the axioms 7–9 two

new sets causT1EE, causT1RE and HCausT1. In

the axiom 13, we define the new set EV T FIRST that

is used for the computation of causEEG, causREG,

HcausG and causG precedence relations. In the axiom

19, we associate with each event its maximal number of

occurrence (its weight). In the axioms axm20..axm27,

we associate with each operand its events.

5.2 Construction of the Event-B Machine

The Event-B machine has a visibility on the con-

texts. It encapsulates state variables, invariant on them

and its initialization, and guarded events that describe

how and when the state should be updated. The ini-

tialization is a special event, with a true guard, and it

sets the initial state of the machine. An event is made

of guards that denote its enabling conditions, and ac-

tions that denote the way the state is modified by the

event. An event occurrence is supposed to take no time.

Hence, no two events can occur simultaneously. When

we have several enabled events (with true guards), one

of them is chosen non-deterministically to occur, and

its actions modify the state.

We construct for the sequence diagram SD an

Event-B machine. We define the variables state and

current lifeline that express the state of each event

and the lifeline that executes the current event respec-

tively. The events of the Event-B machine are com-

posed by the normal events of the SD and the fictitious

events. Each event occurs under some trigger condi-

tions and produces some execution effects. Let evt be

an event that belongs to the Y operand (Y = F D(e)):

evt =̂ TC|EE, where the guard TC is a conjunction

of the trigger conditions TCi and the action EE is the

union of the execution effects EEi. In the next two

subsections (Subsection 5.2.1 and Subsection 5.2.2), we

will detail the construction of the Event-B event evt.

5.2.1 Guards of Event-B Events

The guards are the trigger conditions of an event

that consist in checking the following conditions. The

preceding events of the current event are occurred (ex-

ecuted or ignored) and (TC1, TC2 and TC3) is the first

trigger condition that is essentially based on the compa-

rison of the state of the current event and the states of

its preceding events. We consider the event evt and its

preceding event e, and three cases should be explored:

TC1, TC2 and TC3.

• The considered events are located in the same CF,

and then they have the same initial weight. We define

TC1 as follows:

TC1 : state(e) < state(evt).

• The considered events are located in different CFs.

The comparison of the states of two events is based on

their weights by relative to a first common ancestor

(LCA). Let X, Y and Z be three operands such that

X = F D(e), Y = F D(evt) and Z = LCA(X,Y).

The generic formula of the first trigger condition is:

TC2 : ((state(e) mod weight(Z,X) = 0)) ∧
(state(e)/weight(Z,X) <

state(evt)/weight(Z, Y)).

• For each event evt of a loop CF that has hid-

den precedence relations, we define the trigger condi-

tion TC3 to check that the preceding events that are

computed from the hidden precedence relation have oc-

curred. We consider the loop CF Z and e <HcausZ evt:

TC3 : (second = true)⇒
((state(e) mod weight(Z,X) = 0)) ∧
(state(e)/weight(Z,X) =

state(evt)/weight(Z, Y)),

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 21

where second is true when the event evt is from the sec-

ond iteration of the loop CF Z. In order to illustrate

the trigger conditions TC1, TC2 and TC3, we consider

the SD and its associated tree in Fig.9. We detail the

following examples.

• The events !m1 and !m2 are in the same operand

and (!m1, !m2) ∈ <EE . In the guard of the event !m2,

we check that: state(!m1) < state(!m2) (TC1).

• The events !m2 and !m3 are in different operands

and (!m2, !m3) ∈ <EE . In the guard of event !m3, we

check that: state(!m2) mod 3 = 0 ∧ state(!m2)/3 <

state(m3)/2 (TC2).

• We have (!m3, !m1) ∈ <HcausOP21
. In the guard

of the event !m1, we check that: state(!m3) mod 2 =

0 ∧ state(!m3)/2 = state(!m1)/3 (TC3).

The second condition is that the current event evt is

not yet consumed (TC4). TC4 is expressed as follows:

TC4 : state(evt) > 1.

The fictitious events have, in addition to TC1, TC2,

TC3 and TC4, an additional trigger condition TC4 in

which we check the value of guard of the considered

operand.

5.2.2 Execution Effects of the Event-B Events

Each action of an event of an Event-B machine can

be composed by one or several execution effects (EE1

and EE2). For the normal events, the execution effects

consist in:

1) updating the state of the event (EE1):

EE1 : state(evt) = state(evt)− 1, and

2) updating the lifeline of the current event (EE2):

EE2 : current lifeline = F l(evt).

The fictitious events have, in addition to EE1 and

EE2, other execution effects that are required to deal

with the synchronization issue. For an alt and a

guarded loop CF, an important issue should be han-

dled after the guard evaluation, and it is the synchro-

nization between the lifelines covered by these CFs. In-

deed, the standard semantics of an alt CF imposes

that only one operand must be chosen among several

potential operands. When none guard is true, the CF is

omitted. Moreover, for the guarded loop operand, the

events inside the operand can occur while the guard is

evaluated to true and the maximal number of iterations

is not reached. We consider the event evt as a fictitious

event, and it should produce execution effects EE3, EE4

and EE5, which allow the synchronization. Three cases

should be explored.

• Updating the state of its dual fictitious event evt′

(negative or positive) of the same operand:

EE3 : state(evt′) = state(evt′)− 1.

• Only for execution effect of a positive fictitious

event of an operand of an alt CF, by decrementing the

state of each event of the siblings operands of the Y

operand (Y = F D(evt)):

EE4 : (∀e)(∀B)[B ∈ sibling(Y) ∧ e ∈ F G(B))

⇒ (state(e) = state(e)− weight(B,F D(e)))].

•Only for the execution effect of a negative fictitious

event of an operand of alt and loop CFs, decrement-

ing (with respect to its weight relative to the operand)

the state of each event of the considered operand to

L

alt

L

T,1,{}

[g]

[g]

m

m

m

m

OP

OP

OP

OP

OP

OP

OP

OP

OP

OP

OP

loop (5)

loop (3)

loop (2)

T↪↪ım℘

g2↪↪ım℘g1↪↪ı℘

T↪↪ım↪m℘

T,5,{}

Fig.9. Illustration of the weight of the path in the tree. T: true.

22 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

prohibit their occurrence. A negative fictitious event

of a loop operand should decrement the state of each

event of the considered operand with multiplication by

the number of the remaining iterations that must be

ignored:

EE5 : (∀e)[e ∈ F G(X)⇒
state(e) = state(e)− (w × weight(Y, F D(e)))],

where w is the number of the remaining iterations for

the loop CF and w = 1 for the alt CF.

5.3 Machine of Motivating Example

Fig.10 depicts the skeleton of the machine of the

motivating example (Fig.2). The encoding of Event-B

specifications can be found in the technical report [28].

The typing of the variables is defined in the invariant

clause. In the initialization clause, we initialize the

state of each event with its weight that corresponds

to its maximal number of occurrences in each run. The

variable current lifeline is initialized with the lifeline

of the event authorized to occur.

Fig.10. Skeleton of the machine of the motivating example.

5.3.1 Example of Normal Event Implementation

Fig. 11 depicts the implementation of the normal

event defined by (!connect1, Server). The guard grd1

checks that the preceding events that are located in the

OP11 operand were occurred; the guard grd2 checks

that the event can still occur. After its occurrence,

we update the value of its state and the variable

current lifeline in the first and the second actions, re-

spectively.

Fig.11. Implementation of event r connect1.

5.3.2 Examples of Fictitious Event Implementation

In Fig.12, we show the implementation of the posi-

tive fictitious event of the OP21 of the loop CF.

Fig.12. Implementation of the event T OP31pos.

The guards grd1 and grd2 check the states of the

preceding events that are located in the OP12 and in

OP21 operands. The guard grd3 checks the states of

preceding events that are located in the operands OP31,

OP41 and OP42. These preceding events are defined in

a hidden precedence relation HcausG−1. The guards

grd4 and grd5 check that the event can still occur and

the guard [g2] is true respectively. The actions pro-

duced by the positive fictitious event (T OP31pos) al-

low to update the value of its state, the value of the

state of the negative fictitious event (T OP31neg) and

the value of the variable current lifeline.

Fig.13 represents the implementation of the nega-

tive fictitious event (T OP41neg) of the OP41 operand

(alt CF). The guard grd1 checks that the preceding

events, located in OP31 operand, were occurred; the

guard grd2 checks that the event can still occur; and

the guard grd2 checks that the guard [g3] is evaluated

to false. The first action act1 decrements the states of

each event of the considered operand OP41 to prohibit

their occurrences.

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 23

Fig.13. Implementation of the fictitious event T OP41neg.

In Section 6, we present how the transformation of

UML 2.X SD into Event-B allows us to perform sev-

eral kinds of verification including simulation, trace ac-

ceptance, verification of properties, and verification of

refinement relation between SDs.

6 Analysis and Verification of Sequence

Diagrams

In this section, we detail different applications of

our transformational semantics of the UML 2.X SDs.

6.1 Well-Formed Sequence Diagrams

We check the formal specification of SD in Event-

B, by considering the well-formedness properties, using

the context CTXi. Technically this involves checking

automatically with ProB that the instantiation of the

context CTXi is correct. In the context CTXi (Fig.14),

we define the axioms; they allow to specify the typing of

constants or to express properties on them. Thus, they

are marked as theorems. The proofs of CTXi allow

us to verify that the considered SD is well-formed and

consistent. The content of this context is generic. For

instance, in the axioms 1..14, we express that the SD is

not empty, in the axiom 26, we check that each event

belongs to one lifeline; in the axioms 16 and 17, we ex-

press that each event is mapped with its corresponding

message, and in the axioms 19 and 22, we express that

the causal relations <caus and <causG are non-reflexive

and they are acyclic in the axioms 20 and 23.

6.2 Trace Acceptance and Simulation

ProB [12] offers the possibility to check traces by

proposing in each step of the execution the list of the

enabled events. Indeed, ProB offers a manually driven

and checked animation that allow to analyze, to check

and to validate some expected behaviors of the modeled

system. Fig.15 presents the animation of the Event-B

specification of the motivating example. The transition

diagram of the state space generated with the ProB

animator for the motivating example contains 164 818

checked states and 534 909 transitions.

Fig.14. Theorems of the context CTX1.

6.3 Checking of Temporal Properties

ProB provides support for LTL (linear temporal

logic) model checking. Indeed, ProB supports an ext-

ended version of LTL, LTL[e]. In contrast to the stan-

dard LTL that only supports states, LTL[e] provides

support for propositions on transitions. In practice,

writing propositions on transitions is allowed by using

the constructs e(...) and e[...]. The operators G and F

denote globally and finally respectively; they are tem-

poral operators that express the future; the operator

O denotes once, and it is a temporal operator that ex-

presses the past (it is the dual of F operator). A ma-

chine M satisfies a property P if all traces of M satisfy

P . We can express some properties that are intrinsic to

the studied system, as we can express general properties

that can be checked for any specification.

In our motivating example, we propose the checking

of some LTL properties. Fig.16 is a screenshot of some

properties that we have expressed in ProB.

For example, we check these two properties.

• P1 (Fig.17). We can express a property that

permits to check that each occurrence of the event

24 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

Fig.15. Screenshot of the animation of the Event-B specification of the motivating example.

r seek query will be eventually followed by either

the event r transmit result or the event r displ-

ay not found.

Fig.16. LTL/CTL assertions viewer of ProB.

P

Fig.17. LTL[e] formula of P1 property.

• P2 (Fig.18). Each sent message will eventually

be received.

P 

Fig.18. LTL[e] formula of P2 property.

For a given formula, three status are possible: 1) it

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 25

has not been checked yet; 2) it is true for all valid paths;

3) it is false; in this case the model checker searches for

a counterexample (i.e. a path that does not satisfy the

current formula).

Fig.19 represents a partial view of the counter ex-

ample reported by the LTL model checking for the

formula of the P3 property. The counter example

is a finite path leading to a deadlock state (the col-

ored state in red). This result is logical since if all

the guards of the operands of the alt CF are false

we do not obtain after the occurrence of the event

r seek query neither the event r transmit result nor

the event r display not found.

Fig.19. Screen shot of the LTL viewer.

7 Conclusions

To help in preliminaries design steps of distributed

systems, we proposed interpretation semantics in which

the meaning of SDs with nested CFs (seq, alt, opt,

loop, strict and par) is unambiguously interpreted

using the partial order relations on events that describe

the behavior of SDs. Moreover, in our semantics we

proposed a new formalization of SDs with nested CFs

based on a tree structure; this formalization is user-

friendly since it permits the determination of the rela-

tionships between the operands of the SD with some

functions and relations we defined. The use of a tree

structure permits a straightforward identification of the

precedence relations of each event in an SD with nested

CFs. The generation of traces depends on partial or-

der. To compute the partial order between the events,

the formalized rules are directly relevant without the

need neither to make a preprocessing on SD nor to

add operators or messages or global controller to get

the desired order. Hence, we facilitated the task for

software practitioners. Then, our semantics includes

an approach for the guard evaluation and synchroniza-

tion that takes into account the independence of the

distributed components. The proposed semantics can

be enhanced to consider other important aspects like

time constraints and to handle specific properties. We

aimed to cover the conformance operators, as well as

the gate feature that cause the ill-formedness problem.

Finally, we implemented the formal description of SDs

with their causal semantics with Event-B by preserv-

ing the essential features of SDs and benefited from

the several advantages of this framework. This trans-

formational semantics enables rigorous model analysis,

the checking of the correctness of the model and some

properties using the formal techniques of Event-B and

its tools supports: Rodin and ProB model-checker.

Toward the Checking of Refinement Relation. We

currently studied an important concept that is the re-

finement of SDs corresponding to an iterative and in-

cremental development processes mainly used to handle

complex systems. SDs are used to capture the require-

ments of a system, and stepwise refinement creates a re-

lationship between the requirements and the implemen-

tation. There are two possibilities to refine a sequence

diagram. Intra-level refinement is applied to sequence

diagrams that belong to the same level of abstraction,

and it is used to reveal the internal behavior of a com-

ponent. Inter-level refinement is used to transfer a se-

quence diagram to the next lower level of abstraction

by substituting the lifelines with several more detailed

lifelines. Obviously, new messages and events can be

added in the refined SD. CF and guard (for instance,

by strengthening it to reduce the non-determinism) can

be also refined. The refinement of an SD that we de-

fined relates to its structure (its components), and its

semantics (trace refinement).

Refinement in Event-B allows to refine the data

structures and to add details with the definition of new

events. The refinement of states is expressed in glu-

ing invariant. Refinement of events consists in rein-

forcement of the guards and in the preservation of the

gluing invariant. Event-B refinement relation is based

on the alphabet translation which requires an explicit

mapping between the components of the SDs (abstract

and refined SD), which makes it possible to detect er-

rors modeling and consequently to make the necessary

corrections. Furthermore the relation refinement allows

the verification of the termination of new events (their

non-divergence).

To check the refinement relation between two given

SDs (for instance SD1 and SD2), we first started by

translating each SD into Event-B machine. In the re-

fined machine, we found the same variables (represent-

ing the elements of the SD) as those of the abstract ma-

chine to which we can add new variables of the refined

SD. In the invariant we express, in addition to the typ-

ing of each variable, the gluing invariant in which we

26 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

link the abstract variables to the concrete ones. The

gluing invariant expresses the correspondence of the

states related to the abstract and refined SD. We also

defined the variant which guarantees the non divergence

of new events introduced in the refined SD.

The proofs of the refinement relation and the verifi-

cation of both obtained models allow to conclude or to

check that SD2 is a correct refinement of SD1. Fig.20

represents the generic model for the checking of the cor-

rectness of the refinement between the two SDs.

ProB allows the checking of the refinement relation

of Event-B specifications. It provides a multi-level an-

imation facility to help to detect refinements’ errors in

a systematic way.

Acknowledgements We thank very much the

anonymous reviewers for their time, their valuable com-

ments and advice, which help us to considerably im-

prove the article.

CTX

CTX2PCTX1P

SEES
SEES

SEES

SEES

SEES

REFINES

SEES

SEES

SEES

CTX3P

CTX3P

CTX2

Machine2Machine1

EXTENDS EXTENDS

EXTENDS

EXTENDS

EXTENDS

EXTENDSEXTENDS

CTX1

Fig.20. Generic Event-B architecture of refinement process.

References

[1] Micskei Z, Waeselynck H. The many meanings of UML 2 se-

quence diagrams: A survey. Software & Systems Modeling,

2011, 10(4): 489-514. DOI: 10.1007/s10270-010-0157-9.

[2] Pickin S, Jézéquel J M. Using UML sequence diagrams as

the basis for a formal test description language. In Proc. the

4th International Conference on Integrated Formal Meth-

ods, April 2004, pp.481-500. DOI: 10.1007/978-3-540-24756-

2 26.

[3] Störrle H. Trace semantics of interactions in UML 2.0. J.

Visual Languages and Computing, 2004.

[4] Lund M S. Operational analysis of sequence diagram spec-

ifications [Ph.D. Thesis]. University of Oslo, 2008.

[5] André P, Rivière N, Waeselynck H. A Toolset for mobile sys-

tems testing. In Proc. the 11th International Conference on

Verification and Evaluation of Computer and Communica-

tion Systems, August 2017, pp.124-138. DOI: 10.1007/978-

3-319-66176-6 9.

[6] Mahe E, Gaston C, Gall P L. Revisiting semantics of inter-

actions for trace validity analysis. In Proc. the 23rd Interna-

tional Conference on Fundamental Approaches to Software

Engineering, April 2020, pp.482-501. DOI: 10.1007/978-3-

030-45234-6 24.

[7] Dhaou F, Mouakher I, Attiogbé J C, Bsaies K. A

causal semantics for UML 2.0 sequence diagrams with

nested combined fragments. In Proc. the 12th Interna-

tional Conference on Evaluation of Novel Approaches

https://doi.org/10.1007/s10270-010-0157-9
https://doi.org/10.1007/978-3-540-24756-2_26
https://doi.org/10.1007/978-3-540-24756-2_26
https://doi.org/10.1007/978-3-319-66176-6_9
https://doi.org/10.1007/978-3-319-66176-6_9
https://doi.org/10.1007/978-3-030-45234-6_24
https://doi.org/10.1007/978-3-030-45234-6_24

Inès Mouakher et al.: Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams 27

to Software Engineering, April 2017, pp.28-29. DOI:

10.5220/0006314100470056.

[8] Dhaou F, Mouakher I, Attiogbé J C, Bsaies K. An oper-

ational semantics of UML 2.X sequence diagrams for dis-

tributed systems. In Proc. the 12th International Confe-

rence on Evaluation of Novel Approaches to Software En-

gineering, April 2018, pp.158-182. DOI: 10.1007/978-3-319-

94135-6 8.

[9] Dhaou F, Mouakher I, Attiogbé J C, Bsaies K. Guard

evaluation and synchronization issues in causal seman-

tics for UML 2.X sequence diagrams. In Proc. the 13th

Int. Conference on Evaluation of Novel Approaches to

Software Engineering, March 2018, pp.275-282. DOI:

10.5220/0006708102750282

[10] Abrial J R. Modeling in Event-B—System and Software

Engineering. Cambridge University Press, 2010.

[11] Abrial J R, Butler M, Hallerstede S, Hoang T S, Mehta F,

Voisin L. Rodin: An open toolset for modelling and reason-

ing in Event-B. Int. J. Softw. Tools Technol. Transf., 2010,

12(6): 447-466. DOI: 10.1007/s10009-010-0145-y.

[12] Leuschel M, Butler M. ProB: An Automated analysis

toolset for the B Method. Int. J. Softw. Tools Tech-

nol. Transf., Springer-Verlag, 2008, 10(2): 185-203. DOI:

10.1007/s10009-007-0063-9.

[13] Boulanger J L. Formal Methods Applied to Industrial Com-

plex Systems: Implementation of the B Method. Wiley,

2014. DOI: 10.1002/9781119002727.

[14] Rasch H, Wehrheim H. Checking the validity of scenarios

in UML models. In Proc. the 7th IFIP WG 6.1 Interna-

tional Conference on Formal Methods for Open Object-

Based Distributed Systems, June 2005, pp.67-82. DOI:

10.1007/11494881 5.

[15] Knapp A, Wuttke J. Model checking of UML 2.0 inter-

actions. In Proc. the Workshops and Symposia at 2016

International Conference on Model Driven Engineering

Languages and Systems, October 2007, pp.42-51. DOI:

10.1007/978-3-540-69489-2 6.

[16] Lima V, Talhi C, Mouheb D, Debbabi M, Wang L,

Pourzandi M. Formal verification and validation of UML

2.0 sequence diagrams using source and destination of mes-

sages. Electron. Notes Theor. Comput. Sci., 2009, 254: 143-

160. DOI: 10.1016/j.entcs.2009.09.064.

[17] Cunha E, Custodio M, Rocha H, Barreto R. Formal verifi-

cation of UML sequence diagrams in the embedded systems

context. In Proc. the 2011 Brazilian Symposium on Com-

puting System Engineering, November 2011, pp.39-45. DOI:

10.1109/SBESC.2011.18.

[18] Zhu M, Wang H, Liu X, Han X. Formal analysis of se-

quence diagram with time constraints by model transfor-

mation. Int. J. Softw. Informatics, 2012, 6(2): 327-357.

[19] Miyazaki H, Yokogawa T, Amasaki S, Asada K, Sato Y.

Synthesis and refinement check of sequence diagrams. IE-

ICE Transactions on Information & Systems, 2012, E95-

D(9): 2193-2201. DOI: 10.1587/transinf.E95.D.2193.

[20] Remenska D, Willemse T A C, Templon J, Verstoep K,

Bal H E. Property specification made easy: Harnessing the

power of model checking in UML designs. In Proc. the 34th

IFIP WG 6.1 International Conference on Formal Tech-

niques for Distributed Objects, Components, and Systems,

June 2014, pp.17-32. DOI: 10.1007/978-3-662-43613-4 2.

[21] Muram F U, Tran H, Zdun U. Supporting automated

containment checking of software behavioural models us-

ing model transformations and model checking. Science

of Computer Programming, 2019, 174: 38-71. DOI:

10.1016/j.scico.2019.01.005.

[22] Lima L, Miyazawa A, Cavalcanti A, Cornélio M, Iyoda J,

Sampaio A, Hains R, Larkham A, Lewis V. An integrated

semantics for reasoning about SysML design models using

refinement. Software & Systems Modeling, 2017, 16(3): 875-

902. DOI: 10.1007/s10270-015-0492-y.

[23] Pan M, Chen S, Pei Y, Zhang T, Li X. Easy modelling

and verification of unpredictable and preemptive interrupt-

driven systems. In Proc. the 41st IEEE/ACM International

Conference on Software Engineering, May 2019, pp.212-

222. DOI: 10.1109/ICSE.2019.00037.

[24] Chen X, Mallet F, Liu X. Formally verifying se-

quence diagrams for safety critical systems. In Proc. the

14th Int. Symposium on Theoretical Aspects of Soft-

ware Engineering, December 2020, pp.217-224. DOI:

10.1109/TASE49443.2020.00037.

[25] Alur R, Holzmann G J, Peled D. An analyzer for message

sequence charts. In Proc. the 2nd International Workshop

on Tools and Algorithms for Construction and Analysis of

Systems, March 1996, pp.35-48. DOI: 10.1007/3-540-61042-

1 37.

[26] Tahir O, Sibertin-Blanc C, Cardoso J. A causality-based

semantics for UML sequence diagrams. In Proc. IASTED

Int. Conference on Software Engineering, February 2005,

pp.106-111.

[27] Damchoom K, Butler M, Abrial J R. Modelling and proof of

a tree-structured file system in Event-B and Rodin. In Proc.

the 10th International Conference on Formal Engineering

Methods, October 2008, pp.25-44. DOI: 10.1007/978-3-540-

88194-0 5.

[28] Mouakher I. Case study for sequence diagram transforma-

tion in Event-B. Technical Report, 2021. https://www.dro-

pbox.com/s/8oeuy4gwfsa8cqh/mainTR.pdf?dl=0.

Inès Mouakher received her Ph.D.

degree in computer science from Uni-

versity of Nancy 2, France, in 2010.

She joined University of Tunis El

Manar, Tunis, as a lecture in 2004 and

she became an assistant professor in

computer science at University of Tunis

El Manar in 2013. She is a member

of the Laboratory of Computer Science Algorithmic and

Heuristic Programming (LIPAH). Her research interests

include formal methods, specification and verification,

formal development (correction-by-construction), and

distributed and concurrent system design. She published

several peer-reviewed papers on these topics.

https://doi.org/10.5220/0006314100470056
https://doi.org/10.1007/978-3-319-94135-6_8
https://doi.org/10.1007/978-3-319-94135-6_8
https://doi.org/10.5220/0006708102750282
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1002/9781119002727
https://doi.org/10.1007/11494881_5
https://doi.org/10.1007/978-3-540-69489-2_6.
https://doi.org/10.1016/j.entcs.2009.09.064
https://doi.org/10.1109/SBESC.2011.18
https://doi.org/10.1587/transinf.E95.D.2193
https://doi.org/10.1007/978-3-662-43613-4_2
https://doi.org/10.1016/j.scico.2019.01.005
https://doi.org/10.1007/s10270-015-0492-y
https://doi.org/10.1109/ICSE.2019.00037
https://doi.org/10.1109/TASE49443.2020.00037
https://doi.org/10.1007/3-540-61042-1_37
https://doi.org/10.1007/3-540-61042-1_37
https://doi.org/10.1007/978-3-540-88194-0_5.
https://doi.org/10.1007/978-3-540-88194-0_5.

28 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

Fatma Dhaou is an assistant pro-

fessor at University of Tunis El Manar,

Tunis. She has been a member at

the Laboratory of Computer Science

Algorithmic and Heuristic Program-

ming (LIPAH) of Faculty of Sciences

of Tunisia and at the Laboratory of

Digital Sciences (LS2N) of University of

Nantes (France) since 2013. She received her Ph.D. degree

in computer Science from University of Tunis El Manar,

Tunis, in 2018. Her research interests include combining

semi-formal language (UML) and formal method (Event-B

method) for modelling, validation and verification of

distributed system. She published several peer-reviewed

papers on these topics.

J. Christian Attiogbé received

his Ph.D. degree from University of

Toulouse, France, in 1992, in computer

science. He joined University of Nantes,

Nantes, as an associate professor in

1994. His research interests include for-

mal approaches for software modelling

and analysis, correct-by-construction

using refinement, and heterogeneous systems modelling.

He published several peer-reviewed papers on these topics

and also co-organised several workshops and conferences.

He has been leading the Reliable Software Group at the

Laboratory of Digital Sciences of Nantes (LS2N) since

2007, and had been the head of the Computer Science

Department of the Nantes Institute of Technology at

University of Nantes, Nantes (2010–2016). He is currently

a professor of computer science at University of Nantes,

Nantes.

	1 Introduction
	2 Preliminaries
	2.1 Brief Introduction to Event-B
	2.2 UML 2.X Sequence Diagrams
	2.3 Motivating Example

	3 Discussion and Related Work
	3.1 Interpretation in Standard Semantics
	3.2 Reviews of Existing Semantics
	3.3 Key Features of Our Approach

	4 Formalization of Sequence Diagram
	4.1 Interaction Language
	4.1.1 Operands and Combined Fragments
	4.1.2 Abstract Structure for Sequence Diagrams

	4.2 Semantics of Sequence Diagrams
	4.2.1 Basic Definitions
	4.2.2 Event States
	4.2.3 Event-Based Semantics of Sequence Diagrams

	4.3 Computation of Causal Relations
	4.3.1 Global Causal Relation
	4.3.2 Causal Relations <EE and <RE
	4.3.3 Causal Relation <RR
	4.3.4 Causal Relation <Hcaus
	4.3.5 Causal Relation <strict
	4.3.6 Relations for Fictitious Events

	5 Translation of SDs into Event-B
	5.1 Construction of the Contexts
	5.2 Construction of the Event-B Machine
	5.2.1 Guards of Event-B Events
	5.2.2 Execution Effects of the Event-B Events

	5.3 Machine of Motivating Example
	5.3.1 Example of Normal Event Implementation
	5.3.2 Examples of Fictitious Event Implementation

	6 Analysis and Verification of Sequence Diagrams
	6.1 Well-Formed Sequence Diagrams
	6.2 Trace Acceptance and Simulation
	6.3 Checking of Temporal Properties

	7 Conclusions

