
Cui JW, Lu W, Zhao X et al. Efficient model store and reuse in an OLML database system. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 36(4): 792–805 July 2021. DOI 10.1007/s11390-021-1353-5

Efficient Model Store and Reuse in an OLML Database System

Jian-Wei Cui, Member, CCF, Wei Lu, Member, CCF, Xin Zhao, and Xiao-Yong Du∗, Fellow, CCF

Key Laboratory of Data Engineering and Knowledge Engineering of Ministry of Education, Renmin University of China
Beijing 100872, China

School of Information, Renmin University of China, Beijing 100872, China

E-mail: {cjwruc, uqwlu, xinzhao, duyong}@ruc.edu.cn

Received February 4, 2021; accepted June 27, 2021.

Abstract Deep learning has shown significant improvements on various machine learning tasks by introducing a wide

spectrum of neural network models. Yet, for these neural network models, it is necessary to label a tremendous amount

of training data, which is prohibitively expensive in reality. In this paper, we propose OnLine Machine Learning (OLML)

database which stores trained models and reuses these models in a new training task to achieve a better training effect

with a small amount of training data. An efficient model reuse algorithm AdaReuse is developed in the OLML database.

Specifically, AdaReuse firstly estimates the reuse potential of trained models from domain relatedness and model quality,

through which a group of trained models with high reuse potential for the training task could be selected efficiently. Then,

multi selected models will be trained iteratively to encourage diverse models, with which a better training effect could be

achieved by ensemble. We evaluate AdaReuse on two types of natural language processing (NLP) tasks, and the results show

AdaReuse could improve the training effect significantly compared with models training from scratch when the training data

is limited. Based on AdaReuse, we implement an OLML database prototype system which could accept a training task as

an SQL-like query and automatically generate a training plan by selecting and reusing trained models. Usability studies are

conducted to illustrate the OLML database could properly store the trained models, and reuse the trained models efficiently

in new training tasks.

Keywords model selection, model reuse, OnLine Machine Learning (OLML) database

1 Introduction

Deep learning has been widely adopted in various

machine learning tasks and shown generalization effects

improvement. Neural networks usually achieve better

effects when trained on a large amount of data. How-

ever, it is time consuming to label sufficient training

data, and the training of neural models is also costly.

From data-centric view, the neural model training pro-

cess will generate various computed data artefacts, such

as processed training data and trained models. There-

fore, reusing existing computed data artefacts is a hope-

ful way to reduce the training cost and improve the

training effect for a new task. In this paper, we propose

OnLine Machine Learning (OLML) database which ex-

tends the traditional database system naturally to on-

line respond to a training task by efficiently reusing the

trained models. In the OLML database, better train-

ing effects could be achieved on limited training data

by model reuse.

The OLML database views a training task as an ad-

hoc query and aims to online respond to the query. We

summarize the challenges of the OLML database into

three aspects.

1) Efficient Model Selection. As we may have dozens

of trained models available, the model reuse algorithm

should efficiently select a group of models with high

reuse potential for the training task.

2) Effective Model Reuse. The model reuse algo-

rithm should combine and reuse the selected models

Regular Paper

Special Section on AI4DB and DB4AI

The work was supported by the National Natural Science Foundation of China under Grant No. 62072458.
∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-021-1353-5

Jian-Wei Cui et al.: Efficient Model Store and Reuse in an OLML Database System 793

effectively to achieve a better training effect.

3) System Architecture Design. The architecture

of the OLML database should extend the traditional

database system naturally to online respond to the

training tasks, and properly save the trained models

to form a model training-and-reuse cycle.

For model selection, a direct way to estimate the

reuse potential of a trained model for a training task

is computing the prediction effect on the test data of

the task. However, computing prediction effects for all

the trained models may be inefficient. In this paper, we

propose to estimate the model reuse potential from two

aspects: domain relatedness and model quality, which

could be computed very efficiently. For domain relat-

edness, we adopt a data-driven way to represent the

domain of a model or a training task from its training

data. For example, the domain of text-type training

data could be represented as TF-IDF vectors, which

could be used to measure the domain relatedness be-

tween a trained model and the training task. For model

quality, the effects of trained models may differ due to

many factors, such as training data size and data qua-

lity. In this paper, we adopt the average prediction ef-

fect on all trained tasks as a prior quality indicator for

a trained model. Then, domain relatedness and model

quality will be combined together to identify models

with high reuse potential for the training task.

For model reuse, a common approach is initializing

model parameters of a new training task from a trained

model, also known as warm-up [1–4]. As we may select

multi models with high reuse potential, each selected

model will be trained from its warm-up and served as a

base model for ensemble to boost the training effect for

the training task. To encourage diverse base models,

we weight the training data during training inspired by

AdaBoost [5]. Specifically, the selected models will be

trained iteratively on the training data of the task. Af-

ter one selected model finishes training, it will predict

the labels of training data, and the error predicted data

items will be set with higher weights. In this way, se-

lected models will be encouraged to focus on different

items of training data, which introduce a higher model

diversity that leads to a better model ensemble effect.

For system architecture design, the architecture of

the OLML database is complied with the layered design

of the traditional database system, including language

layer, training layer, access layer and storage layer. The

prototype system is built upon UER [6], which repre-

sents the structures and training processes of various

neural networks in a universal format. This enables

model configurations and training options to be spe-

cified in a descriptive way. The language layer accepts

a training task as a SQL-like query and parses specified

options for lower layers. The training layer implements

the model selection and model reuse algorithms, and

automatically generates a training plan for the query.

The access layer provides read and write interfaces of

data artefacts needed by the model selection and model

reuse algorithms. In the storage layer, the trained mod-

els will be stored by the training task type, where do-

main vectors and model quality will be computed to

make these models able to be reused in the new training

tasks. The layered architecture of the OLML database

enables each layer to be extended independently, where

new data artefacts and model reuse algorithms could

be integrated into the system easily.

The main contributions of this paper are summa-

rized as the follows.

• We propose the OLML database which naturally

extends the traditional database system to store the

trained models and reuse these models in the new train-

ing tasks to achieve better training effects when the

training data is limited.

• We propose a new model reuse algorithm. The

algorithm efficiently selects models with high reuse po-

tential through domain relatedness and model quality,

and improves the model reuse effect by encouraging the

training of diverse base models for ensemble. We eva-

luate the proposed model reuse algorithm on two NLP

tasks. The experimental results demonstrate the pro-

posed algorithm achieves a higher accuracy and train-

ing efficiency compared with the model trained from

scratch on 5x larger data size for the sentiment classi-

fication task.

• Based on the proposed model reuse algorithm and

system architecture, we implement an OLML database

prototype. The prototype system could accept a train-

ing task as a SQL-like query and online respond to

the query by automatically selecting and reusing stored

models. The usability studies demonstrate the trained

models could be stored properly in the system and form

a model training-and-reuse cycle.

2 Related Work

The proposed method in this paper measures the

domain relatedness in a data-driven way and reuses

multiple models by ensemble. Meanwhile, the OLML

database prototype could be viewed as a data mana-

gement system for machine learning. In this section,

794 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

we review related work on text data relatedness, model

reuse and ensemble, and data management systems for

machine learning.

2.1 Text Data Relatedness

The relatedness between text data could be mea-

sured in both unsupervised and supervised ways. For

the unsupervised way, the text is usually represented

as a vector and cosine similarity could be computed to

measure the relatedness. A traditional way to convert

the text to a vector is representing the text in word

space with the weight of each dimension computed as

TF-IDF of that word. In deep learning, the latent dis-

tribution semantics of a word could be learned from

large volume of corpus [7–9], where each word is rep-

resented as a dense vector, also known as word em-

bedding. Based on word embedding, the embedding of

paragraph could be computed to present the semantics

for the paragraph [10], which could be used to evaluate

relatedness between paragraphs.

For the supervised way, the training data of the

new task usually serves as positive training samples,

and the language model or classification model could

be trained to evaluate the data relatedness and used

in data selection [11, 12]. In [11], an in-domain language

model is trained and the perplexity is computed on out-

domain data to evaluate the relatedness. In [12], a bi-

nary classification is trained as in-domain data serves as

positive samples and out-domain data serves as nega-

tive samples, and then out-domain data with high posi-

tive classification probability will be selected to be com-

bined with in-domain data to improve the effect of in-

domain task.

In this paper, as we only have limited training data

for the training task, the supervised method for data re-

latedness measurement can also achieve limited effect.

Therefore, we adopt unsupervised methods to measure

the data relatedness which is usually more efficient com-

pared with the supervised methods as no extra language

model or classification model needs to be trained.

2.2 Model Reuse and Ensemble

Model reuse could be viewed as an application

of transfer learning [13], where the parameters of the

trained model are transferred to the model of the new

task to improve the training performance. A common

approach to reusing trained models is warm-up, which

starts a new training with parameters initialized from

a trained model. Many previous studies have adopted

this technique, and obtained training performance im-

provement. For effectiveness improvement, Rafiki [2]

adopts warm-up to train models for hyper-parameter

turning, and achieves better effect. In [14], the model

trained on large out-of-domain data is reused as the

base model, and the training is continued on in-domain

data to improve translation quality. For efficiency im-

provement aspect, COLUMBUS [15] proposes to cache

models and choose a nearby model for a warm-up,

achieving significant training speed-up. EDDE [3] ini-

tializes parameters of lower layers for a new training

from previous trained models, and the result demon-

strates such a reuse method could train base models

more efficiently for ensemble. In [4], models trained on

the same data are reused as warm-up in collaborative

environment to achieve a higher training efficiency. In

summary, these studies mainly focus on reusing a sin-

gle model for the same task trained on the same data.

Recently, the LEEP score [16] is proposed to estimate

the transferability of existing models for a new task or

dataset. However, the LEEP score needs to compute

the prediction results for all existing models, which is

not sufficient enough when there are dozens of existing

models. In this paper, we propose methods to select

models with high reuse potential efficiently and boost

training effect by reusing multi models trained on diffe-

rent datasets.

Model ensemble is widely adopted to boost the

training effect from multi models, such as Bagging [17],

Boosting [18] and Stacking [19]. In [20], MoreBoost is

proposed to select a group of existing models to cover

the training data domain of the new task, and the se-

lected models will then boost the prediction effect by

ensemble. Different from MoreBoost, there is training

data for the new task in our setting. We therefore bor-

row the ideas from AdaBoost [5] to continuously train

multi selected models in an adaptive way, achieving bet-

ter ensemble effect by encouraging diverse base models.

2.3 Data Management System for Machine
Learning

There are many efforts to improve machine learn-

ing performance through data management techniques.

For model management, ModelHub [21] focuses on the

storage of models for multi versions, which seeks

to balance the computing and the storage cost.

ModelDB [22] proposes a model-centric method to store

and exhibit various data artefacts, which facilitates

to trace the training process. For dataset mana-

gement, DataHub [23] manages multi-versions of the

Jian-Wei Cui et al.: Efficient Model Store and Reuse in an OLML Database System 795

same dataset to avoid recomputation in the new task.

Compared with these systems, the OLML database im-

plemented in this paper focuses on the model reuse

capability to respond to new training tasks. There-

fore, the data storage and management techniques of

existing systems could be integrated into the OLML

database.

For automatic model training, MLBase [24] and

Rafiki [2] search algorithms to achieve good effect for a

given task. Different from these systems, the OLML

database aims to online respond to training tasks.

Therefore, we prefer efficient model reuse methods to

automatically generate the training plan for the new

task. Helix [25] and [4] adopt DAG to represent the

data dependency for training, which reuses existing

data and models trained on the same dataset for the

new task. Compared with these systems, the OLML

database supports the reuse of multi models trained

on different datasets, and also develops adaptive train-

ing techniques to improve the effect of model ensemble.

Therefore, the OLML database could serve as an ad-

vanced model reuse module in the whole machine learn-

ing pipeline.

3 Model Reuse

In this section, we first formally define the model

reuse problem, and then introduce the proposed model

selection and reuse methods.

3.1 Problem Definition

For a training task T , with training data and test

data denoted as D(T) and TD(T) respectively, assume

D(T) is not sufficient to train a model achieving a high

accuracy. Meanwhile, assume we have dozens of models

trained on different datasets with the same input and

the output type of T . We denote R = {M1,M2, ...,Mt}
to represent such model repository. The training data

and the test data of Mi are denoted as DS(Mi) and

TD(Mi) respectively. The text of each training data

item is viewed as a sentence, and the domains of train-

ing data for each model may be different. Then, the

goal of the proposed methods is to select and reuse K

models from R to achieve better training effect for task

T , where K is specified.

3.2 Model Selection

Model selection estimates model reuse potential to

efficiently select a group of trained models to be reused

in the training task. We measure the reuse potential

from two aspects: domain relatedness and model qua-

lity. For domain relatedness, models trained on data

sharing a similar domain with the training task tend

to have higher reuse potential. Therefore, we measure

the domain relatedness between a trained model M in

R and the training task T through the relatedness be-

tween training data. Specifically, as the training data

size of trained models may be large, we keep a sampling

for the training data of M and T , denoted as DS(M)

and DS(T) respectively. Then, the domain vector of

data item d inDS(M) orDS(T), denoted as v(d), could

be computed by TF-IDF or average of word embedding

vectors. The domain relatedness between M and T is

denoted as Rel(M,T) and computed as:

Rel(M,T) =
1

|DS(M)| × |DS(T)|
×∑

i

∑
j

cosine(v(di), v(dj)),

where di ∈ DS(M) and dj ∈ DS(T). For trained mod-

els, the samplings of training data and corresponding

domain vectors could be calculated offline, and only

the data sampling and domain vectors of the training

task need to be calculated online. Therefore, Rel(M,T)

could be computed efficiently between T and models in

R.

For model quality, models from similar domains may

also perform differently when reusing on other tasks.

For example, models trained on higher quality and suf-

ficient training data tend to perform better compared

with models trained on lower quality and insufficient

training data. Therefore, we estimate the model qua-

lity of M by the prediction effect on the test data of

other models in R. Specifically, the quality of model M

is denoted as Qual(M) and computed as:

Qual(M) = Avg

(
effect(DT (Mj)|M)

effect(Mj)

)
,

where Mj ∈ R and Mj 6= M , and effect(DT (Mj) |M)

is normalized by effect(Mj). effect(M) could be de-

fined based on the task type of M . For the classifi-

cation task, effect(M) could be defined as the classi-

fication accuracy, and for the sequence labelling task,

effect(M) could be defined as F1 score of labelled slots.

As the model quality is evaluated on the existing tasks,

Qual(M) could be computed offline as new models are

added in the repository. Therefore, Qual(M) could be

viewed as a priori reuse potential predictor, where no

extra online computation is needed for the new task.

796 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

Combining domain relatedness and model quality,

we estimate the reuse potential of model M for given

task T as:

P (T |M) = Rel(T,M)×Qual(M).

3.3 Model Reuse

For the training task T , a simple model reuse

method is to initialize the parameters from a trained

model with the maximum P (T |M) score and then con-

tinuously train the model on D(T). This could be

viewed as single model reuse. As we may have multi

models with high reuse potential, it is naturally to boost

the accuracy from multiple trained models. The intu-

ition behind multiple model reuse is that each trained

model may help the training task to achieve a higher ac-

curacy from different aspects. Therefore, it is possible

to achieve better effect if multiple models are combined.

A direct way to combine multiple trained models is

selecting K models with the maximum P (T |M) scores,

and continuously training each model on D(T). The

converged models will serve as base models for ensem-

ble. Specifically, the softmax layer outputs of each con-

tinuously trained model will be averaged to jointly de-

cide the prediction. This could be viewed as selecting

top K models to reuse (TopK for short). Meanwhile,

as indicated in [3], the effect of ensemble will be more

pronounced if base models are more diverse. Conse-

quently, we develop the AdaReuse algorithm inspired

by AdaBoost (shown in Algorithm 1) to improve the

model diversity by weighting training data during con-

tinuous training.

Algorithm 1. AdaReuse

Input:

task T with training data

D = (x1, y1)(x2, y2)...(xn, yn), initial data weight W 1:

w1
i = 1 for 1 6 i 6 n, and max-weight: β;

model repository R = (M1,M2, ...,Mt);

the number of reuse models K (K > 1)

Output:

ensemble model H

1: Select K models as {M1,M2, ...,Mk} from R with the

highest P (T |M) and sort descending

2: for k = 1 to K do

3: hk = Warmup(Mk)

4: hk = ContinousTraining(ht, D,W k)

5: ek = 1−
∑n

i I(ht(xi), yi)/n

6: αk =
1

2
log((1− ek)/ek)

7: wk+1
i = min(wk

i ×max(1, exp(αk)), β) for ht(xi) 6= yi

8: H = max
16k6K

(∑k
i αk × hi

)

In Algorithm 1, all the training data have equal

weight before training, and AdaReuse firstly selects

K models with the maximum P (T |M) scores (line 1).

Then, the training is processed iteratively from the

model with maximum P (T |M) score. In each iteration,

the result model hk is initialized from a selected model

Mk and then continuously trained on D weighted by

W k. After the training converged, the error rate of hk
is calculated as ek (line 5), where I(ht(xi), yi) equals 1

for ht(xi) = yi and equals 0 for ht(xi) 6= yi. The judge

of ht(xi) = yi depends on the task type. For classifica-

tion task, ht(xi) = yi means the classification label of

xi predicted by the model equals the truth label. While

for the sequence labelling task, ht(xi) = yi means the

labels predicted by the model are equal to correspond-

ing truth labels at any position of xi. The contribution

ratio of hk to the final ensemble model is computed

as αk (line 6), where a lower error rate will lead to

a higher contribution ratio. After that, the weight of

training data item error predicted by hk will increase by

exp(αk) (line 8). Here, as the training data is limited,

we do not decrease the weight of correctly predicted

data to avoid ignoring any training data. Meanwhile,

the weight is restricted to range [1, β] to avoid too large

value caused by very small ek. In this way, the error-

predicted data will get more attention in next iteration

training, which helps to improve the model diversity.

After K models are all continuously trained, they are

served as base models for ensemble where the softmax

layer outputs of models are averagely weighted by αk

(line 8).

In our situation, the effect of K continuously trained

models may vary greatly, and more base models may

not always achieve better effect for ensemble, as base

models with significant lower accuracy may affect the

ensemble effect. Therefore, we simply search the best

number of base models for ensemble to achieve the best

effect (line 8).

4 Experiment

To validate the effectiveness of proposed work, we

conduct experiments for two types of NLP tasks, sen-

timent classification (SC) and name entity recognition

(NER). In this section, we first introduce the datasets

and experimental settings. Then, we study the effect

of model selection and single model reuse on different

data sizes. After that, different methods to reuse mul-

tiple models are compared to validate the effect of the

AdaReuse algorithm. And lastly, we compare the train-

Jian-Wei Cui et al.: Efficient Model Store and Reuse in an OLML Database System 797

ing efficiency between AdaReuse and a data selection

method.

4.1 Datasets and Experimental Settings

For sentiment classification, there are dozens of pub-

lic available datasets for Chinese sentiment classifica-

tion. These datasets are released by different organiza-

tions from different domains. Table 1 lists the summary

for all collected datasets, where we align the outputs of

all the datasets to positive and negative categories. We

select hotel and book review sentiment classifications as

test tasks, and the others to build the model repository.

Table 1. Dataset Summary and Accuracy of SC

Usability Name Size (×103) Pos:Neg Acc

Model repository Waimai 9 2:1 0.834

Weibo 20 1:1 0.972

Clothing 8 1:1 0.916

Computer 2 0.95:1 0.851

Fruit 8 1:1 0.885

Pda 8 1:1 0.887

Shampoo 8 1:1 0.901

Stockmarket 7 1:1 0.915

Shop 20 0.9:1 0.912

Inews 1 1:1 0.586

Movie 20 1:1 0.833

Dianping 20 1:1 0.821

Test task Hotel 5 0.46:1 0.812

Book 20 1:1 0.746

For name entity recognition, we conduct experi-

ments on CLUENER [26] which consists of 10 types of

name entities. The dataset is divided by the name en-

tity type, and Table 2 lists the summary for each type

of name entity. We select movie and book entity recog-

nition as test tasks, and the others are used to build

the model repository.

Table 2. Dataset Summary and F1 of NER

Usability Name Size (×103) F1

Model repository Address 2.10 0.330

Organization 1.90 0.443

Company 2.20 0.346

Game 1.90 0.549

Government 1.50 0.333

Name 2.80 0.389

Position 2.50 0.404

Scene 0.95 0.322

Test task Movie 0.80 0.495

Book 0.90 0.481

We adopt convolution neural network (CNN) and

Transformer [27] as the neural network architectures for

sentiment classification. For name entity recognition, as

the training data is too limited, we adopt a Chinese pre-

trained model 1○ RoBERTa-Tiny [28] as the base model

and fine-tune it on the training data. Table 3 shows

the hyper-parameters for the three neural network ar-

chitectures. Batch size and learning are 32 and 2e − 5

respectively, and keep the same for training on all the

datasets. We conduct all the experiments by using

UER [6], with which the training effect could be repro-

duced easily.

Table 3. Hyper-Parameters of Neural Networks

Architecture Hyper-Parameter

CNN Layer num = 4,
(sentiment classification) hidden size = 256,

kernel size = 3

Transformer Layer num = 12,
(sentiment classification) hidden size = 128

RoBERTa-Tiny Heads num = 2,
(name entity recognition) Feedforward size = 512

Table 1 and Table 2 list the accuracy and F1 scores

for models trained on each dataset respectively. For

sentiment classification, most models achieve accura-

cies higher than 0.8. For name entity recognition, most

models achieve F1 lower than 0.5 as the training data

is more limited.

4.2 Model Selection

We evaluate the effect of model reuse potential es-

timation in this subsection.

For sentiment analysis, acc(DT (T)|M) is the pre-

diction accuracy of model M on the test data of task

T , and is used as the ground truth of model reuse poten-

tial. A good reuse potential estimation method should

achieve a high acc(DT (T)|M) score. Table 4 shows

the comparison of acc(DT (T)|M) scores estimated by

different methods, where the average acc(DT (T)|M)

score on two test tasks and top K models are com-

puted. RANDOM means randomly selecting K models

from R, and BEST means testing all trained models

on DT (T) and selecting K models with the maximum

acc(DT (T)|M) scores. For Rel(M,T) and P (T |M), the

data relatedness in terms of TF-IDF vector and average

of word embedding vectors (EMB) are computed.

As shown in Table 4, both Rel(M,T) and Qual(M)

perform significantly better than RANDOM especially

1○https://huggingface.co/uer/chinese roberta L-2 H-128, June 2021.

798 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

Table 4. Average acc(DT (T)|M) of Model Reuse Potential Estimation for Sentiment Analysis

K RANDOM Rel(M,T) (TF-IDF) Rel(M,T) (EMB) Qual(M) P (T |M) (TF-IDF) P (T |M) (EMB) BEST

1 0.60 0.73 0.62 0.65 0.73 0.65 0.73

2 0.60 0.69 0.63 0.64 0.71 0.64 0.71

3 0.60 0.62 0.64 0.65 0.68 0.65 0.69

4 0.60 0.63 0.64 0.64 0.67 0.64 0.68

Note: The best results are in bold.

when K is smaller, demonstrating both Rel(M,T) and

Qual(M) can help to estimate model reuse potential.

The improvement compared with RANDOM becomes

smaller when K is larger, as the accuracy tends to

be close to the average accuracy of all models in R.

P (T |M) performs better than both Rel(M,T) and

Qual(M) for different K, illustrating combining do-

main relatedness and model quality could help to find

models with high reuse potential. Compared with word

embedding vectors, Rel(M,T) in terms of TF-IDF vec-

tor performs better as corresponding P (T |M) achieves

a close accuracy to the BEST method. Table 5 illus-

trates the effect of reuse potential estimation for name

entity recognition. F1(DT (T)|M) is the prediction F1

score of model M on the test data of T , and is used

as ground truth. Table 5 shows similar results to Ta-

ble 4, demonstrating the effectiveness of model reuse

potential estimation for the NER task.

Table 6 shows the computation details of P (T |M)

for hotel review sentiment classification. For

Rel(M,T), the top 4 models are from tasks of dian-

ping, computer, waimai and shop. On the other hand,

Qual(M) scores of models from the computer task

and the waimai task are significant lower than those

of shop task. Consequently, domain relatedness and

model quality are complementary to some extent, and

combing the two scores could better estimate model

reuse potential. Meanwhile, the top 3 models in terms

of acc(DT (T)|M) for the hotel task are different from

those of the book task. This demonstrates trained mod-

els have different reuse potential for different training

tasks. Therefore, it is necessary for different training

tasks to find corresponding models to reuse.

4.3 Single Models Reuse

We study the training effect of single model reuse

for different data sizes. Figs.1(a) and 1(b) show the

accuracies of hotel and book review sentiment classifi-

cation tasks, respectively, with CNN for training with-

out model reuse (No-Reuse), training on a random se-

lected model (Rand1), and on a model with the maxi-

mum P (T |M) score (Top1). When the training data

size is small, Rand1 and Top1 both achieve an accu-

racy much higher than No-Reuse, demonstrating the

effect of model reuse when training data is very lim-

ited. Specifically, the accuracies are 0.696, 0.728 and

0.814 respectively for the hotel task with the data size

of 1 000, and Top1 reveals about 12% accuracy improve-

ment. And the training for No-Reuse cannot converge

when the data size is smaller than 4 000, while the ac-

curacy of Top1 gradually increases. For the book task

Table 5. Average F1(DT (T)|M) of Model Reuse Potential Estimation for Name Entity Recognition

K RANDOM Rel(M,T) (TF-IDF) Rel(M,T) (EMB) Qual(M) P (T |M) (TF-IDF) P (T |M) (EMB) BEST

1 0.16 0.43 0.10 0.20 0.43 0.20 0.43

2 0.16 0.33 0.20 0.31 0.33 0.31 0.34

3 0.16 0.30 0.23 0.25 0.30 0.25 0.30

4 0.16 0.24 0.22 0.25 0.25 0.25 0.26

Table 6. Computation Details of Model Reuse Potential Estimation for the Hotel Task of Sentiment Classification

Item waimai weibo cloth compu fruit pda shamp stock shop inews movie dianp

Qual(M) 0.75 0.59 0.82 0.75 0.85 0.84 0.83 0.58 0.82 0.53 0.71 0.73

Rel(M,T) 0.15 0.09 0.14 0.16 0.14 0.14 0.13 0.03 0.15 0.02 0.08 0.25

acc(hotel) 0.41 0.63 0.72 0.70 0.73 0.70 0.69 0.55 0.74 0.30 0.72 0.76

acc(book) 0.55 0.47 0.54 0.54 0.58 0.56 0.59 0.60 0.58 0.52 0.70 0.63

Note: compu and dianp are short for computer task and dianping task respectively, and acc(hotel) and acc(book) are short for
acc(DT (T)|M) for the hotel task and the book task respectively.

Jian-Wei Cui et al.: Efficient Model Store and Reuse in an OLML Database System 799

0.65
0.67
0.69
0.71
0.73
0.75
0.77
0.79
0.81
0.83
0.85

500 1 500 2 500 3 500 4 500 5 500

A
c
c
u
ra

c
y

Data Size

No-Reuse

Rand1

Top1
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 5 000 10 000 15 000 20 000

A
c
c
u
ra

c
y

Data Size

No-Reuse

Rand1

Top1

0.65

0.70

0.75

0.80

0.85

0.90

500 1 500 2 500 3 500 4 500 5 500

A
c
c
u
ra

c
y

Data Size

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 5 000 10 000 15 000 20 000

A
c
c
u
ra

c
y

Data Size

No-Reuse

Rand1

Top1

No-Reuse

Rand1

Top1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 200 300 400 500 600 700 800

F

Data Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

100 300 500 700 900

F

Data Size

No-Reuse

Rand1

Top1

No-Reuse

Rand1

Top1

(c)

(a)

(e)

(d)

(b)

(f)

Fig.1. Effect of single model reuse. (a) Accuracy for hotel review sentiment classification with CNN. (b) Accuracy for book review
sentiment classification with CNN. (c) Accuracy for hotel review sentiment classification with Transformer. (d) Accuracy for book
review sentiment classification with Transformer. (e) F1 score for movie entity recognition with RoBERTa-Tiny. (f) F1 score for book
name entity recognition with RoBERTa-Tiny.

with the data size of 1 000, the accuracies are 0.532,

0.603, and 0.710 respectively, and Top1 reveals about

18% accuracy improvement.

When the training data size becomes larger, the

accuracy of No-Reuse will exceed that of Rand1, but

still lower than that of Top1 even on all training data.

Specifically, the accuracies are 0.811, 0.752 and 0.840

respectively for the hotel task with the data size of

5 000, and Top1 reveals about 3% accuracy improve-

ment. For the book task with the data size of 20 000,

the accuracies are 0.765, 0.757, and 0.775 respectively,

and Top1 reveals about 1% accuracy improvement.

Figs.1(c) and 1(d) show the accuracy of single model

reuse with Transformer, which shows similar results

to Figs.1(a) and 1(b). Compared with CNN, we can

see the accuracy of Transformer improves faster as the

training data size increases. Figs.1(e) and 1(f) show

the F1 score of single model reuse for movie and book

entity recognition tasks, respectively. We can see Top1

and Rand1 both perform significantly better compared

with No-Reuse as the training data size is more lim-

ited. In summary, Fig.1 demonstrates model reuse usu-

ally improves the training effect significantly when the

training data is very limited, and selecting a model with

high reuse potential could benefit the training effect for

a large range of training the data size.

800 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

4.4 Multi Models Reuse

We study the effect of multi models reuse when

training data is limited in this subsection. Table 7 illus-

trates the accuracy for hotel and book review sentiment

classification tasks with CNN where data size is 1 000,

2 000 and 4 000. For AdaReuse, the hyper-parameter of

maximum weight β is set to 2k. In Table 7, Rand2 (or

Rand3) and Top2 (or Top3) represent the accuracy of

model ensemble on 2 (or 3) models randomly selected

or with the maximum P (T |M) scores. Ada2 (or Ada3)

means the AdaReuse algorithm with K equal to 2 (or

3).

As shown in Table 7, the accuracies of different set-

tings for Top2 (Top3) and Ada2 (Ada3) are both higher

than those of Rand2 (Rand3), illustrating the effective-

ness of model reuse potential estimation. Meanwhile,

Top2 (Top3) and Ada2 (Ada3) both achieve higher ac-

curacies compared with Top1 for the data size of 1 000

and 2 000, showing the model ensemble could also im-

prove the accuracy for high reuse potential models when

training data is limited. And Ada2 (Ada3) performs

better than Top2 (Top3), demonstrating model diver-

sity introduced by AdaReuse could help to improve

the ensemble effect. On the other hand, Top3 does

not always achieve a higher accuracy compared with

Top2, indicating the ensemble of more models with

lower accuracies cannot always improve the training ef-

fect. Therefore, it is necessary to search for the best

base model number in AdaReuse. For the data size of

4 000, Top2 (Top3) and Ada2 (Ada3) cannot improve

the accuracy significantly compared with Top1. This

is because the base models will all achieve higher ac-

curacies when training data is more sufficient. In this

situation, the relative improvement of model ensemble

will become small.

Table 8 shows the accuracies of hotel and book re-

view sentiment classification tasks with Transformer,

which have similar results to Table 7. Table 9 illus-

trates the F1 score of movie and book entity recog-

nition tasks with RoBERTa-Tiny. We can see Top2

(Top3) and Ada2 (Ada3) both achieve F1 scores signifi-

cantly higher than those of Rand2 (Rand3). However,

Top2 and Top3 perform worse than Top1, and Ada2 and

Ada3 could achieve F1 scores slightly higher than Top1

only in some settings. The reason is that the F1 score

of the model for Top1 is significantly higher than those

of other models in the model repository, making com-

bining other trained models together with the model of

Top1 unable always to improve the result. Based on the

above analysis, we can conclude that multi-model reuse

tends to perform better when there are more models

Table 7. Accuracy of Multi Model Reuse for Hotel and Book Review Sentiment Classification with CNN

Model Reuse Hotel Task Book Task

Algorithm
Size = 1 000 Size = 2 000 Size = 4 000 Size = 1 000 Size = 2 000 Size = 4 000

Rand1 0.754 0.774 0.781 0.609 0.641 0.669

Rand2 0.790 0.797 0.802 0.656 0.671 0.687

Rand3 0.790 0.804 0.811 0.658 0.685 0.701

Top1 0.809 0.823 0.833 0.717 0.728 0.744

Top2 0.828 0.831 0.840 0.710 0.731 0.737

Top3 0.823 0.833 0.839 0.689 0.712 0.723

Ada2 0.835 0.835 0.836 0.721 0.731 0.744

Ada3 0.835 0.837 0.836 0.721 0.737 0.744

Table 8. Accuracy of Multi Model Reuse for Hotel and Book Review Sentiment Classification with Transformer

Model Reuse Hotel Task Book Task

Algorithm
Size = 1 000 Size = 2 000 Size = 4 000 Size = 1 000 Size = 2 000 Size = 4 000

Rand1 0.788 0.815 0.822 0.643 0.662 0.698

Rand2 0.803 0.820 0.832 0.685 0.685 0.713

Rand3 0.808 0.823 0.839 0.692 0.692 0.720

Top1 0.823 0.835 0.832 0.700 0.722 0.743

Top2 0.834 0.840 0.845 0.717 0.720 0.736

Top3 0.833 0.835 0.837 0.705 0.722 0.734

Ada2 0.838 0.842 0.848 0.710 0.723 0.744

Ada3 0.838 0.843 0.848 0.719 0.726 0.744

Jian-Wei Cui et al.: Efficient Model Store and Reuse in an OLML Database System 801

Table 9. F1 Score of Multi-Model Reuse for Movie and Book Name Entity Recognition with RoBERTa-Tiny

Model Reuse Movie Task Book Task

Algorithm
Size = 100 Size = 200 Size = 400 Size = 100 Size = 200 Size = 400

Rand1 0.320 0.424 0.581 0.190 0.372 0.481

Rand2 0.282 0.532 0.606 0.229 0.441 0.516

Rand3 0.355 0.530 0.610 0.252 0.474 0.523

Top1 0.669 0.669 0.672 0.533 0.538 0.569

Top2 0.614 0.632 0.646 0.505 0.511 0.543

Top3 0.625 0.634 0.660 0.505 0.527 0.558

Ada2 0.669 0.669 0.672 0.533 0.538 0.569

Ada3 0.672 0.678 0.672 0.533 0.538 0.570

with comparable reuse potential existing in the model

repository, and the improvement tends to be more sig-

nificant when the training data size is very limited.

4.5 Comparison with MoreBoost and LEEP

We compare AdaReuse with MoreBoost [19] and

LEEP [15] for multi-model reuse. Particularly, when

selecting existing models to reuse, MoreBoost needs a

reusability indicator to indicate whether a training sam-

ple of the training task is similar to the training data of

a model in the model repository [19]. We therefore train

a binary classifier for each existing model with training

data of the existing model serving as positive samples,

and the same number of data items randomly sampled

from training data of other existing models serving as

negative samples. Then, the positive possibility of the

classifier for an existing model is used as reusability in-

dicator. For LEEP, the LEEP scores of existing models

are computed based on the prediction results of training

data of the training tasks.

Table 10 shows the effect comparison among

AdaReuse, MoreBoost and LEEP in terms of hotel and

book review sentiment classifications (SC). We can see

AdaReuse performs better than MoreBoost in all set-

tings. This is because AdaReuse considers not only the

domain relativeness but also the model quality when se-

lecting an existing model to reuse. On the other hand,

AdaReuse also performs better than LEEP in most set-

tings, demonstrating the effectiveness of the model se-

lection and model diversity introducing methods pro-

posed in this paper.

For efficiency comparison, MoreBoost compares all

the existing models by reusability indicator to select

only one model to reuse. Therefore, the time comple-

xity for model selection is O(K) when selecting K mod-

els to reuse. LEEP needs to compute the prediction

results for all the existing models on the training data

of the training task. Therefore, the time complexity

for model selection is O(N) when there are N existing

models. On the other hand, AdaReuse only needs to

compute the domain relatedness, which is a cosine simi-

larity between two vectors, and select K models after

comparing all the existing models only once. Therefore,

the time complexity for model selection of AdaReuse

could be viewed as O(1). Based on the above compa-

rison, we can see AdaReuse is more scalable when there

are more existing models in the model repository. Con-

sequently, AdaReuse is more suitable for the OLML

database to online respond to the training tasks.

4.6 Efficiency Study

In this subsection, we study the training efficiency

of AdaReuse for sentiment classification. The compa-

rison is conducted in terms of training steps for diffe-

rent methods to achieve the same accuracy. Table 11

shows the comparison result. We set the accuracy tar-

Table 10. Accuracy Comparison of AdaReuse, MoreBoost and LEEP in Terms of Hotel and Book Review SC

Model Reuse Hotel Task Book Task
Algorithm

Size = 1 000 Size = 2 000 Size = 4 000 Size = 1 000 Size = 2 000 Size = 4 000

Ada2 (CNN) 0.835 0.835 0.836 0.721 0.731 0.744

MoreBoost2 0.811 0.825 0.825 0.721 0.723 0.740

LEEP2 0.809 0.831 0.840 0.703 0.724 0.737

Ada3 (CNN) 0.835 0.837 0.836 0.721 0.737 0.744

MoreBoost3 0.812 0.821 0.833 0.718 0.727 0.739

LEEP3 0.817 0.835 0.835 0.706 0.729 0.742

802 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

Table 11. Training Efficiency Comparison (Accuracy/Number of Steps)

Task Ada2@1000 MoreData DataSel@4000 DataSel@8000 DataSel@20000

Hotel 0.835/186 0.810/468 0.720/375 0.772/750 0.808/1 875

Book 0.731/186 0.731/1404 0.625/375 0.682/750 0.679/1 875

get as the accuracy of Ada2 when the training data

size is 1 000 in Table 7. MoreData means training

a single model from scratch with more training data.

Data selection is another way to improve the training

effect with limited data by selecting task relevant data

from other domains. In our situation, we first train

a data selection classifier which uses training data of

training task as positive samples, and randomly sam-

ples the same amount of data from the training data

of other tasks as negative samples. Then, the posi-

tive probability of training data from other tasks is

predicted by the classifier, with which the data sam-

ples with the highest positive probabilities are selected.

DataSel@4000 means firstly training a base model on 4

000 selected data samples, and then continuously train-

ing on 1 000 data samples of the training task.

In Table 11, Ada2@1000 achieves about 0.835 and

0.731 accuracy after 186 steps training as it trains the

two base models for ensemble respectively. For the ho-

tel task, MoreData trains a single model on all the

training data, which takes 468 steps on 5 000 training

data. However, the accuracy does not achieve 0.835.

For the book task, MoreData achieves 0.731 accuracy

when training on about 15 000 data samples, which

takes about 1 404 steps. This demonstrates AdaReuse

could achieve a higher accuracy compared with the

model trained on 5x larger training data with at least

2.5x more training steps. More importantly, as la-

belling training data is usually time consuming, la-

belling 5x larger data may take more time than train-

ing. For data selection methods, DataSel@8000 and

DataSel@20000 both achieve a higher accuracy com-

pared with DataSel@4000 as more relevant data is se-

lected. However, DataSel@20000 cannot always per-

form better than DataSel@8000 as more selected data

is not relevant enough. Although DataSel@8000 spends

4x training steps and DataSel@20000 spends 10x train-

ing steps, they fail to achieve the same accuracy of

Ada2@2000. This also illustrates the efficiency and ef-

fectiveness of AdaReuse, as the data selection classifier

cannot achieve a high enough accuracy when training

data is limited and the model must be trained from

scratch on selected data.

5 Implementation of a Prototype System

In this section, we first introduce the architecture of

OLML database prototype, and then conduct a usabil-

ity case study.

5.1 System Architecture

Fig.2 shows the architecture of the OLML database

prototype system.

Language Layer. The layer is built based on UER [6]

which provides universal representation for neural net-

work architecture and training process of NLP tasks.

The layer accepts a training task as a SQL-like descrip-

tion query, which simplifies training options issuing.

Create Model ‘‘sentiment_analysis’’
from ‘‘hotel_review’’

where reuse_num= 2

shop

dianping

hotel_shop

hotel_dianping

Training Request

Selected Models

Continuous Trained

Models

Ensemble

Models out of
the System

Imports

OLML Database

Language Layer:
SQL-Like Description Language

Training Layer

User Specified Automatically Reuse

Access Layer

Mode Access Data Access

Task
Type

Sentence
Binary

Pair Binary
...

Storage Layer
Domain

Relatedness
Model/Data

Quality

Fig.2. System architecture of OLML database.

Jian-Wei Cui et al.: Efficient Model Store and Reuse in an OLML Database System 803

Fig.3(a) shows the example for the shop task, where

the training plan is specified by the user. The Cre-

ate keyword indicates the model name which is the

unique identifier for the training task. The From key-

word specifies the data file directory containing train-

ing data, validate data and test data, where the file

format explains the task type, such as single sentence

binary classification and sentence pair binary classifi-

cation. And the Where keyword specifies the training

options, where only a few necessary options must be

set by the user as most options have suitable default

values. Fig.3(b) shows the SQL-like query for training

the hotel task, where the neural network architecture is

not specified. The system will automatically select and

reuse two trained models to achieve a high accuracy.

Create Model shop_cls

From ‘‘shop_review’’

Where

encoder =‘‘CNN’’

epcho_num = ‘‘3’’

Create Model hotel_cls

From ‘‘hotel_review’’

Where

reuse_algo =‘‘AdaRe’’

reuse_num= ‘‘2’’

Fig.3. SQL-like queries for the hotel task. (a) Training plan by
user. (b) Automatically reuse.

An advantage of the SQL-like language is that the

OLML database could be viewed as a natural exten-

sion of the traditional database system. For example,

the model could be extended as a built-in data type

of database where training options could be managed

by the meta-table. Meanwhile, the training data path

could also be a database table. In this way, the model

could be trained inside the database, which avoids mov-

ing data out of the database system.

Training Layer. This layer executes the training

plan for a training task. The training plan could be

specified by the user or generated automatically by im-

plementing the AdaReuse algorithm. All the trained

models will be stored in the system for future reuse.

Access Layer. This layer provides high-level data

read and write interfaces, such as reading K models

with the highest P (T |M) scores for the training task,

and reading a sample of training data of some trained

model.

Storage Layer. This layer stores models by task type

and associates various data artefacts with correspond-

ing models. Specifically, each model is represented as a

domain vector with model quality, which enables mod-

els with high reuse potential for a training task to be se-

lected efficiently. Then, the training options are stored

as a configuration file, and associated with the model

together with training data, developing data and test

data, etc.. This supports access to various data arte-

facts through the model name. For models trained in

the OLML database, they will be stored in the system

by default. For available models out of the system, they

could be converted into UER format and imported into

the system.

The benefit of such a layered design is that each

layer provides APIs with clear semantics to its upper

layer and could be extended independently. For exam-

ple, if we need to add new data selection algorithms in

the training layer, only slight changes need to be done

in other layers, such as adding “data selection” option

in the language layer. Consequently, the prototype sys-

tem could be extended to store and reuse more types

of data artefacts.

5.2 Usability Study

We study the implementation of the training task

in Fig.3(b). Fig.4 demonstrates the result. The system

firstly computes reuse potential scores for the trained

models, where the computation only takes less than 1

second for 12 trained models. Then, the training plan

will be constructed by the AdaReuse algorithm with

the models of dianping task and shop task selected as

they have the maximum P (T |M) scores. After that,

the iterative training of AdaReuse starts. The training

for each selected model takes about six seconds as the

training data size is small. Then, key information, such

as confusion matrix, accuracy and contribution ratio,

will be computed. When the iterative training finishes,

the best base model number is searched and the accu-

racy of ensemble is shown. The whole training process

takes about 24.5 seconds on one Nvidia V100 GPU, and

achieves about 0.835 accuracy for the hotel task. And

as stated above, the continuously trained models from

the dianping task and the shop task will be saved in the

storage layer as models for the hotel task. The domain

vectors have been computed and model quality will be

computed offline immediately in the background. In

this way, these trained models could be reused in new

tasks quickly.

6 Conclusions

This paper proposed the OLML database which

stores trained models and reuses these models in

a new training task to improve the training effect.

The AdaReuse algorithm was developed in the OLML

804 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

Fig.4. Implementation details of Fig.3(b).

database to support efficient model selection and ef-

fective model reuse. The experimental results demon-

strated that AdaReuse could significantly improve the

training effect for sentiment analysis and name entity

recognition tasks when the training data size is small.

Meanwhile, the usability studies illustrated that the

prototype system could properly store the trained mod-

els and form a model training-and-reuse cycle.

As the experiments conducted in this paper are all

based on NLP tasks, how to support machine learning

tasks of other modal in the OLML database could be

studied in the future work.

References

[1] Yosinski J, Clune J, Bengio Y, Lipson H. How transfer-

able are features in deep neural networks? arXiv:1411.1792,

2014. https://arxiv.org/abs/1411.1792, Nov. 2020.

[2] Wang W, Wang S, Gao J, Zhang M, Chen G, Ng T K, Ooi B

C. Rafiki: Machine learning as an analytics service system.

arXiv:1804.06087, 2018. https://arxiv.org/abs/1804.06087,

Apr. 2021.

[3] Zhang W, Jiang J, Shao Y, Cui B. Efficient diversity-driven

ensemble for deep neural networks. In Proc. the 36th IEEE

International Conference on Data Engineering, Apr. 2020,

pp.73-84. DOI: 10.1109/ICDE48307.2020.00014.

[4] Derakhshan B, Mahdiraji A R, Abedjan Z, Rabl T, Markl

V. Optimizing machine learning workloads in collaborative

environments. In Proc. the 2020 ACM SIGMOD Inter-

national Conference on Management of Data, Jun. 2020,

pp.1701-1716. DOI: 10.1145/3318464.3389715.

[5] Schapire R E. Explaining AdaBoost. In Empirical Infer-

ence, Schölkopf B, Luo Z, Vovk V (eds.), Springer, 2013,

pp.37-52. DOI: 10.1007/978-3-642-41136-6 5.

[6] Zhao Z, Chen H, Zhang J, Zhao X, Liu T, Lu W, Chen

X, Deng H, Ju Q, Du X. UER: An open-source toolkit for

pre-training models. arXiv:1909.05658, 2019. https://arxi-

v.org/abs/1909.05658, April 2021.

[7] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation

of word representations in vector space. arXiv:1301.3781,

2013. https://arxiv.org/abs/1301.3781, Jan. 2021.

[8] Pennington J, Socher R, Manning C D. Glove: Global

vectors for word representation. In Proc. the 2014 Confe-

rence on Empirical Methods in Natural Language Process-

ing, Oct. 2014, pp.1532-1543. DOI: 10.3115/v1/D14-1162.

[9] Zhao Z, Liu T, Li S, Li B, Du X. Ngram2vec: Learning

improved word representations from ngram co-occurrence

statistics. In Proc. the 2017 Conference on Empirical Meth-

ods in Natural Language Processing, Sept. 2017, pp.244-

253. DOI: 10.18653/v1/D17-1023.

[10] Dai A M, Olah C, Le Q V. Document embedding with

paragraph vectors. arXiv:1507.07998, 2015. https://arxiv.o-

rg/abs/1507.07998, April 2021.

[11] Axelrod A, He X, Gao J. Domain adaptation via pseudo

in-domain data selection. In Proc. the 2011 Conference on

Empirical Methods in Natural Language Processing, Jul.

2011, pp.355-362.

[12] Chen B, Huang F. Semi-supervised convolutional networks

for translation adaptation with tiny amount of in-domain

data. In Proc. the 20th SIGNLL Conference on Computa-

tional Natural Language Learning, Aug. 2016, pp.314-323.

DOI: 10.18653/v1/K16-1031.

https://doi.org/10.1109/ICDE48307.2020.00014
https://doi.org/10.1145/3318464.3389715
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D17-1023
https://doi.org/10.18653/v1/K16-1031

Jian-Wei Cui et al.: Efficient Model Store and Reuse in an OLML Database System 805

[13] Pan S J, Yang Q. A survey on transfer learning. IEEE

Transactions on Knowledge and Data Engineering, 2010,

22(10):1345-1359. DOI: 10.1109/TKDE.2009.191.

[14] Freitag M, Al-Onaizan Y. Fast domain adaptation for neu-

ral machine translation. arXiv:1612.06897, 2016. https://a-

rxiv.org/abs/1612.06897, Dec. 2020.

[15] Zhang C, Kumar A, Ré C. Materialization optimizations

for feature selection workloads. ACM Transactions on

Database Systems, 2016, 41(1): Article No. 2. DOI: 10.11-

45/2877204.

[16] Nguyen C, Hassner T, Seeger M, Archambeau C. LEEP:

A new measure to evaluate transferability of learned repre-

sentations. In Proc. the 37th International Conference on

Machine Learning, July 2020, pp.7294-7305.

[17] Dietterich T G. Ensemble methods in machine learning. In

Proc. the 1st International Workshop on Multiple Classifier

Systems, Jun. 2000, pp.1-15. DOI: 10.1007/3-540-45014-

9 1.

[18] Fu F, Jiang J, Shao Y, Cui B. An experimental evalua-

tion of large scale GBDT systems. Proceedings of the

VLDB Endowment, 2019, 12(11): 1357-1370. DOI: 10.147-

78/3342263.3342273.

[19] Breiman L. Stacked regressions. Machine Learning, 1996,

24(1): 49-64. DOI: 10.1023/A:1018046112532.

[20] Ding Y X, Zhou Z H. Boosting-based reliable model reuse.

In Proc. the 12th Asian Conference on Machine Learning,

November 2020, pp.145-160.

[21] Miao H, Li A, Davis LS, Deshpande A. ModelHub: Towards

unified data and lifecycle management for deep learning.

arXiv:1611.06224, 2016. https://arxiv.org/abs/1611.06224,

Nov. 2020.

[22] Vartak M, Subramanyam H, Lee W E, Viswanathan S, Hus-

noo S, Madden S, Zaharia M. MODELDB: A system for

machine learning model management. In Proc. the Work-

shop on Human-in-the-Loop Data Analytics, June 26–July

1, 2016, Article No. 14. DOI: 10.1145/2939502.2939516.

[23] Bhardwaj A, Bhattacherjee S, Chavan A, Deshpande A, El-

more A J, Madden S, Parameswaran A G. Datahub: Collab-

orative data science & dataset version management at scale.

arXiv:1409.0798, 2014. https://arxiv.org/abs/1409.0798,

April 2021.

[24] Kraska T, Talwalkar A, Duchi J C, Griffith R, Franklin M J,

Jordan M I. MLbase: A distributed machine-learning sys-

tem. In Proc. the 6th Biennial Conference on Innovative

Data Systems Research, Jan. 2013.

[25] Xin D, Ma L, Liu J, Macke S, Song S, Parameswaran A.

HELIX: Accelerating human-in-the-loop machine learning.

arXiv:1808.01095, 2018. https://arxiv.org/abs/1808.01095,

April 2021.

[26] Xu L, Dong Q, Liao Y, Yu C, Tian Y, Liu W, Li L,

Liu C, Zhang X. CLUENER2020: Fine-grained named

entity recognition dataset and benchmark for Chinese.

arXiv:2001.04351, 2020. https://arxiv.org/abs/2001.04351,

Jan. 2021.

[27] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones

L, Gomez A N, Kaiser L, Polosukhin I. Attention is all

you need. arXiv:1706.03762, 2017. https://arxiv.org/ab-

s/1706.03762, April 2021.

[28] Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy

O, Lewis M, Zettlemoyer L, Stoyanov V. RoBERTa: A

robustly optimized BERT pretraining approach. arXiv:19-

07.11692, 2019. https://arxiv.org/abs/1907.11692, April

2021.

Jian-Wei Cui is currently a Ph.D.

candidate in the Key Laboratory of

Data Engineering and Knowledge

Engineering of Ministry of Education,

and School of Information at Renmin

University of China, Beijing. His

research interests include natural lan-

guage processing, machine translation

and DB4AI. He is a member of CCF.

Wei Lu is currently an associate

professor in the Key Laboratory of

Data Engineering and Knowledge En-

gineering of Ministry of Education, and

School of Information, Renmin Univer-

sity of China, Beijing. He received his

Ph.D. degree in computer science from

Renmin University of China, Beijing, in

2011. His research interests include query processing in

the context of spatiotemporal, cloud database systems and

applications. He is a member of CCF.

Xin Zhao received her B.S. degree

in computer science from Renmin

University of China, Beijing, in 2018.

She is currently a postgraduate in

Renmin University of China, Beijing,

and was an intern with the Tencent

Technology and Engineering Group

(TEG), Beijing.

Xiao-Yong Du is a professor in

the Key Laboratory of Data Engi-

neering and Knowledge Engineering of

Ministry of Education, and School of

Information at Renmin University of

China, Beijing. He received his Ph.D.

degree in computer science from Nagoya

Institute of Technology, Nagoya, in

1997. His research focuses on intelligent information

retrieval, high-performance database and unstructured

data management. He is a fellow of CCF.

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}4\discretionary {-}{}{}5/2877204
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}4\discretionary {-}{}{}5/2877204
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.14\discretionary {-}{}{}7\discretionary {-}{}{}7\discretionary {-}{}{}8/3342263.3342273
https://doi.org/10.14\discretionary {-}{}{}7\discretionary {-}{}{}7\discretionary {-}{}{}8/3342263.3342273
https://doi.org/10.1023/A:1018046112532
https://doi.org/10.1145/2939502.2939516

	1 Introduction
	2 Related Work
	2.1 Text Data Relatedness
	2.2 Model Reuse and Ensemble
	2.3 Data Management System for Machine Learning

	3 Model Reuse
	3.1 Problem Definition
	3.2 Model Selection
	3.3 Model Reuse

	4 Experiment
	4.1 Datasets and Experimental Settings
	4.2 Model Selection
	4.3 Single Models Reuse
	4.4 Multi Models Reuse
	4.5 Comparison with MoreBoost and LEEP
	4.6 Efficiency Study

	5 Implementation of a Prototype System
	5.1 System Architecture
	5.2 Usability Study

	6 Conclusions

