
Li ZX, Yu Y, Wang T et al. Detecting duplicate contributions in pull-based model combining textual and change similarities.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 36(1): 191–206 Jan. 2021. DOI 10.1007/s11390-020-9935-1

Detecting Duplicate Contributions in Pull-Based Model Combining
Textual and Change Similarities

Zhi-Xing Li1, Yue Yu1,∗, Member, CCF, ACM, Tao Wang1, Member, CCF, ACM
Gang Yin1, Member, CCF, ACM, Xin-Jun Mao2, Member, CCF, ACM, and
Huai-Min Wang1, Fellow, CCF, ACM

1Key Laboratory of Parallel and Distributed Computing, College of Computer, National University of Defense Technology
Changsha 410073, China

2Laboratory of Software Engineering for Complex Systems, College of Computer, National University of Defense
Technology, Changsha 410073, China

E-mail: {lizhixing15, yuyue, taowang2005, yingang, xjmao, hmwang}@nudt.edu.cn

Received August 15, 2019; accepted January 3, 2020.

Abstract Communication and coordination between open source software (OSS) developers who do not work physically

in the same location have always been the challenging issues. The pull-based development model, as the state-of-the-art

collaborative development mechanism, provides high openness and transparency to improve the visibility of contributors’

work. However, duplicate contributions may still be submitted by more than one contributor to solve the same problem

due to the parallel and uncoordinated nature of this model. If not detected in time, duplicate pull-requests can cause

contributors and reviewers to waste time and energy on redundant work. In this paper, we propose an approach combining

textual and change similarities to automatically detect duplicate contributions in the pull-based model at submission time.

For a new-arriving contribution, we first compute textual similarity and change similarity between it and other existing

contributions. And then our method returns a list of candidate duplicate contributions that are most similar to the new

contribution in terms of the combined textual and change similarity. The evaluation shows that 83.4% of the duplicates

can be found in average when we use the combined textual and change similarity compared with 54.8% using only textual

similarity and 78.2% using only change similarity.

Keywords pull-request, duplicate detection, textual similarity, change similarity

1 Introduction

The rapid development and evolution of OSS

benefits a lot from global volunteer contributions.

Even though open source software (OSS) communi-

ties have fostered plenty of high-quality projects like

Linux 1○ and Rails 2○, the communication and coor-

dination between contributors have always been the

challenging issues [1, 2]. To make it more efficient for

geographically-distributed software development, re-

searchers and practitioners have never stopped explor-

ing better solutions [3, 4]. Nowadays, the pull-based

development model [5], as the state-of-the-art collabo-

rative development mechanism proposed by GitHub, is

becoming more attractive and being applied by an in-

creasing number of OSS projects [6]. Supported by so-

cial coding sites and code version control systems, this

model allows developers to fork a repository for local

changes, and submit pull-requests (PR) for community

discussion before merging back.

Although the openness and transparency of the pull-

based model enables developers to collaborate in a more

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2018YFB1004202,
and the National Natural Science Foundation of China under Grant No. 61702534.

∗Corresponding Author
1○https://www.linux.org, Nov. 2019.
2○https://rubyonrails.org, Nov. 2019.

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-020-9935-1

192 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

visible and efficient way, developers’ participation in

OSS is still voluntary and spontaneous [7, 8]. Therefore,

it is inevitable that two developers might work on the

same issue and submit duplicate PRs [9]. Especially for

the popular projects which attract thousands of volun-

teers and continuously receive incoming PRs [10, 11], it

is hard to appropriately coordinate contributors’ acti-

vities, because most of them work distributively and

tend to lack the information of others’ work progress.

It cannot be denied that duplicate pull-requests might

bring some benefits. For example, reviewers receive

more than one solution targeted to the same issue and

therefore have higher chance to pick a better solution

after making a comparison between them. Besides, the

authors of duplicate PRs might also learn how the same

issue is solved differently and analyze the strengths and

weaknesses of the two solutions respectively. Neverthe-

less, it is also important to realize the negative impacts

of duplicate PRs.

The prior studies [5, 12] have found that duplicate is

one of the main reasons rejecting a PR. However, for

now, there is no automatic detection tool for duplicate

PRs in GitHub. The current practice is to count on the

manual identification by reviewers. Unfortunately, the

number of new PRs and active PRs may be too large to

cope with for reviewers of popular projects. As a result,

quite a number of duplicate PRs cannot be identified in

time [13] and reviewers have to spent redundant effort

on evaluating each of them separately [5, 14]. Specifi-

cally, we have found in our prior work [13] that 21% of

duplicates are detected after more than one week and

2.5 reviewers are involved in the redundant review dis-

cussion which contains 5.2 review comments on average.

Moreover, a pull-request is iteratively reviewed and up-

dated until it reaches the standard to be merged back

to the codebase of the project [10, 15,16]. That means

both of the two developers might take redundant effort

to update their PRs before the duplicate relation be-

tween their PRs is identified. Therefore, the later the

duplicate relation is identified, the more redundant the

effort of the contributors and reviewers may be wasted.

These problems highlight the need for an automatic

tool which can be used to detect duplicate PRs at sub-

mission time. The timely identification of the duplicate

relation between two PRs would help reviewers and con-

tributors to be more informed so that they can make

more appropriate decisions to avoid unnecessary redun-

dant work. Our previous work [17] has tried to detect

duplicate PRs based on textual similarity. However,

it is possible that different developers use different ex-

pressions to describe the same concept, especially in

OSS development which usually involves global deve-

lopers with various backgrounds. To better reveal the

duplicate relation between two PRs, we also leverage

the change information of PRs in this paper. When a

new PR is submitted to a project, we first compute the

textual similarity and the change similarity between it

and the historical PRs. And then we combine the two

kinds of similarities by weights determined by a greedy

search algorithm. Finally, we suggest a list of candidate

PRs that have the highest combined similarity with the

new PR. Based on the dataset constructed in our prior

work [13] which contains more than 2 300 pairs of dupli-

cate PRs, we evaluate our approach in terms of recall-

rate. The experimental results show that about 83.4%

of the duplicates can be found when the candidate list

is set to 20.

The rest of paper is organized as follows. Section 2

illustrates the background. Section 3 presents the ap-

proach of our study in detail, and Section 4 elaborates

the conducted experiments and reports the evaluation

result. Threats and related work can be found in Sec-

tion 5 and Section 6 respectively. Finally, we draw our

conclusions in Section 7.

2 Background

In GitHub, a growing number of developers con-

tribute to the open source projects by submitting

PRs [5, 6]. As illustrated in Fig.1, a typical contribution

process based on the pull-based development model in

GitHub involves the following actions.

• Fork. Before contributing, a contributor (e.g., Al-

ice or Bob) should first fork the original project and get

his or her own local repository.

• Edit. Based on the cloned local repository, the

contributor is able to edit locally (e.g., fixing bugs or

proposing new features) without disturbing the main

branch in the original repository.

• Submit. When the contributor has finished the

desired work, she/he packages the changed codes in the

local repository and submits a PR to the original repos-

itory. In addition to commits, the contributor needs to

provide a title and description to elaborate the submit-

ted PR.

• Review. To guarantee the submitted PR does not

break the current runnable state of the project, the

core members of the project and community users will

launch the process of code review to detect potential

defects and discuss how to improve its quality. After

receiving the feedback from reviewers, the contributor

Zhi-Xing Li et al.: Detecting Duplicate Contributions in Pull-Based Model 193

Pull-Request

ReviewSubmitEdit

Merge

SubmitEdit

Fork

Fork

Review

Merge

Commit Discussion GitHub User

Original

Repository

Local

Repository

Local

Repository

Reject

Decide

Reject

DecideAlice

Bob

T1 T2 T3 T4

Main Branch

Time Line
T5 T6

Fig.1. Contribution process in pull-based development model.

gets a chance to update the PR and attach new com-

mits, which would trigger another round of code re-

views.

• Decide. Finally, the PR which has went through

several rounds of rigorous evaluations will be merged or

rejected depending on its eventual quality by an inte-

grator of the original repository.

The pull-based model lowers the contribution en-

try for community developers and improves the trans-

parency and efficiency of collaborative development.

Therefore, an increasing number of projects are adopt-

ing this development model and OSS developers have

expressed high contribution enthusiasm. However, a

potential risk of submitting duplicate PRs exists in

the pull-based development model when more than one

developer is contributing voluntarily without appropri-

ate coordination. For example, as shown in Fig.1 two

developers (i.e., Bob and Alice) fork the same origi-

nal repository and edit their own local repositories to

achieve the same goal. Alice first forks the original

repository at time T1 after which Bob also forks the

repository at T2. After forking, they conduct the of-

fline work based on their own local repositories. Unfor-

tunately, both of them lack awareness of each other’s

work and do not realize they are actually doing the

same thing. Consequently, both Alice and Bob submit

PRs at T3 and T4 respectively, which results in two du-

plicate PRs. After submission, the duplicate PRs will

go through separate threads of code review until they

get decisions at T5 and T6 respectively.

Fig.2 shows a pair of duplicate PRs (Rails #3066

and Rails #3591) which have been submitted to re-

solve the problem of .gitignore file. As shown in Fig.2,

the reviewer team of a project consists of not only the

core members of the project but also the community

audience who are interested in the project. Moreover,

there is no constrained appointment between reviewers

and PRs and reviewers are free to participate in any

review thread as they want. Consequently, not every

PR will be reviewed by the same reviewer(s), which re-

sults in that duplicate PRs are not always possible to

be detected immediately until a reviewer notices the

existence of both PRs. For example, in the case shown

in Fig.2, the duplicate relation is identified by the re-

viewer “vijaydev” after the two PRs have received sev-

eral review comments. This means duplicate PRs cause

redundant effort of not only the contributors’ initial

work before submission but also the review and update

activities after submission.

In order to overcome the above challenges, an auto-

matic tool is necessary to detect duplicate PRs at sub-

mission time. In the Bob and Alice case shown in Fig.1,

such a tool can avoid redundant activities after T4, for

example, Bob and Alice can be informed of each other’s

work and coordinated to work together for a better so-

lution, or reviewers can prefer one PR to the other one

and prevent redundant reviews and improvements on

both of them. It is also possible that Bob submits his

PR after Alice’s PR has got a decision, i.e., T1 < T2 <

T3 < T5 < T4 < T6. Even in this scenario, however,

detecting the duplicate relation between the two PRs

at T4 makes sense to prevent reviewers wasting time on

194 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

(b)(a)

Fig.2. A pair of duplicate PRs of rails in GitHub. (a) github.com/rails/rails/pull/3066. (b) github.com/rails/rails/pull/3591.

duplicate reviews. Finally, we would like to point out

that other possible scenarios exist in that case, e.g., 1)

Bob submits his PR before Alice although he forks the

repository later than Alice, i.e., T4 < T3, and 2) Bob

forks the repository and submits his PR after Alice sub-

mits her PR, i.e., T3 < T2. No matter which scenario

happens, we are always trying to detect the relation be-

tween two actual duplicate PRs at the submission time

of the PR that is submitted later.

3 Approach

The goal of our work is automatically detecting du-

plicate PRs at submission time. As shown in Fig.3, we

first measure the similarities between a new PR and the

historical PRs.

Actually, we make two intuitive hypotheses: 1) if

two pull-requests are duplicate, they tend to have simi-

lar textual descriptions, and 2) if two pull-requests are

duplicate, they tend to have high overlap in changes.

Therefore, two kinds of similarities are considered in

our approach: textual similarity and change similarity.

Textual similarity is calculated based on the natural

language text (i.e., titles and descriptions of PRs), while

change similarity is calculated by comparing the overlap

of changed source files. And then, we combine different

similarities with a greedy search algorithm. Finally, we

suggest a list of candidate PRs ranked by the combined

similarity.

In the following subsections, we will elaborate each

step of the approach in detail.

3.1 Calculating Textual Similarity

From the example in Fig.2, we can see that the titles

and descriptions of the two duplicate PRs share some

same words, which means natural language processing

(NLP) technologies can be used to measure their tex-

tual similarity [18–21]. The text content of a PR contains

two components: the title and the description. There-

fore, we calculate both title similarity and description

similarity between two PRs. In the calculation of each

of them, we adopt the standard NLP techniques [18] as

follows.

Preprocessing. Firstly, preprocessing is performed

on the texts including tokenization, stemming and stop

words removal. Different strategies can be applied to

split a sentence into tokens depending on the type of

data and application domain [18]. There are some types

of texts which are usually split into multiple tokens in

common settings but we treat them as a single token in

the context of PR. For example, code paths and hyper-

links usually indicate one concept and they should not

be divided into separate words. To this end, we use

Zhi-Xing Li et al.: Detecting Duplicate Contributions in Pull-Based Model 195

Description

Similarity

Code-Change

Similarity

Combining

Similarities

Candidate

Duplicates

New

Pull-Request

Historical

Pull-Requests

Title

Similarity
Calculating

Textual Similarity

Calculating

Change Similarity

File-Change

Similarity

Fig.3. Overall framework of our method.

the regular tokenizer to parse the raw text. After tok-

enization, each word will be stemmed to its root form

(e.g., “was” to “be” and “errors” to “error”) with the

help of Porter stemming algorithm [22]. Finally, com-

mon stop words (e.g., “the” and “a”), which appear so

frequently that they have little effect on distinguishing

different documents, will be removed.

Transformation. We then transform the prepro-

cessed texts into multi-dimensional vectors which is

computable in Vector Space Model (VSM). After trans-

formation, a text is represented as a vector, for exam-

ple the presentation of the i-th text is: TextV eci =

(wi,1,wi,2, ...,wi,v). Each dimension of the vector cor-

responds to an unique word in the corpus formed from

all the texts. The value of wi,k, which is the weight of

the k-th item of TextV eci, is computed by the TF-IDF

(Term Frequency-Inverse Document Frequency) model:

wi,k = tfi,k × idfi,k. (1)

In (1), tfi,k denotes the term frequency which is the

frequency of the k-th term appearing in the i-th text

and idfi,k denotes the inverse term frequency which

measures the distinguishing characteristics of a term

based on the number of texts containing it.

Calculation. With the texts represented as vectors,

we calculate the similarity between two texts (e.g., the

i-th text and the j-th text) using Cosine [23] similarity

which is computed by the following formula:

TextSim(i, j) =
TextV eci × TextV ecj
|TextV eci||TextV ecj |

=

∑m=v
m=1(wi,m × wj,m)√∑m=v

m=1 w
2
i,m

√∑m=v
m=1 w

2
j,m

. (2)

For two PRs, after applying this formula to the texts

of titles and texts of descriptions respectively, we can

obtain two similarities Sim title (title similarity) and

Sim desc (description similarity).

3.2 Calculating Change Similarity

It is possible that different sentences and expres-

sion formations can be used by different people when

they try to describe the same thing, especially in the

scenario of collaborative software development which

involves developers with various backgrounds from all

over world. Consequently, using only natural language

text may not be enough to detect whether two PRs are

duplicate. In such cases, the information of changes

may be more helpful. It is intuitive that in order to

carry out the same task, either fixing a bug or adding a

feature, developers are likely to edit the similar or even

the same files. Therefore, in addition to textual simi-

larity, we also take into consideration the change simi-

larity which includes file-change similarity and code-

change similarity.

3.2.1 File-Change Similarity

To calculate the file-change similarity between two

PRs: PRi and PRj , we first parse the raw change in-

formation and extract the changed files. And then Al-

gorithm 1 is applied on the extracted files, which takes

the sets of changed files as the input and outputs the

file-change similarity between two PRs. The first line

initializes a list file sims to store the intermediate re-

sults generated in the process. The subsequent six lines

(lines 2–7) calculate the pair-wise path similarities be-

tween two file sets and store each pair of files and their

similarity to file sims. Specifically, the path similarity

between two files is computed by Algorithm 2 which will

be introduced in the following paragraph. And then

we sort the items in file sims according to the path

similarity (line 8). Subsequently, a new empty list is

196 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

Algorithm 1. Calculating the File-Change Similarity Between Two PRs

Input:
filesi: the files changed by PRi,
filesj : the files changed by PRj

Output:
the file-change similarity between PRi and PRj

1: Let file sims be a list
2: for fi in filesi do
3: for fj in filesj do
4: fp sim ⇐ file path similarity between fi and fj
5: Add tuple (fi, fj , fp sim) to file sims
6: end for
7: end for
8: Sort file sims in terms of file path similarity
9: Let final sims be a list

10: top num⇐ min(len (filesi), len (filesj))
11: while top num > 0 do
12: Let top sim be the item in files sims which gets the highest similarity
13: Add top sim[2] to final sim
14: Delete item from files sims on condition that item[0] == top sim[0] or item[1] == top sim[1]
15: top num−−
16: end while
17: return sum(final sims)/max(len (filesi), len (filesj))

created (line 9) and the minimum size of the two file

sets is used to determine how many items in the sorted

file sims would be used to calculate the final change

similarity (line 10). In the following lines (lines 11–

16), we iteratively review file sims and select the item

which has the highest similarity and store the value of

similarity to final sims. Let us assume the selected

item is (fm, fn, sim mn). In order to make the most

of each changed file of the two PRs, the other items

in file sims which contain fm or fn are deleted from

file sims and would not be considered in the next it-

eration, so that the left items composed by other files

will have more chance to be reviewed. Finally, all the

similarity values in file sims would be added together,

divided by the maximum size of the two file sets, and

returned as the file-change similarity (line 17).

Algorithm 2 . Calculating Path Similarity Between Two
Files

Input:
file filei and file filej

Output:
the path similarity between file filei and file filej

1: fpi, fpj ⇐ filei.path, filej .path
2: psi ⇐ split filei into components
3: psj ⇐ split filej into components
4: pos⇐ 0
5: while pos < len (psi) and pos < len (psj) do
6: if psi[pos]! = psj [pos] then
7: break
8: end if
9: pos++

10: end while
11: return pos/max(len (psi), len (psj))

Algorithm 2 is used to compute the path similarity

between two files. It first gets the paths of the inputted

two files (line 1). And then, it will split the two paths

by the path separator (i.e., “/”) (lines 2 and 3). Subse-

quently, the longest common sub-path will be found for

the two paths (lines 4–10). Finally, the length of the

longest common sub-path will be divided by the maxi-

mum length of the two component sets and returned as

the path similarity (line 11).

3.2.2 Code-Change Similarity

To calculate the code-change similarity between two

PRs: PRi and PRj , we first extract the added lines

and the deleted lines in both of them and then apply

the following formula.

CodeSim(i, j) =
AddSim(i, j) + DelSim(i, j)

max(N(linesi), N(linesj))
. (3)

In (3), function AddSim returns the similarity be-

tween PRi and PRj in terms of the added lines, and

function DelSim returns their similarity in terms of the

deleted lines. Variables linesi and linesj represent the

sets of changed lines (i.e., added lines plus deleted lines)

by PRi and PRj respectively. Function N returns the

number of items contained in the given set.

The computation detail of DelSim is as follows:

DelSim(i, j) =
N(del linesi & del linesj)

N(del linesi | del linesj)
. (4)

del linesi and del linesj are the sets of lines deleted

by PRi and PRj respectively. We divide the size of the

Zhi-Xing Li et al.: Detecting Duplicate Contributions in Pull-Based Model 197

union of the two sets by the size of their intersection and

get the similarity value in terms of deleted lines.

To compute the similarity in terms of added lines,

we use the token-based method as shown in Algo-

rithm 3. The basic idea of this algorithm is similar to

that of Algorithm 1. For two given PRs, PRi and PRj ,

we first get the common files files common changed by

both of them (line 1). And then we iteratively compute

the code-change similarity on each of the common files

(lines 3–23). Specifically, we extract all the added lines

on a common file by the two PRs respectively (line 4),

calculate the pair-wise similarities between two lines,

and store the results in a list line sims (lines 6–12).

To compute the similarity between two lines, function

tokenize first replaces each punctuation in the given

line with whitespaces and splits the line into word to-

kens (line 8). Next, the similarity based on the two

token sets is computed using the size of their union to

divide the size of the intersection (line 9). The subse-

quent steps on line sims (lines 13–21) are similar to

the steps (lines 8–16) introduced in Algorithm 1. After

the code-change similarity on each file has been calcu-

lated and collected (line 22), we return the sum of these

similarity values (line 24).

3.3 Combining Similarities

Since title similarity (Sim title), description simila-

rity (Sim desc), file-change similarity (Sim file) and

code-change similarity (Sim code) between two PRs

have been calculated, we are able to compute the com-

bined similarity [19] as follows:

Sim combined

= a× Sim title + b× Sim desc +

c× Sim file + d× Sim code. (5)

In (5), Sim combined denotes the combined simila-

rity that is composed by the four kinds of similarities

with different weights (i.e., a, b, c, and d). To auto-

matically determine the value of the four weight para-

meters, we use a greedy search algorithm as shown in

Algorithm 4. Its inputs include the training set ran-

domly sampled from DupPR, a dataset of historical du-

plicate PRs which will be introduced in Subsection 4.1,

the maximum number of iterations for searching the

best weight parameters, and the value of unit by which

weights increase or decrease in each iteration. Finally,

a list of optimized weight parameters will be returned.

In Algorithm 4, the first three lines (lines 1–3) ini-

tialize the four weight parameters, compose a list with

them and get the initial fitness score for the initial

weight list. The fitness score is used to evaluate the

Algorithm 3. Calculating the Code-Change Similarity Between Two PRs in Terms of Added Lines

Input:
filesi: the files changed by PRi,
filesj : the files changed by PRj

Output:
the code-change similarity between PRi and PRj in terms of added lines

1: files common ⇐ the intersection of filesi and filesj
2: Let add sims be a list
3: for f in files common do
4: add linesi,f , add linesj,f ⇐ addedLines(PRi, f), addedLines(PRj , f)
5: Let line sims be a list
6: for linei in add linesi,f do
7: for linej in add linesj,f do
8: tokensi, tokensj ⇐ tokenize(linei), tokenize(linej)
9: tmp sim ⇐ len(intersection(tokensi, tokensj))/len(union(tokensi, tokensj))

10: Add (tokensi, tokensj , tmp sim) to line sims
11: end for
12: end for
13: Sort line sims by token similarity
14: top n ⇐ min(add linesi,f , add linesj,f)
15: Let final sims be a list
16: while top n > 0 do
17: top sim ⇐ line sims[0]
18: Add top sim[2] to final sims
19: Delete item from line sims on condition that item[0] == top sim[0] or item[1] == top sim[1]
20: top num –
21: end while
22: Extend add sims with final sims
23: end for
24: return sum(add sims)

198 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

Algorithm 4. Determining Weight Parameters

Input:
DupPR train: the training dataset of duplicate PRs,
max iter: maximum number of iterations (default value = 20),
step: the unit of weight change in each iteration (default value = 0.05)

Output:
a list of weight parameters (a,b and c)

1: let a = 1, b = 1 and c = 1
2: wts = [a, b, c]
3: wts.fts = fitness(DupPR train, wts)
4: repeat
5: let search history be a list
6: for i in [0, len(wts)] do
7: tmp wts⇐ wts #forward search
8: Increase tmp wts[i] by step
9: tmp wts.fts⇐ fitness(DupPR train, tmp wts)

10: Add tmp wts to serach history
11: tmp wts⇐ wts #backward search
12: Decrease tmp wts[i] by step if tmp wts[i] > 0
13: tmp wts.fts⇐ fitness(DupPR train, tmp wts)
14: Add tmp wts to serach history
15: end for
16: Set wts max to the tmp wts which gets the max fts in search history
17: if wts max.fts > wts.fts then
18: wts.fts⇐ wts max.fts
19: wts⇐ wts max
20: else
21: break
22: end if
23: max iter −−
24: until max iter > 0
25: return wts

detection performance of duplicate PRs when a set of

weight parameters are used to combine each kind of

similarities. For a given PR, we expect its duplicate

PR can get a higher similarity than others. To this

end, the fitness function is set as the following.

fit(DupPR,wts)

=
∑

(pri,prj)∼DupPR train

1

rank(pri, SimPRs(prj))
. (6)

In (6), (pri, prj) indicates each pair of duplicate PRs

in DupPR train, and pri is submitted earlier than prj .

Function SimPRs returns a top list of PRs that are the

most similar to prj in terms of the combined similarity,

and function rank computes the position of pri in the

top list.

The subsequent lines (lines 4–24) iteratively search

better weight parameters until a local optimal result is

found or the limitation of iterations is reached. In line 5,

we first create a list to store the search histories in each

iteration which will be compared to determine the local

optimal solution. In each iteration, we try to change ev-

ery weight parameter (lines 6–15) from two directions:

forward search (lines 7–10) and backward search (lines

11–14). A copy of the current optimal weight list is

first created in both kinds of search attempt (line 7

and line 11). In forward search, the corresponding item

in weight list is increased by one unit of weight change

(line 8), while in backward search the item is decreased

by one unit (line 12).

The changed weight list is then used to calculate

the new fitness score (line 9 and line 13) and the new

weight lists will be stored in search history (line 10 and

line 14). After all the items in the weight list have

been inspected forward and backward, wts max, which

gets the maximum the fitness score, will be selected

from search history (line 16). If the fitness score of

wts max is higher than the fitness score of the current

optimal weight list, it will update the current optimal

weight list and the next iteration begins (lines 17–19)

until it reaches the limitation of the maximum itera-

tions (lines 23 and 24). Otherwise, the procedure has

reached a local optimum and we terminate the iteration

process (lines 20 and 21). In the end, the final optimal

weight list is returned (line 25).

3.4 Suggesting Candidates

After the combined similarities between the new PR

and the historical PRs have been computed, we rank

the historical PRs according to the combined simila-

rity. Among the ranked PRs, we suggest the top-k items

Zhi-Xing Li et al.: Detecting Duplicate Contributions in Pull-Based Model 199

as candidate duplicates so that reviewers can examine

whether the new PR duplicates a suggested existing

PR.

4 Experiment and Evaluation

4.1 Dataset

The experiments are conducted on the dataset

DupPR [13] which is collected from 26 open source

projects in GitHub 3○. Each pair of duplicate PRs in

DupPR has been manually verified after an automatic

identification process, which would guarantee the qua-

lity of this dataset. The construction process of DupPR

is shown in Fig.4.

• Random Sampling. For each project, 200 review

comments are randomly sampled, containing at least

one reference to another PR.

• Manual Examination. Each sampled comment is

manually examined to see if it is used to point out the

duplicate relation among PRs. Such kind of comments

are called indicative comments which can help to re-

construct the duplicate relations.

• Rules Extraction. All the manually-identified

indicative comments are reviewed to extract rules (reg-

ular expressions) which can be applied lately to auto-

matically judge whether a given comment is an indica-

tive comment. The following items are some simplified

rules.

− closed by (?:\w+:?){,5} (?:#(\d+))
− (?:#(\d+)):? (?:\w+:?){,5} dup(?:licate)?

The first rule would match comments which contain

the keywords closed by followed by several words and

a pull-request reference like “Closed by lucky number

#2000 because it’s a cleaner PR”. The second rule

would match comments that contain a pull-request refe-

rence followed by several words and the keywords dup

or duplicate like “PR #16509 is duplicate of this PR”.

• Automatic Identification. If a review comment is

automatically identified as an indicative comment ac-

cording to the identification rules, the PR references

contained in the comment will be extracted to form a

couple of candidate duplicates with the PR that the

indicative comment belongs to. In total, 3 580 pairs of

candidate duplicate pull-requests are detected.

• Manual Verification. It is inevitable that auto-

matic identification may introduce false-positive errors.

To exclude the misidentified duplicates, all the candi-

date duplicate PRs are manually verified. Finally, 2 323

pairs of duplicate pull-requests pass the manual verifi-

cation.

For each project in DupPR, we randomly select half

of the duplicates as the training set and the remaining

duplicates are used as the test set. In the paper, for

each pair of duplicate PRs in DupPR, the early sub-

mitted one is called master PR and the late submitted

one is called duplicate PR. Our research goal is trying

to detect the corresponding master PR given a dupli-

cate PR.

4.2 Evaluation Metrics

To evaluate the performance of our method, we

apply the recall-rate@k metric proposed by Rune-

son et al. [18] which has been widely applied by other

studies [24, 25] related to duplicate detection. (7) defines

how recall-rate@k is calculated.

recall-rate@k =
n detected

n tatol
. (7)

In (7), n detected is the number of duplicate PRs

whose corresponding master PRs are detected in the

suggested candidate list, while n total is the total num-

ber of duplicate PRs in the test set. In terms of recall-

rate, detection approaches can be assessed by calcu-

lating the percentage of duplicate PRs for which the

master PRs are in the suggested candidate list. More-

over, k in recall-rate@k varies from 1 to 20 respectively

in the experiments.

Random

Sampling

Sampled

Comments

Manual

Examination

Indicative

Comments

Rules

Extraction

Identification

Rules

Automatic

Identification

Candidate

Duplicate PRs

Manual

Verifying

Final

Duplicate PRs

Fig.4. Approach to getting historical duplicate PRs.

3○https://github.com/whystar/MSR2018-DupPR/blob/master/project list.md, Nov. 2019.

200 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

4.3 Research Questions and Results

In this subsection, we present the experiments with

respect to our three research questions.

RQ1. Is textual similarity or change similarity more

helpful to detect duplicate PRs?

Experimental Setup. As previously discussed, a PR

usually contains two kinds of information, i.e., textual

information and change information. Hence, we firstly

want to investigate how the detection performance de-

fers when different information is separately used. To

answer this question, we conduct experiments with five

options by using title similarity, description similarity,

text similarity, file-change similarity, and code-change

similarity respectively. Text similarity is calculated by

adding together title similarity and description simi-

larity. To offer an overall evaluation on the detec-

tion performance of different similarities, we compute

the weighted average recall-rate@k on all the 26 stu-

died projects. Obviously, the larger the variable k, the

higher the weighted average recall-rate@k would be.

However, a larger k would also cause the top list to

contain more irrelevant items that would make the au-

tomatic detection less applicable in practice. Conse-

quently, we follow the prior studies [20, 24–26] and make

k range from 1 to 20 in the experiment.

Evaluation Result. Fig.5 shows the evaluation result

of different similarities. We use Sim title, Sim desc,

Sim text, Sim file, and Sim code as abbreviations

for the five experimental options, title similarity, de-

scription similarity, text similarity, file-change simila-

rity, and code-change similarity respectively. From the

result, we can see that change similarities perform bet-

ter than textual similarities and code-change similarity

is the best no matter how the size of candidate list

changes. For example, when the size of top list is set

to 20, Sim code is able to find about 78.2% duplicates

for each project in average, while Sim file, Sim title,

Sim desc, and Sim text, can only find 61.0%, 45.2%,

40.1% and 54.8% respectively.

Summary. Change similarity performs better than

textual similarity in detecting duplicate PRs.

RQ2. Can combining textual similarity and change

similarity achieve better detection performance?

Experimental Setup. Furthermore, we would like

to examine whether combining textual similarity and

change similarity can improve the detection perfor-

mance compared with using each of them separately.

To answer our second research question, we conduct

another experiment using combined textual and change

similarity (Sim combined) to detect duplicate PRs. As

shown in (5), all the four kinds of basic similarities (i.e.,

title similarity, description similarity, file-change simi-

larity and code-change similarity) are added by a linear

model with weights determined by a greedy search algo-

rithm. As we do in the experiment of RQ1, we still use

weighted average recall-rate to evaluate the detection

performance.

Evaluation Result. The detection performance of

Sim combined is shown in Fig.6. In addition, to pro-

vide a direct and intuitive comparison among the com-

bined similarity and separate similarities introduced

in RQ1, we also present Sim code (code-change simi-

larity) in the figure, which achieves the best perfor-

mance among them. For each k (varying from 1 to

20) of recall-rate@k, we use a box plot to present the

detection results on all the projects. The marker in

each box represents the weighted average recall-rate

for the corresponding k and all the markers are con-

nected as a line which outlines the overall performance

as in Fig.5. In Fig.6 we can see that Sim combined

achieves better performance than Sim code, which

means Sim combined is also better than Sim file,

1 2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

3 4 5

Sim_title Sim_desc Sim_text Sim_file Sim_code

6 7 8 9 10

R
e
c
a
ll
 R

a
te

Size of Candidate List (k)

11 12 13 14 15 16 17 18 19 20

Fig.5. Detection performance of each kind of similarities.

Zhi-Xing Li et al.: Detecting Duplicate Contributions in Pull-Based Model 201

1 2

1.0

0.8

0.6

0.4

0.2

3 4 5

Sim_code

Sim_combined

6 7 8 9 10

R
e
c
a
ll
 R

a
te

Size of Candidate List (k)

11 12 13 14 15 16 17 18 19 20

Fig.6. Detection performance of Sim combined and Sim code.

Sim title, Sim desc, and Sim text. For example,

Sim combined can find 83.4% duplicates when k is set

to 20, which exceeds the results in RQ1.

Moreover, we conduct Mann-Whitney-Wilcoxon

(MWW) test [27] to explore whether the performance

improvement is significant. Specifically, we divide each

comparison result into four intervals to see how the sig-

nificance changes when the size of candidate list varies.

Table 1 shows the test results and we can see from the

table that all the p.values are less than 0.05, which

means compared with all the textual similarities and

change similarities, the improvement of the combined

similarity is significant.

Summary. The combined similarity outperforms ei-

ther textual similarity or change similarity and achieves

significant improvement in detection performance.

RQ3. Does the greedy search algorithm achieve rea-

sonable weight parameters?

Experimental Setup. As previously discussed in

Subsection 3.3, the combined similarity is derived from

four different similarities with weight parameters (i.e.,

a, b, c, and d) that are determined by the greedy search

method. Weight parameters have significant impact on

the final detection performance; therefore we would like

to explore the actual effect of this algorithm. To the

end, we randomly generate 20 sets of weight parame-

ters and test their effect. In addition, we also want

to examine what happens if each kind of similarities is

treated equally, that is, each kind of similarities gets

the same weight. Finally, the performance of these 21

sets of weight parameters is explored together with that

determined by the greedy search method.

Evaluation Results. Table 2 shows the experimen-

tal result where the 22 different sets of weight parame-

ters are organized as three groups. WT GS indicates

the weight parameters determined by the greedy search

methods, WT EQ indicates the equal weight parame-

ters, and WT RD indicates the randomly generated

weight parameters. Since WT GS is determined for

each specific project, we do not show the exact weight

values for each project, and instead we use hyphens

as the placeholders in the table. From the table we

can see that WT GS achieves better performance than

WT RD and WT EQ. Moreover, the detection per-

Table 1. Results of Mann-Whitney-Wilcoxon Test

Group p

0 < k 6 5 5 < k 6 10 10 < k 6 15 15 < k 6 20

Sim combined vs Sim title 1.227512e-213 1.951276e-214 6.003839e-214 2.926856e-214

Sim combined vs Sim desc 8.972839e-214 1.921972e-214 1.91315e-214 1.895662e-214

Sim combined vs Sim text 4.650869e-212 1.387071e-212 1.274065e-213 8.634096e-214

Sim combined vs Sim file 2.263567e-191 2.182324e-195 3.805687e-200 2.368933e-200

Sim combined vs Sim code 1.482833e-33 2.722179e-69 7.054996e-79 4.830722e-69

202 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

Table 2. Comparison of Detect Performance for Different Weights

Group a b c d RR@1 RR@5 RR@10 RR@15 RR@20

WT GS – – – – 0.520 0.735 0.792 0.818 0.834

WT EQ 1.00 1.00 1.00 1.00 0.488 0.710 0.769 0.805 0.826

WT RD 0.89 0.24 0.21 0.62 0.415 0.668 0.737 0.774 0.796

0.80 0.77 0.41 0.47 0.418 0.641 0.724 0.763 0.801

0.90 0.00 0.60 0.06 0.243 0.437 0.531 0.591 0.623

0.47 0.16 0.94 0.41 0.451 0.650 0.715 0.747 0.764

0.75 0.61 0.28 0.19 0.329 0.533 0.610 0.661 0.700

0.77 0.36 0.18 0.64 0.471 0.696 0.757 0.793 0.804

0.34 0.65 0.38 0.57 0.499 0.716 0.781 0.807 0.823

0.24 0.22 0.86 0.39 0.497 0.660 0.722 0.750 0.771

0.12 1.00 0.05 0.11 0.249 0.404 0.461 0.499 0.526

0.35 0.54 0.39 0.52 0.501 0.726 0.785 0.811 0.830

0.64 0.57 0.52 0.17 0.351 0.572 0.658 0.713 0.741

0.83 0.97 0.22 0.58 0.405 0.637 0.711 0.757 0.786

0.89 0.20 0.05 0.30 0.295 0.491 0.580 0.621 0.649

0.65 0.35 0.47 0.66 0.507 0.713 0.780 0.806 0.828

0.12 0.58 0.23 0.05 0.268 0.464 0.554 0.598 0.627

0.21 0.43 0.24 0.47 0.510 0.729 0.786 0.807 0.827

0.07 0.58 0.77 0.73 0.509 0.687 0.758 0.795 0.814

0.46 0.67 0.75 0.51 0.476 0.695 0.753 0.781 0.803

0.50 0.12 0.16 0.05 0.260 0.453 0.525 0.577 0.609

0.73 0.44 0.36 0.88 0.546 0.720 0.783 0.815 0.830

Note: “RR” is the abbreviation of “recall-rate”

formance of WT RD is not stable; it can achieve good

detection result of 83.0% for recall-rate@20, while it

can also result in a bad result which is only 52.6%.

Summary. The greedy search algorithm can achieve

reasonable weight parameters to combine each kind of

similarities.

5 Threats to Validity

In this section, we discuss some threats to validity

which may affect the experimental results of our study.

External Validity. Our experiments are conducted

based on some of the popular open source projects

hosted in GitHub. The projects are developed by var-

ious programming languages and applied in different

domains. However, it is unknown whether our method

can be generalized to all the projects in GitHub and

open source projects hosted in other platforms.

Internal Validity. Firstly, the dataset of historical

duplicate PRs may contain false negative, since the ex-

traction rules may not match all the indicative com-

ments. Moreover, some reviewers may just close the

duplicate PRs and do not leave any comment. In the

future, we plan to collect more projects and enrich

the dataset to further validate the effectiveness of our

method.

Secondly, in order to determine the weight parame-

ters for the four kinds of similarities, we use a greedy

search algorithm. In our experiment, this algorithm

performs better than treating each kind of similarities

equally or randomly assigning weights to them, but

we cannot ensure that the algorithm has certainly pro-

duced the most optimal result.

6 Related Work

6.1 Duplicate Detection

Researchers have paid plenty of attention on recog-

nizing duplicate bug reports. Runeson et al. [18] eval-

uated how NLP techniques support duplicate reports

identification and found about 40% duplicates can be

detected. Wang and Zhang [19] proposed an approach

to detect duplicate bug reports by comparing the natu-

ral language information and execution information be-

tween the new report and the existing reports. Sun et

al. [24] used discriminative models to detect duplicates

and their evaluation on three large software bug reposi-

tories showed that their method achieved improvements

Zhi-Xing Li et al.: Detecting Duplicate Contributions in Pull-Based Model 203

compared with methods using natural language. Later,

Sun et al. [25] proposed a retrieval function to fully uti-

lize the information available in a bug report and mea-

sure the similarity between two bug reports. Nguyen

et al. [20] modeled each bug report as a textual docu-

ment and took advantage of both IR-based features and

topic-based features to learn the sets of different terms

used to describe the same problems. Thung et al. [28]

developed a tool implementing the approach proposed

by Runeson et al. [18] and integrated it into the existing

bug tracking systems. Lazar et al. [21] made use of a set

of new textual features and trained several binary clas-

sification models to improve the detection performance.

Moreover, Zhang et al. [26] investigated to detect du-

plicate questions in Stack Overflow. They measured

the similarity of two questions by comparing observ-

able factors including titles, descriptions, and tags of

the questions and latent factors corresponding to the

topic distributions learned from the descriptions of the

questions.

6.2 Pull-Request

Although the research on PRs is in its early stages,

several studies have been conducted to analyze how PRs

are applied and evaluated. Gousios et al. [5] conducted

a statistical analysis of millions of PRs from GitHub

and analyzed the popularity of PRs, the factors affect-

ing the decision to merge or reject a PR, and the time

to merge a PR. Furthermore, Gousios et al. [9, 14] stu-

died on the work habits and challenges in pull-based

development model from integrators’ and contributors’

perspectives respectively. Tsay et al. [29] examined how

social and technical information are used to evaluate

PRs. Yu et al. [6] conducted a quantitative study on

the PR evaluation in the context of CI. Moreover, Yu

et al. [10] proposed an approach that combines informa-

tion retrieval and social network analysis to recommend

potential reviewers. van der Veen et al. [30] presented

PRioritizer, a prototype PR prioritization tool, to rec-

ommend the top PRs the project owner should focus

on.

6.3 Code Review

Code review is employed by many software projects

to examine the change made by others in source codes,

find potential defects, and ensure software quality be-

fore they are merged [31, 32]. Traditional code review

proposed by Fagan [33] has been performed since the

1970s, but it did not get universally applied for its

cumbersome and synchronous characteristics [34]. In re-

cent years, Modern Code Review (MCR) [35] is adopted

by an increasing number of software companies and

teams. Different from formal code inspections, MCR

is a lightweight mechanism [11, 36] that is less time con-

suming and supported by various tools. Several per-

spectives of code review have been widely studied, such

as automation of review task [11, 37–39], factors influenc-

ing review outcomes [29, 31,40] and challenges involved

in code review [34, 41]. The impact of code review on

software quality [32, 42] is also investigated by many stu-

dies in terms of code review coverage and code review

participation [43], and code ownership [44]. While the

main motivation for code review was believed to be

finding defects to control software quality, recent re-

search has revealed that defect elimination is not the

sole motivation. Bacchelli and Bird [34] reported addi-

tional expectations, including knowledge transfer, in-

creased team awareness, and the creation of alternative

solutions to problems.

7 Conclusions

In this paper, we proposed an approach to automat-

ically detect duplicate PRs in GitHub. Our method

employs textual information and change information to

calculate the similarity between two PRs and returns

a candidate list of historical PRs that are most simi-

lar to the new-arriving PR. We evaluated our approach

on a dataset of historical duplicates collected based on

26 popular projects hosted in GitHub. The evalua-

tion results showed that using the combined textual

and change similarity can achieve the best performance

which finds about 83.4% of the duplicates compared

with 54.8% using only textual similarity and 78.2% us-

ing only change information.

In the future, we plan to explore more features that

can be employed to detect duplicate PRs. In addition,

we would like to investigate what kind of contribution

patterns tend to result in duplicate PRs and we can pro-

pose some strategies to prevent developers submitting

duplicate contributions.

References

[1] Herbsleb J D, Mockus A. An empirical study of speed and

communication in globally distributed software develop-

ment. IEEE Transactions on Software Engineering, 2003,

29(6): 481-494. DOI: 10.1109/TSE.2003.1205177.

[2] Espinosa J, Slaughter S, Kraut R, Herbsleb J. Team know-

ledge and coordination in geographically distributed soft-

ware development. Journal of Management Information

https://doi.org/10.1109/TSE.2003.1205177

204 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

Systems, 2007, 24(1): 135-169. DOI: 10.2753/MIS0742-

1222240104.

[3] Storey M A, Singer L, Cleary B, Filho F M, Zagalsky A.

The (r)evolution of social media in software engineering. In

Proc. the 2014 International Conference on Future of Soft-

ware Engineering, May 31–June 7, 2014, pp.100-116. DOI:

10.1145/2593882.2593887.

[4] Zhu J, Zhou M, Mockus A. Effectiveness of code contri-

bution: From patch-based to pull-request-based tools. In

Proc. the 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, November 2016,

pp.871-882. DOI: 10.1145/2950290.2950364.

[5] Gousios G, Pinzger M, van Deursen A. An ex-

ploratory study of the pull-based software develop-

ment model. In Proc. the 36th International Conference

on Software Engineering, May 2014, pp.345-355. DOI:

10.1145/2568225.2568260.

[6] Yu Y, Yin G, Wang T, Yang C, Wang H. Determinants

of pull-based development in the context of continuous in-

tegration. SCIENCE CHINA: Information Sciences, 2016,

59(8): Article No. 080104. DOI: 10.1007/s11432-016-5595-

8.

[7] Ye Y, Kishida K. Toward an understanding of the

motivation of open source software developers. In

Proc. the 2003 IEEE/ACM International Conference

on Software Engineering, May 2003, pp.419-49. DOI:

10.1109/ICSE.2003.1201220.

[8] Barcomb A, Kaufmann A, Riehle D, Stol K J, Fitzgerald B.

Uncovering the periphery: A qualitative survey of episodic

volunteering in free/libre and open source software commu-

nities. IEEE Transactions on Software Engineering, 2020,

46(9): 962-980. DOI: 10.1109/TSE.2018.2872713.

[9] Gousios G, Zaidman A, Storey M A, van Deursen A. Work

practices and challenges in pull-based development: The

integrator’s perspective. In Proc. the 37th International

Conference on Software Engineering, May 2015, pp.358-

368. DOI: 10.1109/ICSE.2015.55.

[10] Yu Y, Wang H, Yin G, Wang T. Reviewer recom-

mendation for pull-requests in GitHub: What can we

learn from code review and bug assignment? Informa-

tion and Software Technology, 2016, 74: 204-218. DOI:

10.1016/j.infsof.2016.01.004.

[11] Thongtanunam P, Tantithamthavorn C, Kula R G, Yoshida

N, Iida H, Matsumoto K. Who should review my code?

A file location-based code-reviewer recommendation ap-

proach for modern code review. In Proc. the 22nd

International Conference on Software Analysis, Evolu-

tion, and Reengineering, March 2015, pp.141-150. DOI:

10.1109/SANER.2015.7081824.

[12] Steinmacher I, Pinto G, Wiese I S, Gerosa M A. Almost

there: A study on quasi-contributors in open-source soft-

ware projects. In Proc. the 40th International Conference

on Software Engineering, May 2018, pp.256-266. DOI:

10.1145/3180155.3180208.

[13] Yu Y, Li Z, Yin G, Wang T, Wang H. A dataset of du-

plicate pull-requests in GitHub. In Proc. the 15th Interna-

tional Conference on Mining Software Repositories, May

2018, pp.22-25. DOI: 10.1145/3196398.3196455.

[14] Gousios G, Storey M A, Bacchelli A. Work practices and

challenges in pull-based development: The contributor’s

perspective. In Proc. the 38th International Conference

on Software Engineering, May 2016, pp.285-296. DOI:

10.1145/2884781.2884826.

[15] Yu Y, Wang H, Yin G, Ling C X. Reviewer recom-

mender of pull-requests in GitHub. In Proc. the 2014

International Conference on Software Maintenance and

Evolution, September 2014, pp.609-612. DOI: 10.1109/IC-

SME.2014.107.

[16] Li Z X, Yu Y, Yin G, Wang T, Wang H M. What are

they talking about? Analyzing code reviews in pull-based

development model. Journal of Computer Science and

Technology, 2017, 32(6): 1060-1075. DOI: 10.1007/s11390-

017-1783-2.

[17] Li Z, Yin G, Yu Y, Wang T, Wang H. Detecting duplicate

pull-requests in GitHub. In Proc. the 9th Asia-Pacific Sym-

posium on Internetware, September 2017, Article No. 20.

DOI: 10.1145/3131704.3131725.

[18] Runeson P, Alexandersson M, Nyholm O. Detection

of duplicate defect reports using natural language pro-

cessing. In Proc. the 29th International Conference

on Software Engineering, May 2007, pp.499-510. DOI:

10.1109/ICSE.2007.32.

[19] Wang X, Zhang L, Xie T et al. An approach to detect-

ing duplicate bug reports using natural language and exe-

cution information. In Proc. the 30th International Confe-

rence on Software Engineering, May 2008, pp.461-470.

DOI: 10.1145/1368088.1368151.

[20] Nguyen A T, Nguyen T T, Nguyen T N, Lo D, Sun C. Du-

plicate bug report detection with a combination of informa-

tion retrieval and topic modeling. In Proc. the 27th Inter-

national Conference on Automated Software Engineering,

September 2012, pp.70-79. DOI: 10.1145/2351676.2351687.

[21] Lazar A, Ritchey S, Sharif B. Improving the accuracy

of duplicate bug report detection using textual similarity

measures. In Proc. the 11th Working Conference on Min-

ing Software Repositories, May 2014, pp.308-311. DOI:

10.1145/2597073.2597088.

[22] Porter M F. An algorithm for suffix stripping. In Readings

in Information Retrieval, Jones K S, Willett P (eds.), Mor-

gan Kaufmann Publishers Inc., 1997, pp.313-316.

[23] Manning C D, Schütze H. Foundations of Statistical Natu-

ral Language Processing. MIT Press, 1999.

[24] Sun C, Lo D, Wang X, Jiang J, Khoo S C. A discrimi-

native model approach for accurate duplicate bug re-

port retrieval. In Proc. the 32nd International Confe-

rence on Software Engineering, May 2010, pp.45-54. DOI:

10.1145/1806799.1806811.

[25] Sun C, Lo D, Khoo S C, Jiang J. Towards more

accurate retrieval of duplicate bug reports. In Proc.

the 26th International Conference on Automated Soft-

ware Engineering, November 2011, pp.253-262. DOI:

10.1109/ASE.2011.6100061.

[26] Zhang Y, Lo D, Xia X, Sun J. Multi-factor duplicate

question detection in stack overflow. Journal of Com-

puter Science and Technology, 2015, 30(5): 981-997. DOI:

10.1007/s11390-015-1576-4.

[27] Mann H B, Whitney D R. On a test of whether one of two

random variables is stochastically larger than the other. The

Annals of Mathematical Statistics, 1947, 18(1): 50-60.

https://doi.org/10.2753/MIS0742-1222240104
https://doi.org/10.2753/MIS0742-1222240104
https://doi.org/10.1145/2593882.2593887
https://doi.org/10.1145/2950290.2950364
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1007/s11432-016-5595-8
https://doi.org/10.1007/s11432-016-5595-8
https://doi.org/10.1109/ICSE.2003.1201220
https://doi.org/10.1109/TSE.2018.2872713
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1016/j.infsof.2016.01.004
https://doi.org/10.1109/SANER.2015.7081824
https://doi.org/10.1145/3180155.3180208
https://doi.org/10.1145/3196398.3196455
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1109/ICSME.2014.107
https://doi.org/10.1109/ICSME.2014.107
https://doi.org/10.1007/s11390-017-1783-2
https://doi.org/10.1007/s11390-017-1783-2
https://doi.org/10.1145/3131704.3131725
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1145/2351676.2351687
https://doi.org/10.1145/2597073.2597088
https://doi.org/10.1145/1806799.1806811
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1007/s11390-015-1576-4

Zhi-Xing Li et al.: Detecting Duplicate Contributions in Pull-Based Model 205

[28] Thung F, Kochhar P S, Lo D. DupFinder: Integrated

tool support for duplicate bug report detection. In Proc.

the 29th International Conference on Automated Soft-

ware Engineering, September 2014, pp.871-874. DOI:

10.1145/2642937.2648627.

[29] Tsay J, Dabbish L, Herbsleb J. Influence of social and tech-

nical factors for evaluating contribution in GitHub. In Proc.

the 36th International Conference on Software Engineer-

ing, May 2014, pp.356-366. DOI: 10.1145/2568225.2568315.

[30] van der Veen E, Gousios G, Zaidman A. Automatically pri-

oritizing pull requests. In Proc. the 12th Working Confe-

rence on Mining Software Repositories, May 2015, pp.357-

361. DOI: 10.1109/MSR.2015.40.

[31] Baysal O, Kononenko O, Holmes Ret al. Investigating tech-

nical and non-technical factors influencing modern code re-

view. Empirical Software Engineering, 2016, 21(3): 932-

959. DOI: 10.1007/s10664-015-9366-8.

[32] Mcintosh S, Kamei Y, Adams B et al. An empirical study

of the impact of modern code review practices on software

quality. Empirical Software Engineering, 2016, 21(5): 2146-

2189. DOI: 10.1007/s10664-015-9381-9.

[33] Fagan M E. Design and code inspections to reduce errors

in program development. In Pioneers and Their Contribu-

tions to Software Engineering, Broy M, Denert E (eds.),

Springer, 2001, pp.301-334. DOI: 10.1007/978-3-642-48354-

7 13.

[34] Bacchelli A, Bird C. Expectations, outcomes, and chal-

lenges of modern code review. In Proc. the 35th Inter-

national Conference on Software Engineering, May 2013,

pp.712-721. DOI: 10.1109/ICSE.2013.6606617.

[35] Rigby P C, Storey M A. Understanding broadcast based

peer review on open source software projects. In Proc. the

33rd International Conference on Software Engineering,

May 2011, pp.541-550. DOI: 10.1145/1985793.1985867.

[36] Thongtanunam P, McIntosh S, Hassan A E, Iida H. Investi-

gating code review practices in defective files: An empirical

study of the Qt system. In Proc. the 12th Working Confe-

rence on Mining Software Repositories, May 2015, pp.168-

179. DOI: 10.1109/MSR.2015.23.

[37] Jiang J, He J H, Chen X Y. CoreDevRec: Automatic core

member recommendation for contribution evaluation. Jour-

nal of Computer Science and Technology, 2015, 30(5): 998-

1016. DOI: 10.1007/s11390-015-1577-3.

[38] Rahman M M, Roy C K, Collins J A. CORRECT: Code re-

viewer recommendation in GitHub based on cross-project

and technology experience. In Proc. the 38th Interna-

tional Conference on Software Engineering Companion,

May 2016, pp.222-231. DOI: 10.1145/2889160.2889244.

[39] de Lima Júnior M L, Soares D M, Plastino A, Murta L.

Developers assignment for analyzing pull requests. In Proc.

the 30th Annual ACM Symposium on Applied Computing,

April 2015, pp.1567-1572. DOI: 10.1145/2695664.2695884.

[40] Baum T, Liskin O, Niklas K, Schneider K. Factors influ-

encing code review processes in industry. In Proc. the 24th

ACM SIGSOFT International Symposium on Foundations

of Software Engineering, November 2016, pp.85-96. DOI:

10.1145/2950290.2950323.

[41] Beller M, Bacchelli A, Zaidman A, Jürgens E. Modern

code reviews in open-source projects: Which problems do

they fix? In Proc. the 11th Working Conference on Min-

ing Software Repositories, May 2014, pp.202-211. DOI:

10.1145/2597073.2597082.

[42] Morales R, Mcintosh S, Khomh F. Do code review practices

impact design quality? A case study of the Qt, VTK, and

ITK projects. In Proc. the 22nd International Conference

on Software Analysis, Evolution and Reengineering, March

2015, pp.171-180. DOI: 10.1109/SANER.2015.7081827.

[43] Mcintosh S, Kamei Y, Adams B, Hassan A E. The im-

pact of code review coverage and code review participation

on software quality: A case study of the Qt, VTK, and

ITK projects. In Proc. the 11th Working Conference on

Mining Software Repositories, May 2014, pp.192-201. DOI:

10.1145/2597073.2597076.

[44] Thongtanunam P, Mcintosh S, Hassan A E, Iida H. Revisit-

ing code ownership and its relationship with software qua-

lity in the scope of modern code review. In Proc. the 38th

International Conference on Software Engineering, May

2016, pp.1039-1050. DOI: 10.1145/2884781.2884852.

Zhi-Xing Li is a Ph.D. candidate

in the College of Computer at National

University of Defense Technology

(NUDT), Changsha. He received his

Master’s degree in computer science

from NUDT, Changsha, in 2017. His

work interests include software engi-

neering, data mining, and knowledge

discovering in open source communities.

Yue Yu is an assistant professor in

the College of Computer at NUDT,

Changsha. He received his Ph.D. degree

in computer science from NUDT,

Changsha, in 2016. His research

findings have been published on MSR,

FSE, IST, ICSME APSEC and SEKE.

His current research interests include

software engineering, spanning from mining software

repositories and analyzing social coding networks.

Tao Wang is an assistant profes-

sor in the College of Computer at

NUDT, Changsha. He received his

Ph.D. degree in computer science from

NUDT, Changsha, in 2015. His work

interests include open source software

engineering, machine learning, data

mining, and knowledge discovering in

open source software.

https://doi.org/10.1145/2642937.2648627
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1109/MSR.2015.40
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/978-3-642-48354-7_13
https://doi.org/10.1007/978-3-642-48354-7_13
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/1985793.1985867
https://doi.org/10.1109/MSR.2015.23
https://doi.org/10.1007/s11390-015-1577-3
https://doi.org/10.1145/2889160.2889244
https://doi.org/10.1145/2695664.2695884
https://doi.org/10.1145/2950290.2950323
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1109/SANER.2015.7081827
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2884781.2884852

206 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

Gang Yin is an associate professor

in the College of Computer at NUDT,

Changsha. He received his Ph.D. degree

in computer science from NUDT,

Changsha, in 2006. He has worked

in several grand research projects

including National 973, 863 projects.

He has published more than 60 research

papers in international conferences and journals. His

current research interests include distributed computing,

information security, software engineering, and machine

learning.

Xin-Jun Mao is a professor in the

College of Computer, NUDT, Chang-

sha. He received his Ph.D. degree in

computer science from NUDT, Chang-

sha, in 1998. His research findings have

been published on Transaction on SMC,

ICSE, Journal of Software: Evolution

and Process, IJSEKE, and APSEC. His

research interests include software engineering, multi-agent

system, robot system, self-adaptive system, and crowd-

sourcing.

Huai-Min Wang received his

Ph.D. degree in computer science from

NUDT, Changsha, in 1992. He is

now a professor and vice-president for

academic affairs of NUDT, Changsha.

He has been awarded the “Chang Jiang

Scholars Program” professor and the

Distinct Young Scholar, etc. He has

published more than 100 research papers in peer-reviewed

international conferences and journals. His current

research interests include middleware, software agent, and

trustworthy computing.

	1 Introduction
	2 Background
	3 Approach
	3.1 Calculating Textual Similarity
	3.2 Calculating Change Similarity
	3.2.1 File-Change Similarity
	3.2.2 Code-Change Similarity

	3.3 Combining Similarities
	3.4 Suggesting Candidates

	4 Experiment and Evaluation
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Research Questions and Results

	5 Threats to Validity
	6 Related Work
	6.1 Duplicate Detection
	6.2 Pull-Request
	6.3 Code Review

	7 Conclusions

