
Situ LY, Zuo ZQ, Guan L et al. Vulnerable region-aware greybox fuzzing. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 36(5): 1212–1228 Sept. 2021. DOI 10.1007/s11390-021-1196-0

Vulnerable Region-Aware Greybox Fuzzing

Ling-Yun Situ1,2, Member, CCF, Zhi-Qiang Zuo1,∗, Member, CCF, Le Guan3, Member, ACM, IEEE
Lin-Zhang Wang1,∗, Distinguished Member, CCF, Xuan-Dong Li1, Fellow, CCF
Jin Shi2, Member, CCF, and Peng Liu4, Member, ACM, IEEE

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2School of Information Management, Nanjing University, Nanjing 210023, China
3Department of Computer Science, University of Georgia, Athens, GA 30602, U.S.A.
4College of Information Sciences and Technology, Pennsylvania State University, State College, PA 16802, U.S.A.

E-mail: {stly, zqzuo}@nju.edu.cn; leguan@cs.uga.edu; {lzwang, lxd, shijin}@nju.edu.cn; pliu@ist.psu.edu

Received December 3, 2020; accepted May 18, 2021.

Abstract Fuzzing is known to be one of the most effective techniques to uncover security vulnerabilities of large-scale

software systems. During fuzzing, it is crucial to distribute the fuzzing resource appropriately so as to achieve the best fuzzing

performance under a limited budget. Existing distribution strategies of American Fuzzy Lop (AFL) based greybox fuzzing

focus on increasing coverage blindly without considering the metrics of code regions, thus lacking the insight regarding which

region is more likely to be vulnerable and deserves more fuzzing resources. We tackle the above drawback by proposing a

vulnerable region-aware greybox fuzzing approach. Specifically, we distribute more fuzzing resources towards regions that

are more likely to be vulnerable based on four kinds of code metrics. We implemented the approach as an extension to AFL

named RegionFuzz. Large-scale experimental evaluations validate the effectiveness and efficiency of RegionFuzz—11 new

bugs including three new CVEs are successfully uncovered by RegionFuzz.

Keywords vulnerability detection, greybox fuzzing, code metrics, resource distribution

1 Introduction

Fuzzing [1, 2], as an automatic testing technique, has

become one of the most effective approaches to explor-

ing security vulnerabilities in modern large-scale soft-

ware and systems. It has been widely adopted by in-

dustries including Google and Microsoft to improve the

reliability and security of their software products. The

core idea of fuzzing is to feed a massive number of valid

or semi-valid inputs to the target program so as to trig-

ger unintended program behaviors by monitoring the

system under testing (SUT).

State-of-the-art fuzzing approaches [3–5] can be clas-

sified into three categories according to the usage

of internal knowledge of target programs. Blackbox

fuzzers [6, 7] are oblivious of the internals of SUT, and

thus less effective relatively. Whitebox fuzzers leverage

heavy-weight program analysis techniques such as taint

analysis [8, 9] or symbolic execution [10, 11] to improve the

effectiveness. However, they can hardly scale due to in-

efficiency of the heavy-weight analysis. Greybox fuzzers

such as American Fuzzy Lop (AFL) 1○, libFuzzer 2○ and

honggfuzz 3○ are in the between. They leverage the

Regular Paper

Invited from Xia Peisu Forum 2020

This work was (partially) supported by the National Key Research and Development Program of China under Grant
No. 2017YFA0700604, the National Natural Science Foundation of China under Grant Nos. 62032010 and 61802168, the Leading-Edge
Technology Program of Jiangsu Natural Science Foundation under Grant No. BK20202001, and the 2021 Double Entrepreneurship Big
Data and Theoretical Research Project of Nanjing University.

∗Corresponding Author (Lin-Zhang Wang and Zhi-Qiang Zuo are the co-advisers of the first author. They contributed equally to
the paper.)

1○https://github.com/google/AFL, May 2021.
2○https://llvm.org/docs/LibFuzzer.html, May 2021.
3○https://github.com/google/honggfuzz, May 2021.

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-021-1196-0

Ling-Yun Situ et al.: Vulnerable Region-Aware Greybox Fuzzing 1213

light-weight program analysis and trivial instrumenta-

tion to collect runtime information (e.g., coverage and

execution time) as feedback, and use the feedback to

guide the fuzzing process with the underlying optimiza-

tion algorithms. Thanks to the tunable flexibility and

effectiveness, greybox fuzzers usually achieve better ef-

ficacy and performance [5].

Generally speaking, as a random testing technique,

a highly effective fuzzing tool is one that can effi-

ciently distribute fuzzing resources. Thus, erroneous

program behaviors could be discovered sooner and ex-

plored more sufficiently under the limited budget. It is

commonly agreed that strategically distributing fuzzing

resources could substantially enhance the efficiency of

fuzzing [12–14]. Leopard [15] defines its metrics at the

function level and computes them based on static ana-

lysis alone. [16] guides symbolic execution to less trav-

eled paths based on the dynamic count of paths cov-

ered. [17] focuses on the paths’ conditions, and performs

an evaluation study of concolic testing strategies.

Key Observations. According to the experience of

fuzzing large-scale real-world programs using AFL, we

summarize some key observations as follows.

1) Coverage is not always strongly correlated with

vulnerability discovery. Growth in coverage (e.g.,

branch coverage) is not a good predictor for the in-

crease in the number of unique crashes. Increasing cov-

erage alone may not lead to more vulnerabilities to be

discovered [18] in limited resources. The key to vulnera-

bility discovery is whether the code region that vulner-

abilities reside is sufficiently explored, rather than just

covered. If a vulnerable region is fuzzed more often,

more vulnerabilities are likely to be detected under the

same budget.

2) Fuzzing resource distribution based on dynamic

metrics alone may cause discrimination for promising

vulnerable regions. Existing fuzzing resource distribu-

tion strategies assign the number of test cases for a

region based on dynamic metrics alone. As a result, re-

gions that are likely to be vulnerable may be less tested.

For example, the dynamic metrics, e.g., the execution

time of path, is used to allocate fuzzing resource. The

longer the execution time of the path, the less the test-

ing resource assigned. The simple strategy ensures the

fuzzing efficiency, but causes the discrimination against

the time-consuming paths, which are usually paths with

long loops or complex algorithms. Thus, bugs that

are usually buried in these time-consuming paths and

could cause denial-of-service attacks, would be hardly

discovered [19].

Limitation. The above key observations reveal

that existing testing resource distribution of AFL-based

greybox fuzzing is unaware of the possible vulnerable

regions. Existing studies aim to increase the coverage

based on specific dynamic metrics without considering

any static code metrics, especially vulnerability-related

static metrics. Therefore, these strategies lack insight

regarding which code region is more likely to be vulner-

able and needs more fuzzing resources. It could cause

discrimination of fuzzing resources distribution against

the promising regions that likely contains vulnerabili-

ties.

Our Work. To tackle the above limitation, we

propose a vulnerable region-aware greybox fuzzing ap-

proach. More specifically, we schedule the fuzzing re-

sources distribution by considering the static code met-

rics as well as existing dynamic metrics. We run the

test cases and collect values of code metrics as feed-

back, which are then utilized to distribute fuzzing re-

sources and strengthen fuzzing regions which are more

likely to be vulnerable. Four types of vulnerability-

related code metrics, namely sensitive, complex, deep

and rarely reachable, are considered. We implemented

the approach based on AFL and devise a novel fuzzer

named RegionFuzz. A comprehensive set of evaluations

are conducted to validate the effectiveness of Region-

Fuzz. Furthermore, RegionFuzz helps us to find 11 new

bugs and identifies three new CVEs.

Contributions. The core contributions are summa-

rized as follows.

• Approach. We proposed a vulnerable region-aware

greybox fuzzing approach, which is able to distribute

the fuzzing resources towards those regions that are

more likely to be vulnerable.

• Tool. We extended AFL by integrating the vul-

nerable region awareness and developed a new greybox

fuzzing tool named RegionFuzz.

• Vulnerability. We performed comprehensive eval-

uations to verify the effectiveness and efficiency of Re-

gionFuzz, which successfully finds 11 unknown bugs and

three new CVEs.

The remainder of this paper is organized as fol-

lows. Section 2 gives the necessary background of Amer-

ican Fuzz Lop. Section 3 presents our key observations

and hypotheses about the resource distribution of AF-

L-based greybox fuzzing. Section 4 introduces the deta-

iled description of code metric aware fuzzing approach,

followed by the implementation of RegionFuzz in Secti-

on 5. We conduct experimental evaluations in Section 6,

1214 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

and discuss related work in Section 7. Finally, we conc-

lude the work and present the future plan in Section 8.

2 American Fuzzy Lop

AFL 4○ is one of the most effective greybox fuzzing

tools. It uses sophisticated genetic algorithms to opti-

mize the new test cases generation by employing low-

level compile-time instrumentation to collect runtime

coverage information. AFL has found numerous sig-

nificant vulnerabilities in dozens of software projects.

Therefore, it has attracted a large and active commu-

nity which contributes to the project constantly. On

top of AFL, a lot of variants such as AFLFast [13],

AFLSmart [14] FairFuzz [20], AFLGo [21], CollAFL [22]

and Angora [23] have been proposed. They focus on the

improvement of certain aspects of AFL respectively.

AFL begins fuzzing the instrumented target pro-

gram using a set of initial seeds. Then, following an evo-

lutionary fuzzing loop, AFL generates optimized seeds

that explore new paths as soon as possible. By this

way, it could evolve towards a higher code coverage. In

the following, we briefly explain the core internals of

AFL for better understanding of the paper.

Instrumentation. AFL instruments the targeted

program at compile-time or run-time. The inserted in-

structions capture basic block transitions, along with

coarse branch-taken hit counts. The information is

stored in a shared memory buffer, which is accessible by

an AFL run-time library. At each branch point, AFL

injects code essentially equivalent to Fig.1.

cur_location / <COMPILE_TIME_RANDOM>,
shared_mem [cur_location^pre_location] ⇁⇁,
pre_location / cur_location >> ,

Fig.1. Instrumentation of AFL.

The variable cur location identifies the current ba-

sic block. It is assigned with a random number at com-

pile time. Buffer shared mem is a 64 KB shared mem-

ory region. Every byte that is set in the array marks a

hit for a transition represented by a tuple (A,B). Here,

tuple (A,B) means a transition from basic block A to

basic block B. The shift operation in line 3 preserves

the directionality of the transition tuple. Without shift-

ing, the transition from A to B would be indistinguish-

able from the transition from B to A.

Seed Selection. AFL determines a seed is “favored”

if it is the fastest and smallest input for any of the

block-to-block transitions it exercises. When selecting

seed, “favored” seeds will be chosen with priority, and

“unfavored” seeds will be ignored with a random proba-

bility.

Energy Assignment. The energy of a seed t refers

to the number of new test cases that will be generated

from t after applying various mutation operators. In the

deterministic stage, AFL determines a seed’s energy ac-

cording to its length. In the havoc stage, AFL firstly

determines the basic energy based on its execution time

and average execution time. Then it updates total en-

ergy based on other attributes such as coverage.

Mutation Selection. Basic mutation operators used

in AFL include “flips”, “interesting”, “arith”, “extra”

and “splice”. In the deterministic stage, these muta-

tion operators are used separately and sequentially to

generate new test cases. In this way, AFL can produce

compact test cases and small diffs between the non-

crashing and crashing inputs. In the havoc stage, AFL

mutates the seed by randomly choosing a sequence of

mutation operators and applies them to random loca-

tions in the seed file.

Feedback Collection. When a new test case is fed to

the targeted program and executed by AFL, the feed-

back information includes code coverage and crash re-

ports will be collected. AFL determines an input to

be interesting only if that input has the contribution

to code coverage. Intuitively, AFL retains inputs that

trigger new block transitions. If the generated input

t
′

crashes the program, it is added to a set of crashing

inputs. A crash is considered “unique” if the associated

execution paths involve any block-to-block transitions

not seen in previously-recorded crashes.

3 Key Observations

We conduct a series of empirical studies of AFL-

based greybox fuzzing and obtain some key observa-

tions about 1) where more resources should be al-

located, and 2) how many resources should be allo-

cated. Furthermore, two hypothesis are proposed about

fuzzing resources distribution.

Observation 1. Coverage Is Not Strongly Correlated

with Unique Crashes Discovery. We empirically study

the correlation between paths’ number and crashes dis-

covery by running AFL for 24 hours over the well-

known benchmarks including LAVA-M [24], Google-

fuzzer-testsuit 5○ and so on. The initial seeds for each

4○https://github.com/google/AFL, May 2021.
5○https://github.com/google/fuzzer-test-suite, May 2021.

Ling-Yun Situ et al.: Vulnerable Region-Aware Greybox Fuzzing 1215

subject are collected from their testing directory. In ad-

dition, AFL’s havoc (i.e., using “-d” argument) mode

is used to fuzz each subject.

Typically, Fig.2 illustrates the results in terms of

path growth and crash growth for each subject program

in LAVA-M [24] benchmark, namely base64, md5sum,

uniq and who. The x axis indicates the fuzzing time.

The y axis on the left represents the number of paths

explored, while that on the right indicates the number

of crashes found. In Fig.2, the red (full) line and green

(dotted) line correspond to the curve of path growth

and crash growth with fuzzing time respectively.

Based on the results shown in Fig.2, we could find

that the path growths of different fuzzing targets fol-

low the same pattern, while the crash growth varies.

As can be seen in Fig.2, the total number of paths

increases quickly at the beginning, and the growth

rate flattens gradually over time. Finally, the slope

of the growth curve is approximately zero, meaning

that no new path is triggered. The intuitive reason

behind the phenomenon is that fuzzing could be mod-

eled as a weighted coupon collection problem with un-

known weight (WCCP) [25]. According to the expla-

nation of the WCCP model, if we assume the total

number of unique paths of one program is N , then

the probability of finding the i-th new unique path

will be Pi = (N − i + 1)/N when i − 1 unique paths

have been found. Similarly, STADS [26] models fuzzing

as the discovery of species, and Böhme Marcel mod-

els coverage-based fuzzing as random walking in the

Markov chain [13]. They all reveal that the probability

of identifying a new unique path becomes lower and

lower.

Different from the path growth, there is no univer-

sal pattern for the occurrence and growth of crashes.

The number growth of crashes found may be relatively

slow at the beginning and becomes dramatic at the later

stages. The reason behind this phenomenon is that the

direct cause of the crash is whether regions that vul-

nerabilities resided are fully explored [26], rather than

covered. Thus, the growth of coverage may improve the

probability of triggering more crashes under the “unlim-

ited” fuzzing resource budget, but the coverage growth

is not strongly correlated to triggering more bugs within

limited resources. Generally speaking, it is true that a

higher coverage leads to more crash discovery under the

0 5 20 2510 15

20

40

60

80

100

120

0.0

0.2

0.4

0.6

0.8

1.0

uniq-path
uniq-crash

Time (h)

0 5 20 2510 15

20

40

60

80

100

120

140

P
a
th

 N
u
m

b
e
r

P
a
th

 N
u
m

b
e
r

P
a
th

 N
u
m

b
e
r

P
a
th

 N
u
m

b
e
r

0

10

20

30

40

50

C
ra

sh
 N

u
m

b
e
r

C
ra

sh
 N

u
m

b
e
r

C
ra

sh
 N

u
m

b
e
r

C
ra

sh
 N

u
m

b
e
r

base64-path
base64-crash

Time (h)

0 5 20 2510 15
0

50

100

150

200

250

0

5

10

15

20

25

30

md5sum-path
md5sum-crash

Time (h)

0 5 20 2510 15

20

40

60

80

100

120

140

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

who-path
who-crash

Time (h)

(b)(a)

(c) (d)

Fig.2. Path and crash growth of LAVA-M. (a) base64. (b) md5sum. (c) uniq. (d) who.

1216 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

unlimited time and computation resources. However, as

shown in Fig.2, it is possible that path coverage grows

rapidly while fewer crashes are found. In other words,

given the limited fuzzing budget, the coverage growth is

not a good predictor of crash growth. Instead, the key

should be whether more vulnerability-residing regions

are sufficiently explored.

Hypothesis 1. Based on the above observations, we

make the following hypothesis for the question, i.e.,

where more resources should be allocated. If we concen-

trate more testing resources on regions that are more

likely to be vulnerable, then more vulnerabilities could

be detected in the given limited fuzzing budget.

Observation 2. Distributing Resource Based on Dy-

namic Metrics Alone May Ignore Promising Vulnera-

ble Regions. Existing energy assignment strategies are

based on dynamic metrics alone. For example, the test

case with a longer execution time would be assigned a

smaller energy. Fig.3 lists the rules used for determin-

ing the basis energy of a test case in AFL. exec us rep-

resents the execute time of test case q, and avg exec us

represents the average execute time. perf score is the

score used for assigning energy. We could obviously

read that the maximal basis energy is 30 times as much

as the minimal basis.

q à exec_us . > avg_exec_usà perf_score / ,

q à exec_us . > avg_exec_usà perf_score / ,

q à exec_us . > avg_exec_usà perf_score / ,

q à exec_us . > avg_exec_usà perf_score / ,

q à exec_us . > avg_exec_usà perf_score / ,

q à exec_us . > avg_exec_usà perf_score / ,

q à exec_us . > avg_exec_usà perf_score / ,

Τ

Τ

Τ

Τ

Τ

Τ

Τ

Fig.3. Basis energy determination rules.

The dynamic metrics based setting prefers to fast

execution paths, which is good for fuzzing efficiency.

However, at the same time, it makes the existing energy

assignment discriminate against promising vulnerable

regions such as the time-consuming paths. They are

usually paths with long loops and complex algorithms,

and usually bury some vulnerabilities that could cause

denial-of-service attacks [19].

We take the code fragment in Fig.4 as an example

to show the discrimination. Considering the two paths

distinguished by buf [0], there are two identical crash

bugs (i.e., crash A, crash B) at the end of each path.

The existing AFL’s energy distribution strategy takes

into account the execution time of the test case, and

the size of the bitmap. Let the execute time of each

instrumentation be one second. The total execute time

of path A to trigger crash A is 10 002 s, while the ex-

ecute time of path B to trigger crash B is 14 s. The

bitmap size of path A and path B is 3 and 7 respec-

tively. Based on the computation formula in AFL, the

energy score of path A is 7.5 (i.e., 10 × 0.75) and the

energy score of path B is 450 (i.e., 300×1.5). That

means the energy of the time-saving path (i.e., path B)

is 60 times as much as that of the time-consuming path

(i.e., path A). However, crash A is much harder to be

detected by AFL than crash B in practice. AFL could

trigger crash B in one second, while it must spend more

than one hour in triggering crash A. Moreover, if we do

not extend the time limit of reporting hang, AFL can-

not detect crash A at all due to the long loop within

the function. The reason is because that AFLs bitflip

quite likely bypasses the single character comparison,

whereas it is hard for AFL to bypass the magic bytes

comparison. This discrimination makes it difficult to

detect vulnerabilities such as crash A behind the long

loop.

ϑinclude εstdio.hε

int main ↼int argc↪ char ⇀⇀ argv↽ı

char buf[],

if↼read↼↪ buf↪ ↽ < ↽ı

printf↼εHum ?\nε↽

exit↼↽,

℘

if↼buf[] // a ↽ı //Path A

char ⇀ arr,

for↼int i / , i < , i⇁⇁↽ı

......

℘

if↼buf[]//ϕgϕ ςς buf[]//ϕhϕ ↽ı

abort↼↽, //Crash A

℘

℘else if↼buf[]//ϕbϕ↽ı //Path B

if↼buf[] // ϕcϕ↽ı

if↼buf[]//ϕdϕ↽ı

if↼buf[]//ϕeϕ↽ı

if↼buf[]//ϕfϕ↽ı

if↼buf[]//ϕgϕ ςς buf[]//ϕhϕ↽ı

abort↼↽, // Crash B

℘else printf↼εerror\nε↽,

℘else printf↼εerror\nε↽,

℘else printf↼εerror\nε↽,

℘else printf↼εerror\nε↽,

℘else printf↼εerror\nε↽,

℘

℘

Fig.4. Code fragment.

Hypothesis 2. Based on the above findings, we make

the following hypothesis for the question, i.e., how much

Ling-Yun Situ et al.: Vulnerable Region-Aware Greybox Fuzzing 1217

resources should be allocated. It may contribute a

more reasonable and effective fuzzing energy assign-

ment strategy by combining dynamic and static met-

rics, especially vulnerability-related static metrics.

4 Approach

We leverage the above observations and hypoth-

esis to improve the fuzzing resources distribution of

AFL-based greybox fuzzing in a principle way. We

want to make AFL become vulnerable region awareness.

Specifically, we automatically identify potential vulner-

able regions and schedule the fuzzing energy assignment

based on the vulnerability-related metrics at run time.

Four kinds of static code metrics are designed, and the

energy to each test case is assigned based on the val-

ues of these metrics. By using the light-weight static

analysis, we extract code metrics including sensitive de-

gree, complexity, depth and rare reachable degree from

the target program. Then, we instrument the values of

each code metric into the target program. At run time,

the reward of a test case is calculated by summing up

the value of code metric along its execution path. The

reward is used to calculate the energy for the test case

that triggers new coverage.

4.1 Code Metrics

Although there is no study claiming a specific code

metric that could perfectly assess vulnerable code re-

gions, some heuristics do exist [15–17]. Typically, the

sensitive regions, complex regions, deep regions, and

rarely reachable regions are more likely to contain vul-

nerabilities due to the code complexity and/or the lack

of adequate testing.

We devise four types of code metrics (i.e., sensitive

degree, complex degree, deep degree and rare-reach de-

gree), and facilitate them to identify potential vulnera-

ble regions and assign fuzzing energy effectively.

Sensitive Degree. The common memory corruption

vulnerabilities (e.g., use-after-free, buffer overflow, for-

mat string) in C/C++ programs are usually caused by

memory and string-related operations. If a code region

contains more memory and string related sensitive func-

tions such as strcpy, memcpy and so on, it is more likely

to include memory-related vulnerabilities [27]. Based on

the above intuition, the sensitive metric is designed to

measure the sensitiveness of the code regions (i.e., basic

blocks) as (1).

Degreesen(BB) = MemOP (BB) + StrOP (BB), (1)

where MemOP (BB) and StrOP (BB) represent the

total numbers of memory and string-related instruc-

tions within the basic block BB, respectively.

Complex Degree. If a code region involves more com-

plex logic, the programmer is prone to introducing vul-

nerabilities during coding [19]. Based on the above in-

tuition, we propose a complexity metric to measure the

complexity of code regions. Different from the comple-

xity measurement for a function, what we measure is

the basic block. Thus, we compute the sum of entry

degree and the number of call instruments of a basic

block as indicators to the complexity of a basic block,

leading to (2) to calculate the complex degree.

Degreecom(BB) = Pred(BB) + CallInst(BB), (2)

where Pred(BB) represents the total number of a ba-

sic block’s predecessors, which is used to represent its

connection complexity. CallInst(BB) represents the

total number of call instruments in the basic block BB,

which is used to represent its logic complexity. In gene-

ral, if logic is implemented with more function call in-

struments, the complexity is higher.

Deep Degree. Deep code regions hide up bugs due

to the lake of sufficient testing. Fuzzing deep regions

achieves more chances to bug discovery [28]. Here, we

define the depth metric, which is utilized to guide

fuzzing into deep regions. For a given basic block BB,

we compute the depth degree of BB as (3).

Degreedeep(BB) =
P (BB).size∑

pi∈P (BB)

1

length(pi)

, (3)

where P (BB) denotes all the possible paths from the

entry block to block BB within the function scope.

length(pi) measures the length of path pi, which is the

total number of blocks along path pi. Note that for

a loop path, we only count the blocks within the loop

once.

Taking Fig.5 as an example, to calculate the depth

degree of basic block G, CFG is firstly traversed us-

ing the deep first search (DFS) algorithm to obtain

all the paths from entry block A to G. They are

p1 = A→ B → D → G, p2 = A→ B → D → F → G,

p3 = A→ C → D → G, p4 = A→ C → D → F → G.

p5 = A → C → E → F → G. The lengthes of the

above paths are 3, 4, 3, 4, 4 respectively. Then, the

depth degree of basic block G is computed as (3), and

the result is 1/(1/3 + 1/4 + 1/3 + 1/4 + 1/4) = 12/17.

Note that the depth is computed intra-procedurally

without considering the distance crossing functions.

1218 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

A

B C

D E

FG

Fig.5. Abstract CFG.

Rare-Reach Degree. It is claimed that less traversed

regions have higher chance to be vulnerable [16]. If a

region has a lower probability of being reached, vulner-

abilities buried in these regions are harder to be de-

tected. Based on this, the rare-reach metric is devised

to indicate the rarely reachable degree of a region.

For a given basic block BB, we first compute the

probability RPro(BB, p) of each path p reaching BB

as shown as (4).

RPro(BB, p) =
1∏length(p)−1

j=0 TPro(Bj , Bj+1)
, (4)

where p indicates a path reaching BB.

TPro(Bj , Bj+1) = 1/successors(Bj), length(p) rep-

resents the length of path p, and successors(Bj) repre-

sents the number of successor basic blocks of the basic

block Bj . We assume the probability of transiting from

one block to any of its successors is equal. Note that this

assumption is not true in reality. But we cannot cal-

culate the transition probability statically. Thus, diffe-

rent from other heavy-weight approaches to computing

a more accurate probability dynamically [17], we adopt

this assumption due to a trade-off between accuracy

and performance. Having the reachable probability for

all the paths reaching BB, the rarely reachable degree

of BB is computed as (5):

Degreerare(BB) =
P (BB).size∑

pi∈P (BB) RPro(BB, pi)
. (5)

For instance, we compute the reachability degree

of block D in Fig.5. Firstly, we get the path list

P (D) containing all the paths from the entry block A

to D. In this example, P (D) consists of two paths

p1 = A → B → D and p2 = A → C → D. Based on

the successor information, we calculate the reachable

probability for each path: RPro(D, p1) = 1/(1/2 × 1)

and RPro(D, p2) = 1/(1/2× 1/2). Finally, the reacha-

bility degree Degreerare(D) = 2/(2 + 4) = 1/3.

4.2 Energy Assignment

A test case is assigned energy according to the

weights of its execution path’s code metric. The path

with a higher metric weight will be assigned with more

fuzzing energy. As a result, these paths that are more

sensitive, more complex, deeper or more rare reachable

will be fuzzed more and fully explored.

For a given test case t, we calculate its reward

Reward(t) at run time. The reward is defined as (6),

where p(t) denotes the list of basic blocks executed by

the test case t, BBi represents the i-th basic block,

n is the total number of basic blocks within p(t), and

DegreeM (BBi) is the reward of a specific block BBi for

metric M . M represents one of four types of code met-

rics, i.e., sensitive degree, complex degree, deep degree

and rare-reach degree.

Reward(t) =

∑
BBi∈p(t) DegreeM (BBi)

p(t).size
. (6)

For example, if a test case t leads to a path p = A →
B → D → G, its reward Reward(t) can be calculated

by (DegreeM (A) + DegreeM (B) + DegreeM (D) +

DegreeM (G))/4.

During fuzzing, we maintain the average reward

AvgReward among all test cases. An energy distribu-

tion factor F for each test case t is computed based on a

seed’s reward (i.e., Reward(t)) and the overall average

reward (i.e., AvgReward) as (7).

F (t) =
Reward(t)

AvgReward
. (7)

The larger the F value of t is, the more the en-

ergy is assigned for t. More specifically, an exponential

energy assignment formula in the following is used to

assign energy based on factor F . Let Eafl(t) be the en-

ergy assigned by AFL’s energy assignment criteria (e.g.,

execution time, coverage) for input t, and E(t) be the

energy assigned by the region-aware distribution mech-

anism. E(t) can be computed as (8):

E(t) = Eafl(t)× 210×F (t). (8)

5 Implementation

We incorporate the aforementioned improvements

into the latest afl-2.52b 6○, and develope a new fuzzing

tool named RegionFuzz .

6○https://lcamtuf.coredump.cx/afl/, Sept. 2021.

Ling-Yun Situ et al.: Vulnerable Region-Aware Greybox Fuzzing 1219

An overview of RegionFuzz is illustrated in Fig.6.

We modify the AFL’s instrumentation, attributes com-

putation, seed selection and energy assignment parts,

which are specified as the green parts of Fig.6. Firstly,

code metrics including a sensitive degree, complexity,

depth, and rare-reach degree are extracted from the tar-

get program. We invoke light-weight intra-procedural

static analysis for this purpose. Then we incorporate

the weights of basic blocks regarding these semantic

metrics through compile-time instrumentation. As a

result, the target program will feedback the rewards of

executed paths. These path semantic rewards are later

used for distributing fuzzing energy. RegionFuzz prefers

test cases gaining higher rewards and assigns more en-

ergy to them. In this way, code regions that are more

likely to contain a vulnerability based on code metrics

will be allocated more fuzzing resources. The details of

implementation are described as follows.

Code Metric Extraction. We implement LLVM

passes to extract weight for code metrics. These metrics

include sensitive degree, complexity, depth, and rare-

reach degree. These passes are invoked by the compiler

afl-clang-preprocess as long as they are enabled. Specifi-

cally, individual passes are enabled by corresponding

environment variables. The weights of basic blocks are

stored in a text file named weight file after processing.

Compile-Time Instrumentation. The weight file

stores the identification of each basic block and its

weight value for each metric. It is used by the com-

piler to instrument the weight values into the target

binary. More specifically, an extended trampoline is in-

jected to each basic block. The trampoline is a piece of

assembly code that is executed after the jump instruc-

tion. It keeps track of the coverage information in form

of control-flow edges. An edge is represented by a byte

in a shared memory of 64 KB. On 64-bit architectures,

we use additional 16 bytes for each edge to record the

reward feedback. Eight bytes are used to accumulate

weight values, while the other eight bytes are used to

record the number of executed basic blocks. The in-

strumentation is implemented as an extension to AFL

LLVM pass.

Energy Assignment. RegionFuzz fuzzes the instru-

mented binary with the proposed energy distribution

strategy. In particular, it first selects seeds and assigns

energy based on run-time rewards of test cases. The

current test case’s reward is then computed by divid-

ing accumulated basic block weight by the number of

exercised basic blocks. Note that this operation is per-

formed for each different semantic metric. RegionFuzz

selects test cases that gain higher rewards and assigns

more energy for them based on the seed’s reward factor.

6 Evaluation

We conducted comprehensive evaluations to vali-

date the effectiveness of vulnerable region-aware grey-

box fuzzing approach, and show the performance of Re-

gionFuzz by comparing it with multiple state-of-the-art

greybox fuzzers.

6.1 Experimental Setup

Research Questions. The experimental evaluations

were performed to answer the following research ques-

Target
App

Static
Analysis

BBWeight Instrument
Binary
App

BBWeight Hash Sanitizers

Trace Feedback

Reward Coverage Security

isInteresting

VulnerabilityDiscard

Compute
Attributes

 Attributes

Execution

Enqueue

Seed
Inputs

Select

t

Assign
Energy

Mutate t'

Seed Queue

Fig.6. Overview of vulnerable region-awareness greybox fuzzing.

1220 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

tions.

• RQ1. How is the effectiveness of RegionFuzz’s

code metrics awareness? (Subsection 6.2)

• RQ2. How is the comparison of RegionFuzz and

related AFL-based greybox fuzzing tools? (Subsec-

tion 6.3)

• RQ3. How is the ability of RegionFuzz to detect

vulnerabilities in practice? (Subsection 6.4)

Measurement Metrics. The experimental evalua-

tions were designed to validate the effectiveness of code

metrics awareness and the performance of RegionFuzz

comparing against state-of-the-art fuzzers. The follow-

ing measurement metrics were calculated to answer the

above research questions:

• the time to trigger the first crash (i.e., first-crash);

• the total number of unique crashes found (i,e.,

#crash);

• the total number of paths explored under a given

time budget (i.e., #path).

For the sake of robust assessments claimed by [29],

we ran each of the fuzzers 10 times and reported the

average values.

Evaluation Subjects. A widely-used benchmark (i.e.,

LAVA-M) and some popular open source projects from

google fuzzer testsuit 7○ were selected as the fuzzing

subjects in Table 1. These subjects are known to have

vulnerabilities, and hence form a ground-truth for eval-

uating fuzzing tools.

More specifically, LAVA-M consists of four buggy

versions of Linux utilities, i.e., base64, md5sum, uniq

and who. It was generated by automatically injecting

known vulnerabilities into the source code [24]. It has

been commonly applied as fuzzing benchmarks in a lot

of research work [13, 20,22,23,28].

In addition, some open source projects were selected

for evaluation based on the following criteria: popula-

rity in the community, development activeness, and di-

versity of categories. We selected several old versions,

namely libxml2-2.9.2, libtiff-3.7.0, bison-3.0.4, clfow-

1.5 and libjpeg-tubo-1.2.0, which contain the known

vulnerabilities and the ground-truth information for

evaluation comparison.

Evaluation Tools. To understand the effectiveness of

our energy distribution strategy, we compared Region-

Fuzz against several state-of-the-art AFL-based grey-

box fuzzers whose source code is publicly accessible.

• AFL is the official latest AFL implementation (i.e.,

AFL-2.52b);

• AFLFast is an AFL variant spending more energy

on low-frequency paths [13];

• FairFuzz is an AFL variant spending more energy

on low-frequency branches [20];

• TortoiseFuzz is an AFL-based greybox fuzzer

based on coverage accounting [30];

• RegionFuzz is our proposed code metric-aware

fuzzer.

Note that we did not make comparison with

AFLGo [21] or Hawkeye [31] as they have different pre-

requisites and goals. AFLGo and Hawkeye are two con-

crete target-directed fuzzing tools, which require prior

knowledge such as pre-provided target locations and

aim to reach them quickly. Instead, RegionFuzz is a

heuristic-based randomly fuzzing tool and aims to suffi-

ciently explore vulnerable regions within a limited bud-

get. It identifies possible vulnerable regions automati-

cally based on code metrics and distributes more energy

for them based on metrics values, in order to strengthen

fuzzing these regions.

Experimental Infrastructure. All the fuzzing tools

in our experiments run on a virtual machine with eight

2 GHz Intel CPU cores and 8 GB RAM on Ubuntu

16.04.

Fuzzing Configuration. The initial seeds for each

project were collected from their testing directory. In

addition, we used AFL’s havoc mode to fuzz each sub-

ject (i.e., using “-d” argument).

Table 1. Benchmark for Evaluation

Project Size Function Description

base64 160.0 KB Encode or decode file

md5sum 221.0 KB Print or check MD5 (128-bit) checksums

uniq 186.0 KB Filter adjacent matching lines from input

who 167.0 KB Print information about users who are currently logged in

libxml2-2.9.2 195.0 KB Parse the XML files

libtiff-3.7.0 219.0 KB Translate tiff file into pdf file

bision-3.0.4 1.8 MB Generate a deterministic LR or a generalized LR

cflow-1.5 609.0 KB Generate a program flow graph

libjpeg-tubo-1.2.0 143.0 KB Switch format of picture

7○https://github.com/google/fuzzer-test-suite, May 2021.

Ling-Yun Situ et al.: Vulnerable Region-Aware Greybox Fuzzing 1221

6.2 Effectiveness of Code Metric Awareness

In order to evaluate the effectiveness of the code

metric awareness, we implemented four fuzzers based

on the official afl-2.52b codebase, each with one code

metric enabled. We named them as RegionFuzz-sen

(sensitive degree), RegionFuzz-com (complex degree),

RegionFuzz-deep (deep degree) and RegionFuzz-rare

(rare-reach degree) respectively. We chose the tra-

ditional AFL as a baseline and executed the four

code metrics-aware greybox fuzzers on the benchmarks.

Note that each subject was fuzzed 10 times, each for 24

hours, in order to reduce the randomness. For each

fuzzer, the three columns report the time in minutes

to trigger the first crash (i.e., first-crash), the number

of unique crashes found (i.e., #crash), and the total

number of paths explored (i.e., #path), respectively.

The Vargha-Delaney statistic is a non-parametric mea-

sure of an effect size [32] and is also the recommended

standard measure for the evaluation of randomized

algorithms [33]. Given a performance measure metric

such as first-crash, #crash or #path, m measures of Re-

gionFuzz and n measures of AFL, the statistics measure

the probability that running RegionFuzz yields better

than running AFL. We used Man-Whitney U test to

measure the statistical significance of performance gain.

Time to Trigger the First Crash. The time to trig-

ger the first crash is an important factor to evaluate

a fuzzing tool with guidance features. The results are

illustrated in Table 2, the improvement represents the

proportion of shortened time of finding the first crash

compared with AFL, and the p value represents the

statistical significance of performance gain. As can

be seen in Table 2, most of the four code metrics-

aware fuzzers outperform AFL in finding the first crash

for most cases, and the statistical significance is obvi-

ous. The advance ratio for detecting the first crash are

38.49%, 30.41%, 20.12%, and 31.32% for the four kinds

of code metric based fuzzing energy distribution strate-

gies, respectively. The p values are 0.21, 0.35, 0.28 and

0.25 respectively. Generally, the sensitive degree guided

fuzzing performs the best in triggering the first crash

over the selected benchmarks. This is reasonable as

sensitive regions bury vulnerabilities due to the usage of

memory- and string-related operations. With the sen-

sitive metrics considered, strengthening fuzzing sensi-

tive paths can quickly discover certain bugs. In specific

cases, the sensitive degree-directed strategy performs

extremely well. For bison-3.0.4, even 95.43% improve-

ment is achieved. It turns out that the code regions

involving more memory- and string-related functions

have a higher probability to contain memory corrup-

tion bugs. Note that all fuzzers have the same results

for libtiff-3.7.0. This is because the crash of libtiff-3.7.0

is located in the entry function, which is readily to be

triggered. All the fuzzers can reach it quickly without

significant time difference.

Unique Crashes. The total number of unique

crashes is another key factor to show the effectiveness

of code metrics-aware fuzzing. Although the crashes

with the same root cause may result in multiple unique

crashes, and some crashes are even not exploitable by

outside attackers, identifying more unique crashes indi-

cates better fuzzing ability and higher chances to find

real vulnerabilities [31]. The results are illustrated in Ta-

ble 3, the improvement represents the proportion of the

improved number of detected crashes compared with

AFL, and the p value represents the statistical signifi-

cance of performance gain. As can be seen in Table 3

apparently, four path semantic-aware fuzzers reported

more unique crashes in most cases than the original

AFL. The average improvements are 14.77%, 24.15%,

18.56%, 27.35% respectively. The p values are 0.36,

0.29, 0.33 and 0.23 respectively, which show that the

performance gains are obvious. For some specific case

Table 2. Time to Trigger the First Crash of Four Code Metrics Based Fuzzing

Project AFL RegionFuzz-sen RegionFuzz-com RegionFuzz-deep RegionFuzz-rare

base64 23.15 15.13 14.16 10.68 19.40

md5sum 3.95 3.23 2.55 1.86 2.81

uniq 1 072.65 751.29 996.78 162.93 659.13

who 937.31 879.33 1 215.32 793.22 1 073.71

libxml2-2.9.2 834.61 209.30 644.45 342.65 233.08

libtiff-3.7.0 0.08 0.08 0.08 0.08 0.08

bision-3.0.4 52.14 2.38 4.88 21.70 14.53

cflow-1.5 22.63 7.07 10.18 34.37 9.42

libjpeg-tubo-1.2.0 117.25 95.63 54.26 244.25 104.9

Improvement – +38.49% +30.41% +20.12% +31.32%

p value – 0.21 0.35 0.28 0.25

1222 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

Table 3. Total Crashes (#crash) of Four Code Metrics Based Fuzzing

Project AFL RegionFuzz-sen RegionFuzz-com RegionFuzz-deep RegionFuzz-rare

base64 53 69 68 61 88

md5sum 32 39 28 43 37

uniq 1 1 1 1 1

who 2 2 2 2 2

libxml2-2.9.2 12 17 8 28 45

libtiff-3.7.0 52 63 61 71 78

bision-3.0.4 161 190 169 212 193

cflow-1.5 166 176 240 160 175

libjpeg-tubo-1.2.0 22 18 45 16 19

Improvement – +14.76% +24.15% +18.56% +27.35%

p value – 0.36 0.29 0.33 0.23

such as libxml2-2.9.2, the improvement by RegionFuzz-

rare reaches 216.66%. The results provide the strong

evidence to the effectiveness of code metrics-aware en-

ergy distribution. The results also indicate that concen-

trating more fuzzing energy on more vulnerable paths

triggers more crashes than maximizing code coverage.

Crashes Growth over Time. Furthermore, we com-

pared RegionFuzz with AFL in terms of the crash

growth over time. We randomly selected two tar-

get projects, namely LAVAM-M-uniq and ImageMagic-

7.0.8, where uniq belongs to the LAVA benchmark and

ImageMagic-7.0.8 is a real-world program. Fig.7 plots

the detailed results.

Apparently, RegionFuzz shows a larger correlation

between the crashes triggered and paths covered than

AFL. It indicates that RegionFuzz performs better than

AFL in both triggering the first crash and the total

number of crashes.

Total Paths. The total number of paths explored

within a limited time budget is another common factor

to measure fuzzing ability. The results are illustrated

in Table 4, the improvement represents the proportion

of improved number of detected crashes compared with

AFL, and the p value represents the statistical signif-

icance of performance gain. As can be seen in Ta-

ble 4, our four code metrics based fuzzers achieve 3.74%,

4.27%, 2.22% and 17.26% improvements, respectively.

The p values are 0.48, 0.47, 0.48, and 0.33 respectively.

The rarely reachable regions-guided strategy is the most

effective in growing paths. Note that RegionFuzz-deep

guides fuzzing to explore the deep code region, which

may cause the fuzzer to be stuck in a deep loop area.

That is why RegionFuzz-deep has poor performance for

cflow-1.5 and libjpeg-tubo-1.2.0 in terms of the total

crashes and paths.

Summary. Based on the above observations, we

could answer RQ1 that code metric awareness is effec-

tive to improving the fuzzing efficiency.

0 2 4 6

Time (h) Time (h)

0

N
u
m

b
e
r

o
f
U

n
iq

u
e
 C

ra
sh

e
s

N
u
m

b
e
r

o
f
U

n
iq

u
e
 C

ra
sh

e
s

1

AFL

RegionFuzz

8 10 0 2 4 6

0

1

13

12
11
10

9
8
7

6
5
4

3
2

AFL
RegionFuzz

8 10

(b)(a)

Fig.7. Growth of unique crashed detected by AFL and RegionFuzz. (a) Growth of unique crashes in LAVAM-M-uniq. (b) Growth of
unique crashes in ImageMagick-7.0.8.

Ling-Yun Situ et al.: Vulnerable Region-Aware Greybox Fuzzing 1223

Table 4. Total Paths (#path) of Four Code Metrics Based Fuzzing

Project AFL RegionFuzz-sen RegionFuzz-com RegionFuzz-deep RegionFuzz-rare

base64 155 131 148 151 288

md5sum 370 379 361 386 412

uniq 126 126 128 132 144

who 202 218 187 224 216

libxml2-2.9.2 6 080 6 415 6 311 6 528 7 331

libtiff-3.7.0 469 541 520 521 571

bision-3.0.4 4 370 4 677 4 529 4 503 5 409

cflow-1.5 1 634 1 624 1 665 1 621 1 782

libjpeg-tubo-1.2.0 2 908 2 813 3 161 2 610 2 978

Improvement – +3.74% +4.27% +2.22% +17.26%

p value – 0.48 0.47 0.48 0.33

6.3 Comparison with Related Tools

We compared RegionFuzz with AFL, AFLFast,

FairFuzz, and TortoiseFuzz on selected benchmarks.

Note that we used the rear-reach code metric in the

following evaluation, because it performs better in both

the path growth and the crash discovery. Table 5 and

Table 6 give the experimental results. Note that the im-

provement represents the proportion of the shortened

time of detecting the first crash, the improved number

of detected crashes, and the improved number of cov-

ered paths compared with AFL, and the p value repre-

sents the statistical significance.

Time to Trigger the First Crash. As shown in Ta-

ble 5 and Table 6, RegionFuzz is good at quickly reach-

ing the first crash. It saves time triggering the first

crash by 31.32% compared with the latest AFL, the p

value is 0.25, and it also outperforms AFLFast, Fair-

Fuzz, and TortoiseFuzz in general.

Unique Crashes. Compared with AFL and

AFLFast, RegionFuzz detects more crashes within 24

hours on the benchmarks. The improvements on the

number of crashes discovered by AFLFast and Region-

Fuzz are 11.38% and 27.35%, respectively. In our

evaluation, FairFuzz performs poorly (i.e., −11.98%).

None of crashes is reported by FairFuzz for base64,

uniq, and who. TortoiseFuzz also performs worse than

AFL in general.

Total Paths. As for the total paths explored, Re-

gionFuzz outperforms all the other four fuzzers. It ac-

complishes 17.26% improvement on average, and the p

value is 0.33. The average improvements by AFLFast,

FairFuzz, and TortoiseFuzz are 7.69%, −9.15%, and

+0.8%, respectively. And the p values of AFLFast,

FairFuzz and TortoiseFuzz are 0.38, 0.33, and 0.19 re-

spectively.

Summary. Based on the above observations, we an-

swer RQ2 that RegionFuzz achieves better performance

than existing AFL-based greybox fuzzing tools.

6.4 Vulnerability Discovery

With the advantage of vulnerable region awareness,

RegionFuzz has helped us to find 11 unknown bugs as

shown in Table 7.

Furthermore, three new CVEs were assigned as

Table 5. Comparison Results of AFL, AFLFast and FairFuzz

Project AFL AFLFast FairFuzz

First-Crash #crash #path First-Crash #crash #path First-Crash #crash #path

base64 23.15 53 155 59.46 52 139 NA 0 116

md5sum 3.95 32 370 2.13 37 378 5.81 30 301

uniq 1 072.65 1 126 901.01 1 132 NA 0 134

who 937.31 2 202 890.33 2 209 NA 0 179

libxml2-2.9.2 534.61 12 6 080 560.23 17 6 402 826.70 22 6 410

libtiff-3.7.0 0.08 52 469 0.08 52 512 0.08 62 490

bison-3.0.4 52.14 161 4 370 42.23 208 5 016 5.68 119 4 014

cflow-1.5 22.65 166 1 634 5.81 177 1 694 33.52 204 1 497

libjpeg-tubo-1.2.0 117.25 22 2 908 58.5 12 3 087 768.03 4 1 681

Improvement − − − +0.54% +11.38% +7.69% −102.55% −11.98% −9.15%

p value − − − 0.49 0.45 0.38 0.23 0.21 0.33

1224 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

Table 6. Comparison Results of AFL, TortoiseFuzz and RegionFuzz

Project AFL TortoiseFuzz RegionFuzz-Rare

First-Crash #crash #path First-Crash #crash #path First-Crash #crash #path

base64 23.15 53 155 9.63 56 115 19.40 88 288

md5sum 3.95 32 370 1.61 15 340 2.81 37 412

uniq 1 072.65 1 126 962.93 1 93 659.13 1 144

who 937.31 2 202 120.46 1 219 1 073.71 2 216

libxml2-2.9.2 534.61 12 6 080 378.12 39 7 019 233.08 45 7 331

libtiff-3.7.0 0.08 52 469 0.08 59 522 0.08 78 571

bison-3.0.4 52.14 161 4 370 4.62 150 3 994 14.53 193 5 409

cflow-1.5 22.65 166 1 634 52.61 157 1 242 9.42 175 1 782

libjpeg-tubo-1.2.0 117.25 22 2 908 79.40 16 2 980 104.90 19 2 978

Improvement – – – +26.11% −1.39% +0.8% +31.32% +27.35% +17.26%

p value – – – 0.18 0.36 0.19 0.25 0.23 0.33

Table 7. Bugs Found by RegionFuzz

Bug ID Project Bug Type URL

Bug-2018-08140 bison-3.0.4 Assert Abortion https://github.com/Distrotech/bison/issues/1

Bug-2018-08141 jasper-2.0.14 Assert Abortion https://github.com/jasper-software/jasper/issues/183

Bug-2018-08142 jasper-2.0.14 Assert Abortion https://github.com/jasper-software/jasper/issues/183

Bug-2018-0822 nasm-2.14rc15 Null Pointer Deference https://bugzilla.nasm.us/show bug.cgi?id=3392507

Bug-2018-0906 nasm-2.14rc15 Stack Overflow https://bugzilla.nasm.us/show bug.cgi?id=3392514

Bug-2018-0910 nasm-2.14rc15 Integer Overflow https://github.com/cyrillos/nasm/issues/4

Bug-2018-0912 nasm-2.14rc15 Stack Overflow https://github.com/cyrillos/nasm/issues/5

Bug-2017-1109 jabberd2-2.6.1 Buffer Overflow https://github.com/jabberd2/jabberd2/issues/159

Bug-2017-1110 jabberd2-2.6.1 Buffer Overflow https://github.com/jabberd2/jabberd2/issues/160

Bug-2018-0822 libtasn1-4.13 Memory Consumption https://gitlab.com/gnutls/libtasn1/-/issues/4

Bug-2018-0518 Zephyr-1.13.0 Null Pointer Deference https://github.com/zephyrproject-rtos/zephyr/issues/7638

follows: 1) CVE-2018-1000654, Denial of Service,

libtasn1-4.13; 2) CVE-2018-1000667, Null Pointer Refe-

rence, nasm-2.14rc15; 3) CVE-2018-1000886, Stack

Overflow, nasm-2.14rc15.

In the following, we use two vulnerabilities (i.e.,

CVE-2018-1000654, CVE-2018-1000667) as case stu-

dies to illustrate the effectiveness of the metrics-based

guidance.

Case 1: CVE-2018-1000654. This is a vulnerability

found by RegionFuzz in libtasn1-4.13, which is able to

cause a denial of service attacks. More specifically, the

CPU usage will reach 100% when running asn1Paser

against the proof-of-concept test case. The detailed

crash dump is shown in Fig.8.

The core dump of the crash information indicates

that there are a lot of string-related operations per-

formed before uncovering the bug. Thus, taking into

account the number of string- and memory-related ope-

rations as sensitive metrics, RegionFuzz will spend more

resources on these regions and paths with a higher sen-

sitive degree, i.e., a larger number of string and mem-

ory related operations. That is why RegionFuzz is able

to identify the vulnerability more quickly (i.e., 3 hours

earlier) than AFL itself in practice. For more detailed

information, please refer to the link 8○.

stly∂ubuntu.~/stly/RegionFuzz/libtasn-./$./as-

nParser-c crashes/id\.↪ rep\..

crashes/id.↪rep... Warning. UniversalString.
crashes/id.↪rep... Warning. VisibleString.
crashes/id.↪rep... Warning. NumericString.
crashes/id.↪rep... Warning. IAStringe.

crashes/id.↪rep... Warning. TeletexString
crashes/id.↪rep... Warning. PrintableString
crashes/id.↪rep... Warning. UniversalString
crashes/id.↪rep... Warning. VisibleString
.....

crashes/id.↪rep... Warning. IAString

crashes/id.↪rep... Warning. TeletexString
crashes/id.↪rep... Warning. PrintableString
Killed

Fig.8. Crash dump of CVE-2018-1000654.

8○https://nvd.nist.gov/vuln/detail/CVE-2018-1000654, May 2021.

Ling-Yun Situ et al.: Vulnerable Region-Aware Greybox Fuzzing 1225

Case 2: CVE-2018-1000667. This is a null pointer

dereference vulnerability found by RegionFuzz in nasm-

2.14rc15. This vulnerability could crash the nasm when

it processes a crafted file. The entry function is as-

semble file(inname, depend ptr), and the crash point is

located in the function do directive(Token * tline) of

preproc.c file. The detailed core dump of the crash

is illustrated in Fig.9, and the vulnerable function is

shown in the Fig.10.

do directive is a complex function with 1 464 lines of

code. tt→text is set to NULL. When calling parse size

with NULL, the crash happens due to the dereference of

a null pointer in function parse size. RegionFuzz takes

the function’s complexity into consideration when dis-

tributing the fuzzing resources. As a complex function,

do directive has the priority to be fuzzed. As such, Re-

gionFuzz is more likely to identify the example vulner-

ability than AFL itself. Please refer to the link 9○ for

more details.

Summary. Based on above observations, we answer

RQ3 that our RegionFuzz could effectively identify new

bugs and unknown vulnerabilities based on the metrics.

stly∂ubuntu.~/stly/RegionFuzz/nasm-.rc$./nasm

-felf ./crashes/id\.\↪rep\.

./crashes/id.↪rep...

error. unknown preprocessor directive `%ar'

./crashes/id.↪rep...

error. `%$locazeBflat'. context stack is empty

./crashes/id.↪rep...

error. `%$locazeBflat'. context stack is empty

./crashes/id.↪rep...

error. `%$locazeBflat'. context stack is empty

./crashes/id.↪rep...

error. label or instruction expected at start line

./crashes/id.↪rep...

error. `%$localsize'. context stack is empty

......

./crashes/id.↪rep...

error. expression syntax error

ASAN.DEADLYSIGNAL

SUMMARY . AddressSanitizer .

SEGV ↼/stly/RegionFuzz/nasm-.rc/nasm⇁xcba↽

// // ABORTING

Fig.9. Crash dump of CVE-2018-1000667.

static int do_directive ↼Token ⇀tline↪ char ⇀⇀output↽

ı

...

switch ↼i↽ ı

case PP_INVALID.

nasm_error↼ERR_NONFATAL↪

εunknown preprocessor directive `%s'ε↪

tline↩> text↽,

return NO_DIRECTIVE_FOUND,

case PP_ARG.

offset / ArgOffset,

do ı

...

/⇀Allow macro expansion of type parameter⇀/

tt/ tokenize↼tline↩> text↽,

↩> text↽,

tt/ expand_smacro↼tt↽,

size / parse_size↼tt

if ↼ωsize↽ ı

nasm_error↼ERR_NONFATAL↪

εInvalid size type for

`%% arg' missing directiveε↽,

free_tlist↼tt↽,

free_tlist ↼origline↽,

return DIRECTIVE_FOUND,

℘

free_tlist ↼tt↽,

...

℘

Fig.10. expand mmac params.

7 Related Work and Discussion

We review related work that improves AFL’s per-

formance in terms of effectiveness and efficiency.

Improving Feedback. Steelix [34] instruments AFL to

collect the progress information of magic bytes compa-

rison, and help understand how to craft mutations to

bypass magic bytes comparisons. CollAFL [22] demon-

strates that the inaccuracy of feedback (i.e., hash colli-

sion issue) in AFL would limit the effectiveness of new

path discovery. The authors [22] designed an algorithm

to resolve the hash collision problem and improve the

edge coverage accuracy with a low-overhead instrumen-

tation mechanism. We propose four code metrics as

feedback to identify potential vulnerable regions at run-

time.

Improving Sensitivity to Security Violation. Fuzzers

usually rely on program crashes as an indicator of

vulnerabilities. Researchers proposed various solu-

9○https://nvd.nist.gov/vuln/detail/CVE-2018-1000667, May 2021.

1226 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

tions to make the program more sensitive to var-

ious security violations such as AddressSanitizer [35]

and MemorySanitizer [36]. They instrument the pro-

gram to trace memory usage and invoke error-handling

code whenever an unexpected memory access is de-

tected. There are many other sanitizers available like

DataFlowSanitizer, ThreadSanitizer [37] and so on. All

the sanitizers are utilized only when a vulnerable region

is already reached. They are not able to identify poten-

tial vulnerable regions in advance. In addition, all these

sanitizer techniques are orthogonal to our approach and

can be used to improve our fuzzer.

Directed Fuzzing. Different from the randomly

fuzzing, directed fuzzing has pre-provided goals such

as reaching specific vulnerability locations or digging

specific type vulnerability. Typically, AFLGo [21] and

Hawkeye [31] employ distance metrics to direct fuzzing

to reach pre-provided vulnerability locations as quickly

as possible, thus reproducing vulnerabilities at the spe-

cific locations. Different from AFLGo, RegionFuzz is

a heuristic-based randomly fuzzing tool and aims to

sufficiently explore vulnerable paths within a limited

budget. It identifies possible vulnerable paths auto-

matically based on code metrics and distributes more

energy for them, in order to strengthen fuzzing these

regions. SlowFuzz [19] prioritizes seeds that consume

more resources (e.g., CPU, memory), and directs fuzzer

to detect algorithmic complexity vulnerabilities, while

RegionFuzz still focuses on general vulnerabilities that

crash programs.

Optimizing Resources Distribution. STADS [26]

models fuzzing as discovery of species. Similarly,

Böhme Marcel models coverage-based fuzzing as ran-

dom walking in the Markov chain [13]. Meanwhile,

[38] models the problem of identifying the optimal

strategy of concolic testing as a model checking prob-

lem of Markov decision processes with cost. Exist-

ing fuzzing resources distribution strategies focus on

dynamic metrics such as path hit frequency, branch

hit number and so on. Typically, AFLFast [13] prior-

itizes seeds that touch less-frequency paths, and tries

to balance the energy assignment between cold paths

and hot paths. Similarly, FairFuzz [20] spends more en-

ergy on low-frequency branches and CollAFL [22] pri-

oritizes seeds that hit more untouched neighbors. [38]

proposes a multi-objective based model together with

an efficient sorting algorithm for seed prioritization.

TortoiseFuzz [30] proposes coverage accounting, a novel

approach for input prioritization with metrics evaluat-

ing edges in terms of the relevance of memory corrup-

tion vulnerabilities. Different from the above work that

only considers the dynamic metrics, RegionFuzz dis-

tributes the fuzzing resources by also considering static

code metrics. RegionFuzz allocates more resources to

regions with higher code metrics values, and strength-

ens fuzzing these regions that are more likely to be vul-

nerable.

8 Conclusions

We proposed a code metric-aware greybox fuzzing

approach. Four kinds of code metrics (i.e., sensitive,

complex, deep and rare reachable degree) are designed

and utilized to identify regions that are more likely for

a vulnerability to reside. Furthermore, these regions

are assigned with more fuzzing energy based on the

value of code metrics; thus they could be strengthened

fuzzing and sufficiently explored. We integrated the

code metrics awareness and implemented a new fuzzer

named RegionFuzz. Large-scale evaluations have been

performed on the typical benchmark including LAVA-

M and Google fuzzer-test-suits. The results showed the

effectiveness and efficiency of RegionFuzz. Compared

with AFL, its maximum improvement on identifying

the first crash and the total crashes is 38% and 27.35%

respectively. Furthermore, RegionFuzz has helped us

find 11 new bugs and identify three new CVEs. In

this paper, the proposed four metrics are used inde-

pendently. It may achieve better performance by com-

bining them in a proper way. We will perform a fur-

ther study about the way and performance of combining

different metrics in the future work.

References

[1] Miller B P, Fredriksen L, So B. An empirical study of the

reliability of UNIX utilities. Communications of the ACM,

1990, 33(12): 32-44. DOI: 10.1145/96267.96279.

[2] Li J, Zhao B, Zhang C. Fuzzing: A survey. Cybersecurity,

2018, 1(1): Article No. 6. DOI: 10.1186/s42400-018-0002-y.

[3] Sutton M, Greene A, Amini P. Fuzzing: Brute Force Vul-

nerability Discovery (1st edition). Addison-Wesley Profes-

sional, 2007.

[4] Chen C, Cui B, Ma J, Wu R, Guo J, Liu W. A systematic

review of fuzzing techniques. Computers & Security, 2018,

75: 118-137. DOI: 10.1016/j.cose.2018.02.002.

[5] Manès V J M, Han H S, Han C, Cha S K, Egele M,

Schwartz E J, Woo M. The art, science, and engineering

of fuzzing: A survey. IEEE Trans. Software Engineering.

DOI: 10.1109/TSE.2019.2946563.

[6] Devarajan G. Unraveling SCADA protocols: Using sulley

fuzzer. In Proc. the DEF CON 15 Hacking Conf., August

2007.

https://doi.org/10.1145/96267.96279
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1016/j.cose.2018.02.002
https://doi.org/10.1109/TSE.2019.2946563

Ling-Yun Situ et al.: Vulnerable Region-Aware Greybox Fuzzing 1227

[7] Gascon H, Wressnegger C, Yamaguchi F, Arp D, Rieck K.

Pulsar: Stateful black-box fuzzing of proprietary network

protocols. In Proc. the 11th International Conference on

Security and Privacy in Communication Networks, Octo-

ber 2015, pp.330-347. DOI: 10.1007/978-3-319-28865-9 18.

[8] Ganesh V, Leek T, Rinard M. Taint-based directed white-

box fuzzing. In Proc. the 31st Int. Software Engineering,

May 2009, pp.474-484. DOI: 10.1109/ICSE.2009.5070546.

[9] Wang T, Wei T, Gu G, Zou W. TaintScope: A checksum-

aware directed fuzzing tool for automatic software vul-

nerability detection. In Proc. the 2010 IEEE Symposium

on Security and Privacy, May 2010, pp.497-512. DOI:

10.1109/SP.2010.37.

[10] Stephens N, Grosen J, Salls C, Dutcher A, Wang R,

Corbetta J, Shoshitaishvili Y, Kruegel C, Vingna G.

Driller: Augmenting fuzzing through selective symbolic

execution. In Proc. the 23rd Annual Network and Dis-

tributed System Security Symposium, February 2016. DOI:

10.14722/ndss.2016.23368.

[11] Godefroid P, Levin M Y, Molnar D. SAGE: Whitebox

fuzzing for security testing. Communications of the ACM,

2012, 55(3): 40-44. DOI: 10.1145/2093548.2093564.

[12] Situ L, Wang L, Li X, Guan L, Zhang W, Liu P. Energy dis-

tribution matters in greybox fuzzing. In Proc. the 41st Int.

Software Engineering: Companion Proceedings, May 2019,

pp.270-271. DOI: 10.1109/ICSE-Companion.2019.00109.

[13] Böhme M, Pham V T, Roychoudhury A. Coverage-

based greybox fuzzing as Markov chain. IEEE Trans.

Software Engineering, 2017, 45(5): 489-506. DOI:

10.1109/TSE.2017.2785841.

[14] Pham V T, Böhme M, Santosa A E, Caciulescu A R, Roy-

choudhury A. Smart greybox fuzzing. IEEE Transactions

on Software Engineering. DOI: 10.1109/TSE.2019.2941681.

[15] Du X, Chen B, Li Y, Guo J, Zhou Y, Liu Y, Jiang

Y. Leopard: Identifying vulnerable code for vulnerabil-

ity assessment through program metrics. In Proc. the

41st Int. Software Engineering, May 2019, pp.60-71. DOI:

10.1109/ICSE.2019.00024.

[16] Li Y, Su Z, Wang L, Li L. Steering symbolic execution to

less traveled paths. ACM SIGPLAN Notices, 2013, 48(10):

19-32. DOI: 10.1145/2544173.2509553.

[17] Wang X, Sun J, Chen Z, Zhang P, Wang J, Lin Y. To-

wards optimal concolic testing. In Proc. the 40th Int.

Conf. Software Engineering, May 2018, pp.291-302. DOI:

10.1145/3180155.3180177.

[18] Inozemtseva L, Holmes R. Coverage is not strongly corre-

lated with test suite effectiveness. In Proc. the 36th Int.

Conf. Software Engineering, May 2014, pp.435-445. DOI:

10.1145/2568225.2568271.

[19] Petsios T, Zhao J, Keromytis A D, Jana S. Slow-

Fuzz: Automated domain-independent detection of al-

gorithmic complexity vulnerabilities. In Proc. the 2017

ACM SIGSAC Conference on Computer and Commu-

nications Security, October 2017, pp.2155-2168. DOI:

10.1145/3133956.3134073.

[20] Lemieux C, Sen K. FairFuzz: A targeted mutation

strategy for increasing greybox fuzz testing coverage.

In Proc. the 33rd ACM/IEEE Int. Automated Soft-

ware Engineering, September 2018, pp.475-485. DOI:

10.1145/3238147.3238176.

[21] Böhme M, Pham V T, Nguyen M D, Roychoud-

hury A. Directed greybox fuzzing. In Proc. the 2017

ACM SIGSAC Conference on Computer and Commu-

nications Security, October 2017, pp.2329-2344. DOI:

10.1145/3133956.3134020.

[22] Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z. Col-

lAFL: Path sensitive fuzzing. In Proc. the 2018 IEEE Sym-

posium on Security and Privacy, May 2018, pp.679-696.

DOI: 10.1109/SP.2018.00040.

[23] Chen P, Chen H. Angora: Efficient fuzzing by prin-

cipled search. In Proc. the 2018 IEEE Symposium on

Security and Privacy, May 2018, pp.711-725. DOI:

10.1109/SP.2018.00046.

[24] Dolan-Gavitt B, Hulin P, Kirda E, Lee T, Mambretti A,

Robertson W, Ulrich F, Whelan R. LAVA: Large-scale au-

tomated vulnerability addition. In Proc. the 2016 IEEE

Symposium on Security and Privacy, May 2016, pp.110-

121. DOI: 10.1109/SP.2016.15.

[25] Woo M, Cha S K, Gottlieb S, Brumley D. Schedul-

ing blackbox mutational fuzzing. In Proc. the 2013

ACM SIGSAC Conference on Computer & Commu-

nications Security, November 2013, pp.511-522. DOI:

10.1145/2508859.2516736.

[26] Böhme M. STADS: Software testing as species discovery.

ACM Transactions on Software Engineering and Method-

ology, 2018, 27(2): Article No. 7. DOI: 10.1145/3210309.

[27] Situ L Y, Wang L Z, Liu Y, Mao B, Li X. Automatic detec-

tion and repair recommendation for missing checks. Journal

of Computer Science and Technology, 2019, 34(5): 972-992.

DOI: 10.1007/s11390-019-1955-3.

[28] Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos

H. VUzzer: Application-aware evolutionary fuzzing. In

Proc. the 24th Annual Network and Distributed System

Security Symposium, February 26–March 1, 2017. DOI:

10.14722/ndss.2017.23404.

[29] Klees G, Ruef A, Cooper B, Wei S, Hichk M. Evaluating

fuzz testing. In Proc. the 2018 ACM SIGSAC Conference

on Computer and Communications Security, October 2018,

pp.2123-2138. DOI: 10.1145/3243734.3243804.

[30] Wang Y, Jia X, Liu Y, Zeng K, Bao T, Wu D, Su P. Not

all coverage measurements are equal: Fuzzing by coverage

accounting for input prioritization. In Proc. the 27th An-

nual Network and Distributed System Security Symposium,

February 2020. DOI: 10.14722/ndss.2020.24422.

[31] Chen H, Xue Y, Li Y, Chen B, Xie X, Wu X, Liu Y.

Hawkeye: Towards a desired directed grey-box fuzzer. In

Proc. the 2018 ACM SIGSAC Conference on Computer

and Communications Security, October 2018, pp.2095-

2108. DOI: 10.1145/3243734.3243849.

[32] Vargha A, Delaney H D. A critique and improvement of the

CL common language effect size statistics of McGraw and

Wong. Journal of Educational and Behavioral Statistics,

2000, 25(2): 101-132. DOI: 10.3102/10769986025002101.

[33] Arcuri A, Briand L. A hitchhiker’s guide to statistical tests

for assessing randomized algorithms in software engineer-

ing. Software Testing, Verification and Reliability, 2014,

24(3): 219-250. DOI: 10.1002/stvr.1486.

https://doi.org/10.1007/978-3-319-28865-9_18
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1109/ICSE-Companion.2019.00109
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/ICSE.2019.00024
https://doi.org/10.1145/2544173.2509553
https://doi.org/10.1145/3180155.3180177
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/2508859.2516736
https://doi.org/10.1145/3210309
https://doi.org/10.1007/s11390-019-1955-3
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.14722/ndss.2020.24422
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.3102/10769986025002101
https://doi.org/10.1002/stvr.1486

1228 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

[34] Li Y, Chen B, Chandramohan M, Lin S W, Liu Y,

Tiu A. Steelix: Program-state based binary fuzzing.

In Proc. the 11th Joint Meeting on Foundations of

Software Engineering, August 2017, pp.627-637. DOI:

10.1145/3106237.3106295.

[35] Serebryany K, Bruening D, Potapenko A, Vyukov D. Ad-

dressSanitizer: A fast address sanity checker. In Proc. the

2012 USENIX Annual Technical Conference, June 2012,

pp.309-318.

[36] Stepanov E, Serebryany K. MemorySanitizer: Fast detector

of uninitialized memory use in C++. In Proc. the 13th An-

nual IEEE/ACM International Symposium on Code Gene-

ration and Optimization, February 2015, pp.46-55. DOI:

10.1109/CGO.2015.7054186.

[37] Serebryany K, Iskhodzhanov T. ThreadSanitizer: Data race

detection in practice. In Proc. the Workshop on Binary In-

strumentation and Applications, December 2009, pp.62-71.

DOI: 10.1145/1791194.1791203.

[38] Li Y, Xue Y, Chen H, Wu, X, Zhang C, Xie X, Wang H,

Liu Y. Cerebro: Context-aware adaptive fuzzing for effec-

tive vulnerability detection. In Proc. the 27th ACM Joint

Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering,

August 2019, pp.533-544. DOI: 10.1145/3338906.3338975.

Ling-Yun Situ is an assistant

professor in the School of Information

Management, Nanjing University,

Nanjing. He received his Ph.D. degree

in computer science from Nanjing Uni-

versity, Nanjing, in 2020. His research

interests include software and system

security, static analysis, fuzzing and

deep learning.

Zhi-Qiang Zuo is an associate

researcher in Key Laboratory for Novel

Software Technology, Department of

Computer Science and Technology,

Nanjing University, Nanjing. He got

his Ph.D. degree in computer science

from National University of Singapore,

Singapore, in 2015. His research inter-

ests include system software, programming languages, and

software engineering.

Le Guan is an assistant professor in

the Department of Computer Science at

the University of Georgia, Athens. He

received his Ph.D. degree in computer

science from Chinese Academy of

Sciences, Beijing, in 2015. His research

interests include mobile security and

IoT systems security.

Lin-Zhang Wang is a professor

in State Key Laboratory for Novel

Software Technology, Department of

Computer Science and Technology,

Nanjing University, Nanjing. He re-

ceived his Ph.D. degree in computer

science from Nanjing University, Nan-

jing, in 2005. His research interests

include software security testing, model based testing and

verification.

Xuan-Dong Li is a professor

in State Key Laboratory for Novel

Software Technology, Department of

Computer Science and Technology,

Nanjing University, Nanjing. He re-

ceived his Ph.D. degree in computer

science from Nanjing University, Nan-

jing, in 1994. His research interests

include software modelling, testing and verification.

Jin Shi is a professor in the School

of Information Management, Nanjing

University, Nanjing. He received his

Ph.D. degree in computer science from

Nanjing University, Nanjing, in 2008.

His research interests include security

and competitive intelligence, academic

cooperation behaviour analysis and

blockchain security.

Peng Liu is a professor in the College

of Information Sciences and Technology

at Pennsylvania State University, State

College. He received his Ph.D. degree

in information technology from George

Mason University, VA, in 1999. His

research interests include software and

system security, IoT security, and AI

for security.

https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1109/CGO.2015.7054186
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/3338906.3338975

	1 Introduction
	2 American Fuzzy Lop
	3 Key Observations
	4 Approach
	4.1 Code Metrics
	4.2 Energy Assignment

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Effectiveness of Code Metric Awareness
	6.3 Comparison with Related Tools
	6.4 Vulnerability Discovery

	7 Related Work and Discussion
	8 Conclusions

