
Liu BB, Dong W, Liu JX et al. ProSy: API-based synthesis with probabilistic model. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 35(6): 1234–1257 Nov. 2020. DOI 10.1007/s11390-020-0520-4

ProSy: API-Based Synthesis with Probabilistic Model

Bin-Bin Liu1, Wei Dong2,∗, Member, CCF, Jia-Xin Liu1, Ya-Ting Zhang1, and Dai-Yan Wang1

1College of Computer Science, National University of Defense Technology, Changsha 410072, China
2Key Laboratory of Software Engineering for Complex Systems, College of Computer Science, National University of

Defense Technology, Changsha 410072, China

E-mail: {liubinbin09, wdong, liujiaxin18, zhangyating18, wangdaiyan}@nudt.edu.cn

Received April 10, 2020; revised October 22, 2020.

Abstract Program synthesis is an exciting topic that desires to generate programs satisfying user intent automatically.

But in most cases, only small programs for simple or domain-specific tasks can be synthesized. The major obstacle of synthesis

lies in the huge search space. A common practice in addressing this problem is using a domain-specific language, while many

approaches still wish to synthesize programs in general programming languages. With the rapid growth of reusable libraries,

component-based synthesis provides a promising way, such as synthesizing Java programs which are only composed of APIs

(application programming interfaces). However, the efficiency of searching for proper solutions for complex tasks is still a

challenge. Given an unfamiliar programming task, programmers would search for API usage knowledge from various coding

resources to reduce the search space. Considering this, we propose a novel approach named ProSy to synthesize API-based

programs in Java. The key novelty is to retrieve related knowledge from Javadoc and Stack Overflow and then construct

a probabilistic reachability graph. It assigns higher probabilities to APIs that are more likely to be used in implementing

the given task. In the synthesis process, the program sketch with a higher probability will be considered first; thus, the

number of explored reachable paths would be decreased. Some extension and optimization strategies are further studied in

the paper. We implement our approach and conduct several experiments on it. We compare ProSy with SyPet and other

state-of-the-art API-based synthesis approaches. The experimental results show that ProSy reduces the synthesis time of

SyPet by up to 80%.

Keywords application programming interface (API)-based program, Petri net, probabilistic reachability graph, program

synthesis

1 Introduction

Program synthesis, the task of automatically gen-

erating a program that satisfies user intent, has been

regarded as the holy grail of computer science [1] and

one of the most central problems in the theory of

programming [2]. Many different techniques have been

proposed for program synthesis, such as programming

by examples [3], syntax-guided synthesis [4], component-

based synthesis [5], program sketching [6], and neural

programming [7, 8]. The key problem to be solved in

most of these techniques is how to specify the user

intent accurately and then investigate efficient search

techniques in the program space. Due to the huge

search space, many approaches define domain-specific

languages (DSL) for specific tasks, such as bit-vector [5],

string manipulation [9], and table transformation [10].

Although these techniques are efficient for problems

in certain domains, they are not suitable for general-

purpose program synthesis such as finding Java or C

programs that meet various users’ requirements.

With the rapid growth of reusable program libraries

and components, component-based synthesis [11–13] is

becoming an important research field of program syn-

thesis, which assembles programs from a set of compo-

nents. Although many of these studies are also limited

http://dx.doi.org/10.1007/s11390-020-0520-4
http://dx.doi.org/10.1007/s11390-020-0520-4


Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1235

to DSLs [5, 11], there emerge some approaches to syn-

thesizing programs in general programming languages.

For example, SyPet [12] is a state-of-the-art component-

based approach. It generates Java programs that are

only composed of APIs (application programming in-

terfaces), which makes it more practical. But since

the program space constituted by all API sequences

is still very large, finding the correct solution is time-

consuming, and normally, only small programs can be

found in practice.

To synthesize more complex API-based programs

for real problems, we can recall what programmers do

when faced with the same problem. If he/she has never

solved such a problem and does not know which APIs

to use, he/she will search for knowledge from different

sources. He/she might refer to Javadoc 1○ for APIs

related to this problem. He/she can also search for

programming posts in online forums, such as Stack

Overflow 2○, to find out which APIs are used to solve

similar problems. After acquiring the knowledge from

different sources, he/she can restrict the APIs to a min-

imal scope and then try to write the program with these

APIs. Obviously, more knowledge of APIs on specific

problems can significantly reduce the solution space.

In other words, the vast accumulation of source code

and related documentation may bring a breakthrough

to software automation such as program synthesis [14].

In this paper, we propose a novel probabilistic-

model based approach named ProSy to synthesize Java

programs which are only composed of APIs. The key

idea is to reduce the search space of program synthesis

with the knowledge acquired from various coding re-

sources such as Javadoc and Stack Overflow. In our ap-

proach, based on the Petri net model used in SyPet [12],

we propose the probabilistic reachability graph (PRG)

model which assigns a probability to each API. The

probability can measure the likelihood of an API to

be used in implementing the given programming task.

In the synthesis process, the reachable path (program

sketch) with a higher probability will be enumerated

first, which can improve the efficiency of program syn-

thesis. After that, some extension and optimization

strategies are further studied. The evaluation on a set

of real programming tasks shows that ProSy is more

efficient than existing work.

The main contributions of the paper are listed as

below.

• A probabilistic reachability graph (PRG) is pro-

posed for API-based synthesis. It assigns higher

probabilities to APIs which are more likely to be used

in implementing the given programming task. Consi-

dering the API sequences with a higher probability first

will speed up the search process of program synthesis.

• The method of calculating API probabilities in

PRG based on the data acquired from Javadoc and

Stack Overflow is proposed. It considers the simila-

rity between the given programming task and the API

usage description as well as the occurrence frequency of

general-purpose APIs.

• An extension of handling field accesses and two

optimization strategies of pruning model and handling

inheritance relationships are studied. They can extend

the task types that the synthesizer can handle and can

further reduce the search space.

• A set of experiments are conducted to evaluate

our approach. The experimental results show that our

approach can synthesize more tasks in less time, which

demonstrates ProSy outperforms existing work.

The rest of this paper is organized as follows. Sec-

tion 2 introduces some preliminary concepts. Section 3

presents the overview of our approach through an exam-

ple. In Section 4, we illustrate the construction of the

probabilistic model and the extension of handling field

accesses. Section 5 describes the optimization strate-

gies. Section 6 shows the effectiveness of our approach

with experiments. Finally, Section 7 discusses related

work, and Section 8 concludes this paper.

2 Preliminaries

SyPet takes a component library of APIs and a sig-

nature of the desired method together with test cases

as input. It decomposes the synthesis process into

two separate phases of sketch-generation and sketch-

completion. The first phase performs a reachability

analysis on the Petri net to generate a reachable path,

which corresponds to a program sketch represented as

a sequence of APIs. The second phase completes the

sketch with parameters and variables to generate a can-

didate program, which is then verified by test cases.

As a start, we give a brief introduction about the

Petri net which is used to model API relations in

SyPet [12]. It is also used as the basis of our approach in

this paper. The Petri net is a mathematical modeling

language first invented by Carl Adam Petri [15]. Fig.1



1236 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

gives an example of a Petri net. A Petri net contains

places (represented by circles), transitions (represented

by bars), and arcs (represented by a directed edge be-

tween a place and a transition). Each place contains a

discrete number of tokens (represented by black dots).

The weight on an arc from a place to a transition indi-

cates how many tokens will be consumed in the input

place to fire this transition, and the weight on an arc

from a transition to a place indicates how many tokens

will be created in the output place by the transition.

A transition is enabled if all of its input places contain

sufficient tokens to be consumed. Only one transition

can be fired at one time. The mapping from each place

to the number of tokens is called a marking, which in-

dicates a configuration of the Petri net.

T P

T P

PT

P 













Fig.1. Example of Petri net.

Definition 1 (Petri Net [12]). A Petri net is a 5-

tuple N = (P, T,E,W,M0), where P and T are dis-

joint sets of places and transitions respectively. E ⊆

(P × T )∪ (T × P ) is a set of arcs. W : E → N assigns

a non-negative integer (weight) to each arc. M0 is the

initial marking of N .

Reachability graph of a Petri net denoted as R(N) is

constructed by connecting its reachable markings with

the firing transitions. The reachability graph of the

Petri net in Fig.1 is shown in Fig.2. For instance, tran-

sition T1 from marking [2, 0, 0, 0] to [1, 1, 0, 0] represents

how the marking will change when T1 is fired in con-

figuration [2, 0, 0, 0]. The definition of the reachability

graph is given as follows.

T

T

T
T

T

T

T

♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

Fig.2. Reachability graph of the Petri net in Fig.1.

Definition 2 (Reachability Graph). Given a Petri

net N = (P, T,E,W,M0), a reachability graph R(N) is

a directed graph (V,E
′

), where V is the set of reach-

able markings of the Petri net from the initial marking

M0. Each directed edge e in E
′

is a 3-tuple (M, t,M
′

),

which means we can reach marking M
′

from M by fir-

ing transition t.

The reachability problem of the Petri net is to de-

cide, given a Petri net N and a marking M , whether

M ∈ R(N). An important property of the Petri net

is boundedness. A place in the Petri net is called k-

bounded if it does not contain more than k tokens in

all the reachable markings. A Petri net is called k-

bounded if all of its places are k-bounded. A Petri net

is bounded if and only if its reachability graph is finite.

A Petri net can be used to model the relations be-

tween APIs and data types. In SyPet, a place in the

Petri net corresponds to a data type, and a transition

corresponds to an API. An arc from place P1 to transi-

tion T1 means the API T1 needs the arguments of type

P1. An arc from transition T1 to place P2 means the

return type of API T1 is P2. We also create a place for a

special type void. There is a special transition named

“clone transition”. After we have created places for

data types, we create a clone transition for each place.

Each place is connected to the clone transition with an

arc weighted 1 and a reversed arc weighted 2. Clone

transitions allow us to duplicate tokens, which ensures

the program variables can be reused in the synthesis

context.

Example 1. Fig.3 shows a part of the Petri net con-

structed for library org.joda.time. Places DateTime,

LocalDate, and Days represent class types. Place int

represents the primitive data type int. Transitions

toLocalDate, daysBetween, and getDays represent

APIs. Each place is connected with a clone transition.

toLocalDate has an incoming arc weighted 1, which

means it needs an argument of type DateTime. The

outgoing arc of toLocalDate means its return type is

LocalDate. The marking of the current configuration

DateTime

clone

2

2

2

2

1

2

1

1 1

1

1

1

11

clone

clone

clone
getDays

Days daysBetween

toLocalDate

int

LocalTime

Fig.3. Example of Petri net for modeling API relations.



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1237

is M = [DateTime → 2, LocalDate → 0, Days →

0, int → 0] (written as [2, 0, 0, 0] for short).

Suppose that a user desires to implement a method

daysBetweenwith two input arguments (arg0, arg1) of

type DateTime and a return type int. In example 1, the

corresponding initial marking isM0 = [2, 0, 0, 0] and the

target marking is M∗ = [0, 0, 0, 1]. Especially, the ini-

tial marking assigns one token to the place of type void,

which is omitted in the figure. A firing sequence of tran-

sitions in the reachability graph is shown in Fig.4.

Fig.4. Firing sequence of transitions.

The firing sequence of transitions corresponds to the

program sketch shown in Fig.5.

Fig.5. Corresponding program sketch.

According to the algorithm in SyPet, after complet-

ing the sketch with a set of satisfiable assignments (by

assigning arg0 to #1, arg1 to #2, and v1, v2, v3, v4 to

#3, #4, #5, #6 respectively), a valid candidate program

is obtained as shown in Fig.6.

Fig.6. Obtained candidate program.

From the example above we can see, a Petri net can

be used to model the relations between APIs. The prob-

lem of program synthesis can be decomposed into two

phases of finding a reachable path in the reachability

graph and completing the program sketch.

3 Motivation and Approach Overview

3.1 Motivation

Consider a scenario below. A programmer is asked

to implement a method named daysBetween which in-

tents to compute the number of days between two dates.

He/she seeks help from program synthesizers such as

SyPet to generate the desired method. He/she needs

to provide a method signature, which contains two in-

put arguments of type DateTime and a return type int.

The name of Java library org.joda.time should also

be designated to tell SyPet the scope of the APIs to be

used. Besides, one or more test cases should be pro-

vided to verify the correctness of candidate programs.

After about three minutes on our platform, the Java

program in Section 2 (see Fig.6) will be returned.

Now let us see the search space for this task. The

library org.joda.time contains about 200 classes and

3 000 methods. The Petri net constructed contains as

many as 250 places and 3 500 transitions including tran-

sitions of these methods and clone transitions of diffe-

rent places. A more serious problem is that the number

of markings in the reachability graph grows exponen-

tially with the number of places and transitions. Even

though the desired program only contains four APIs,

finding a reachable path from such a large search space

is not an easy job. Most of the synthesis time is wasted

on the transitions that are not related to this task.

If a programmer is asked to implement this task

manually and he/she is not clear which APIs should

be used, what would he/she do? Normally, he/she

would look for the support from various coding re-

sources based on the description of this task. He/she

might look up and read the explanations of related

classes and APIs in Javadoc documentation. He/she

might turn to programming forums like Stack Overflow

to search related posts. He/she might also search code

repositories like GitHub to find related implementations

via code annotations. Under normal conditions, an API

described similarly to a programming task might be

more helpful. Similarly, APIs that are rarely used in

practice are less likely to be used in the programming

tasks.

By these means, he/she can restrict the APIs that

might be used to a small scope. The description of the

desired method is “compute the number of days be-

tween two dates”. He/she finds that class Days has a

method daysBetween, which is described similarly to

the desired method. It computes the number of days

between two objects of LocalDate. However, the input

of this method has two arguments of type DateTime.

He/she finds that class LocalDate has the method

toLocalDate, which converts the DateTime object to

the LocalDate object. But the output type of method

daysBetween is Days, while the desired output type is

int. Further, he/she finds that method getDays in

class Days can convert the Days object into int. With



1238 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

the knowledge, he/she can implement a similar program

manually.

As we can see, the knowledge from various coding

resources can help us reduce the search space. The

knowledge may tell us which APIs are more related

to certain functionalities. A more relevant API should

have a higher probability to be used in the search space.

Thus, given a task, looking for the knowledge and con-

structing a probabilistic model for the search space may

significantly improve the efficiency of synthesis.

3.2 Approach Overview

Based on the discussion above, we propose the prob-

abilistic reachability graph (PRG). PRG is constructed

by assigning a real number to each edge in the reach-

ability graph. The real number represents the proba-

bility of firing the corresponding transition at a specific

marking.

Definition 3 (Probabilistic Reachability Graph,

PRG). A PRG is a 4-tuple PR = (M,E, F, Pr), where

M is the set of reachable markings of the Petri net, and

E ⊆ M × M is the set of directed edges. F : E → T

is a mapping labeling each edge with a transition (i.e.,

method) of the Petri net. Pr : E → [0, 1] assigns a real

number to each edge satisfying:
∑

(m,m′)∈E

Pr(m,m′) = 1, for each m ∈ M.

Now we give an overview of our approach as shown

in Fig.7. Given a task, the user first provides a method

signature and a set of APIs, with which a Petri net

is constructed. At the same time, we build a proba-

bility calculator with the natural language description

of the task and the data extracted from Javadoc and

Stack Overflow. The probability calculator assigns each

edge in the reachability graph a probability related to

this task. Thus, a PRG is obtained. The probability

can measure the likelihood of an API to be used in

implementing the programming task. When searching

for reachable paths in PRG, we propose several ex-

tension and optimization strategies to further extend

the capability and improve the performance of our ap-

proach.

With the initial and target markings of the Petri net

determined by the given input and output types respec-

tively, we perform a probability-based search in PRG,

during which the reachable path with a higher proba-

bility will be enumerated first. The firing sequence in

one reachable path corresponds to a program sketch.

Afterwards, the sketch is completed with type-check

parameters and variables to generate a candidate pro-

gram. If the candidate program passes all the test cases,

the desired program is synthesized; otherwise it rolls

back to generate a new candidate program by complet-

ing the sketch with other parameters and variables. If

there are no candidate programs for this sketch that

can pass all the test cases, a new program sketch will

be generated by enumerating another reachable path

with a higher probability.

Next, we mainly focus on the construction of the

PRG model and the extension and optimization strate-

gies, which are the main contributions of this paper.

The techniques mentioned in other steps will be illus-

trated if necessary and the details of them can be found

in the paper of SyPet [12].

Optimization

Pruning
Model

Handling
Inheritance Test Case

API
Library

Signature
Petri Net

Extension

Handling
Fields

Probabilistic
Reachability

Graph

Probability
Calculator

Probability-
Based Search

API Knowledge
Extraction

Stack Overflow Javadoc

Program
Sketch

Candidate
Program

Pass

Fail

Desired
Program

Fig.7. Overview of ProSy.



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1239

4 Probabilistic Model Construction

Given a natural language description and the sig-

nature of the desired task, ProSy constructs the PRG

with the data extracted from Javadoc and Stack Over-

flow. This process can be divided into two phases. The

first phase is constructing a probability calculator from

various data resources, and the second phase is con-

structing the PRG model.

4.1 Data Preparation

To construct the probability calculator, the know-

ledge of API usage for the given task is needed. This

knowledge will be learned from Javadoc documentation

and Stack Overflow posts.

4.1.1 Javadoc Data

Javadoc is API documentation in the format of

HTML, which contains a detailed description of each

API. We first crawl HTML files of Javadoc from the

Internet and then use the package BeautifulSoup 3○ in

Python to extract the signature and natural language

description of each API. For the description, we seg-

ment it, remove stopwords, and stem each word in it.

Finally, we obtain Javadoc data pairs in the form of

(ci, Di), where ci indicates the signature of an API and

Di indicates the tokenized word set of the description.

4.1.2 Stack Overflow Data

Stack Overflow is an online Q&A forum for pro-

grammers. We download the posts file from Stack

Exchange Data Dump 4○. Each question post in the

dataset contains one or more tags indicating the topic

of the question. We filter the posts with the tag of

〈java〉 and get a total number of 1 300 000 Java posts.

Each question in the post may contain one or more

answers, many of which are irrelevant or redundant.

We only consider the answers with a score greater than

zero. We also discard the answers that do not contain

any code snippets. We then match each answer with

the corresponding question and obtain a dataset with

more than 280000 Q&A pairs. We then extract the

code snippets enclosed in tag 〈code〉 from the selected

answers. After that, we use regular expressions to find

all the APIs appeared in these code snippets in the form

of M.n() or new M(). For a question, we only keep its

title and get the tokenized word set of the title as we

do to the description in Javadoc data.

For each (Question,Answer) pair, we obtain the

data pair in the form of (S, T ), where S represents the

set of APIs appeared in the answer and T represents the

set of tokenized words in the title of the question. We

traverse all the data pairs (S, T ) twice. For the first

round, we traverse all the data in S to recognize the

signature ci of each API that appears in the dataset,

and then create a word set Ti for each API ci. For the

second round of traversing, we put all the words that

appear in the same (Question,Answer) pair with ci

into the word set Ti. Finally, we get Stack Overflow

data pairs in the form of (ci, Ti).

We use an example to show how we prepare the

Stack Overflow data in Fig.8. There are two data

pairs which are shown in the upper part of the fig-

ure. In the first round, we can recognize four APIs

from these data pairs, i.e., DocumentBuilder.parse,

InputSource.<init>, InputStreamReader.<init>, and

ByteArrayInputStream.<init>. We then create four

word sets for those four APIs. In the second round, we

recognize those words that appear in the same Q&A

pair with these APIs and put them into the word sets

of them. Finally, we get four data pairs as shown at the

bottom of the figure.

In addition, we count the number of occurrences of

each API from all the data pairs in the dataset and

obtain a set of APIs together with their occurrences

in the form of (ci, ni). Here, ni represents the num-

ber of occurrences of API ci. For the example in Fig.8,

DocumentBuilder.parse has an occurrence number of 2,

and the other three APIs have an occurrence number of

1. We do this to recognize those general-purpose APIs

that are commonly used.

4.2 Probability Calculator

After collecting the data from Javadoc and Stack

Overflow, we construct a probability calculator with

them. The probability calculator first calculates the

score of each API for the specified task. The score cal-

culation is based on the hypotheses below.

• The more similar the description of an API is to

the programming task, the more possible it is to be used

in the task.

• The more frequently an API appears in the

dataset, the more possible it is to be used in the pro-

gramming task.

The second hypothesis is to consider the APIs with



1240 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Q: Repairing wrong encoding in XML files
A: DocumentBuilder.parse InputSource.<init> InputStreamReader.<init>

API: DocumentBuilder.parse
Words: repair wrong encod xml file create dom document utf byte array

API: InputSource.<init>
Words: repair wrong encod xml file

API: InputStreamReader.<init>
Words: repair wrong encod xml file

API: ByteArrayInputStream.<init>
Words: create dom document utf byte array

Q: Can I create a DOM Document from an encoded UTF-8 byte array
A: DocumentBuilder.parse ByteArrayInputStream.<init>

Fig.8. Example of preparing Stack Overflow data.

general purpose. The score calculation can be divided

into two parts. The first part is calculated by measuring

the text similarity of the description between the API

and the desired method. The other part is calculated

by measuring the frequency of the API’s occurrences in

the Stack Overflow dataset.

4.2.1 Similarity Function

The similarity function is used to measure the

text similarity between two descriptions. There are

many approaches to learning distributed representa-

tions of natural language words such as Word2Vec [16]

and GloVe [17]. They can compute continuous vector

representations of words from a corpus, such that simi-

lar words are close together in the vector space. In

this paper, we use Word2Vec as the model to learn the

embedding for each word.

Given two sets of words W1 and W2, the simila-

rity between them is defined as the mean value of two

similarities from W1 to W2 and W2 to W1:

sim(W1,W2) =
1



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1241

as follows:

score(ci) = min{1, sim(m, ci) + freq(ci)}.

By this means, a probability calculator is constructed,

and a score is assigned to each API.

4.3 PRG Construction

Before constructing the PRG, we first construct the

reachability graph of the Petri net. Due to the existence

of clone transitions, each place may have an unbound

number of tokens by firing the clone transitions infinite

times. Therefore, the reachability graph is infinite, and

enumerating reachable paths in it will not terminate.

A feasible solution is to construct a finite reachability

graph R∗(N) instead of the infinite one. The construc-

tion of the finite reachability graph R∗(N) is the same

as the construction of the reachability graph expect for

an additional constraint on the reachable markings.

For a place p, if the maximum weight of all its out-

going edges is k, we can ignore those markings that

assign more than k+1 tokens to p. As long as we have

k + 1 tokens in p, no transitions can be disabled due

to p. Moreover, no matter what transition is fired, we

have at least one token left in p. Because every place

has a corresponding clone transition, we can always cre-

ate k tokens in place p by firing the clone transitions

sufficient times. That is the reason why we can ig-

nore those markings. In this way, we can bound the

reachability graph without losing completeness. The

construction of the reachability graph follows the algo-

rithm in SyPet [12], which is shown in Algorithm 1.



1242 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

When enumerating reachable paths in the PRG, we pre-

fer the transitions with a higher probability to form a

“most promising” path.

T
T

T

T

T

♭֒֒֒♯ ⊲

T

T ⊲
⊲

⊲

⊲
⊲

⊲
♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

♭֒֒֒♯

Fig.9. Example of probabilistic reachability graph.

The basic procedure of enumerating reachable paths

in PRG is like a search problem in graph. The reach-

able paths are enumerated in increasing order of length.

Supposing we are enumerating a reachable path of

length k, we start with the initial marking. In each

step we choose to fire the transition with the highest

probability among all the transitions that are enabled.

If the firing sequence of transitions of length k does not

reach the target marking, we backtrack to find another

firing sequence with a higher probability.

4.4 Enumerating Reachable Paths with

Symbolic Encoding

There are far too many reachable paths in the PRG

and enumerating reachable paths by naive searching is

very time-consuming. To make it tractable, we encode

the problem of enumerating a “most promising” reach-

able path to a pseudo-boolean problem and use an off-

the-shelf SAT solver to solve it. The pseudo-boolean

problem is the task of finding a satisfying assignment

to a set of PB-constraints that minimize a given objec-

tive function [18].

We first introduce another graph induced from the

Petri net, which is called induced graph, represented

as α(N). The definition of the induced graph is given

below.

Definition 4 (Induced Graph). Given a Petri net

N = (P, T,E,W,M0), an induced graph, denoted as

α(N), is a directed graph (V,E
′

), where V = P and

(p1, p2) ∈ E
′

iff there is a transition t ∈ T such that

(p1, t) ∈ E and (t, p2) ∈ E.

The nodes of α(N) are places in the Petri net. There

is an edge from place p1 to place p2 in α(N), if it is

possible to reach p2 from p1 in the Petri net by firing a

single transition. An example of the induced graph of

the Petri net in Fig.1 is shown in Fig.10. We can see the

distance between two places (the number of transitions

fired) clearly from the induced graph.

P

P

P

P

Fig.10. Induced graph of the Petri net in Fig.1.

The algorithm of enumerating the “most promising”

reachable path is shown in Algorithm 2. We enumerate

reachable paths in increasing order of length. For each

input type ti and target type t, we compute the short-

est distance from the place representing ti to the place

representing t in the induced graph, represented as ki.

To ensure each input type can be converted to the tar-

get type eventually, the reachable path must contain

at least ki transitions. Therefore we set the shortest

length of reachable paths k as the maximum value of

each ki, that is, k = max{k1, k2, . . . , kn}.



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1243

reachable path enumerated is a most promising one, we

encode the score of each transition as a heuristic objec-

tive function. The objective function is in the form of

Σicili = c0l0+ c1l1+ . . .+ ck−1lk−1, where li is a literal

and ci is a coefficient.

To obtain the most promising reachable path, each

transition is encoded as a literal, and the score of the

transition is encoded as a coefficient. The literal is as-

signed to 1 if the corresponding transition is fired in the

reachable path and to 0 otherwise. The coefficient of

each transition can reflect the possibility of each transi-

tion being fired. We use the negative value of the score

as the coefficient. Therefore the higher the score of the

transition, the smaller the coefficient.

We encode the problem of enumerating the most

promising reachable path into solving a PB-problem

with optimizing functions. In solving the PB-problem,

the formula Φ has to be satisfied, and the value of the

objective function is preferable to be “the smaller, the

better”. If we find a satisfiable solution to the prob-

lem, we decode the solution into a reachable path in

PRG. After each reachable path is enumerated, we add

a blocking clause to Ψ to prevent the same path to be

enumerated again. After enumerating a reachable path

in PRG, a firing sequence of transitions is obtained,

which corresponds to a program sketch. It is then com-

pleted and verified with the test cases as mentioned in

Section 3 and [12].

4.5 Handling Field Accesses

Next, we illustrate an extension of handling field

accesses. There is an example below.

Example 2. The user desires a method “getDay-

OfYear” with an input type Date and an output type

int. The user intent is to get the number of days since

the beginning of the year.

One implementation manually written by the pro-

grammer is shown in Fig.11.

Fig.11. Implementation written manually.

Consider the statement in line 4 in Fig.11. It ac-

cesses the DAY



1244 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

We solve this problem with the help of the prob-

abilistic model in a similar way. We extract the data

from Javadoc for each field accompanied by their de-

scription. We also count the frequency of occurrences

of each field in the Stack Overflow dataset. Then we

assign a score for each new



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1245

Part of the original Petri net is shown in Fig.16

(without the transition and arcs in the dotted line).

We omit the weight of the arcs and clone transitions

for simplicity.

forPattern

int

DateTime
Formatter

FieldProperty Property

parse dayOfMonth

DateTime

getMaximumValue upper

String

getMaximumValue

Fig.16. Petri net of handling inheritance relationships.

In the API library of org.joda.time, the method

getMaximumValue is in class FieldProperty but not

Property. Actually, the class Property can invoke

the getMaximumValue method because it inherits from

FieldProperty. But when constructing the Petri net,

there is no transition converting Property to int di-

rectly.

To solve this problem, SyPet creates a kind of tran-

sitions named the upper transition, which starts from

a subclass and ends in the superclass. It can convert

an object from the subclass to its superclass. By this

means, Property can invoke the method of its super-

class. Therefore, the length of the firing sequence enu-

merated by this means is 5, which is shown in Fig.17.

Fig.17. Firing sequence of length 5.

The upper transition is not so natural and increases

the length of the firing sequence. Therefore, we propose

a strategy to improve it. For each superclass in the Petri

net, we create places for its subclasses, if they do not

exist in the Petri net. For each transition connected to

the superclass, we copy this transition and connect it

to its subclass in the same way. Considering the task in

example 3, we copy the transition getMaximumValue for

class Property instead of the upper transition, which

can convert type Property to int directly, as shown

in the dotted line in Fig.16. In this way, the firing

sequence enumerated has the length of 4 as shown in

Fig.18.

Fig.18. Firing sequence of length 4.

By this means, we can shorten the length of the fir-

ing sequence and improve the search efficiency eventu-

ally. In addition, it handles inheritance relationships in

a more natural way. Note that SyPet does not analyze

the inheritance relationships between classes automat-

ically. Actually, it uses a configuration file to indicate

the inheritance relationships offline, which needs to be

provided by the user beforehand. In our approach, we

follow the manner of SyPet. Due to this, the number of

new-added transitions for handling inheritance relation-

ships is limited, which will not bring too much overhead

to the performance of ProSy. Analyzing inheritance re-

lationships automatically at runtime will be a better

choice, but it will also be a challenge to deal with the

overhead brought by this, which will be studied in our

future work.

6 Empirical Evaluation

In this section, we evaluate our approach with some

experiments which aim to address the following research

questions.

RQ1. How effective is ProSy compared with the

baselines?

RQ2. How much improvement can the probabilis-

tic model and the optimization strategies bring to the

original approach?

RQ3. What is the generality of our approach?

RQ4. How does ProSy perform under different

parameter settings?

6.1 Experimental Setup

6.1.1 Benchmarks

In order to answer these questions, we conduct sev-

eral experiments with different configurations. To com-

pare our work with the baselines, we use the same 30

programming tasks of SyPet as the benchmark. These

30 tasks can be divided into four domains, i.e., Math

(1–9), Geometry (11–15), Time (16–22), and XML (23–

30), as shown in Table 1. Each task has a natural lan-

guage description to show their intent. The column of

“#APIs” indicates the number of component APIs in

the solution of the task. The column of “#Test Cases”

indicates the number of test cases used to verify the



1246 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 1. Summary of the 30 Programming Tasks



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1247

Table 2. Experimental Results of ProSy and SyPet on the 30 Programming Tasks



1248 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 3. Summary of the Experimental Results on 20 Extra Programming Tasks



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1249

search space. Note that due to our pruning strategy,

ProSy searches reachable paths of different lengths in

different pruned Petri nets. Therefore, the numbers in

the table represent the statistics of the pruned Petri

net from which we finally get a satisfiable solution. As

shown in the table, the average numbers of places and

transitions in ProSy are 78.27 and 945.93 respectively

while they are 183.67 and 1 953.90 in SyPet respec-

tively. With the adoption of the pruning strategy, our

approach can reduce the number of places by 57.38%

and reduce the number of transitions by 51.58%. Con-

structing PRG based on the pruned Petri net can fur-

ther speed up the search process.

The columns “#Sketches” and “#Programs” rep-

resent the number of candidate sketches and programs

generated of each task respectively. As shown in Ta-

ble 2, the average number of sketches is reduced from

430.33 to 354.93 by 17.52%. The average number of

programs is reduced from 1 106.93 to 861.63 by 22.16%.

In most of the 30 tasks, the numbers of sketches and

programs are reduced. There are some special cases like

tasks 20 and 21. The numbers of sketches and programs

are increasing, but the synthesis time is reduced. The

reason is the strategy of handling inheritance relation-

ships. This strategy creates some new transitions into

the Petri net, which increases the number of reachable

paths. Due to the PRG model and other optimization

strategies, the synthesis time is reduced.

Besides these 30 tasks, we collect 20 more tasks to

further study the performance of our approach. The ex-

perimental results are shown in Table 3. “T/O” means

that the corresponding task cannot be solved before

timeout.

We can see that among the 20 tasks, ProSy can solve

each of them within 60 seconds (7.31 seconds on ave-

rage), while SyPet can only solve eight of them before

timeout. It should be noted that in this experiment,

SyPet does not use its optimizing function, and does

not consider the inheritance relationships. It is because

that the packages for handling these two aspects should

be modified for these new tasks, but they are not open-

sourced by SyPet.

In the optimizing function, SyPet needs the prepro-

cessed data from Javadoc. The runnable version of

SyPet only contains the data needed for the 30 pro-

gramming tasks in the paper. For new tasks, the opti-

mizing function will not work without these data. For

inheritance relationships, SyPet does not analyze them

automatically at runtime. It uses a configuration file to

indicate the inheritance relationships. For new tasks,

if the inheritance relationships are not indicated, there

will be no reachable paths in the reachability path so

that no solution can be found before timeout some-

times.

Now let us analyze the 40th programming task as

an example. The user intent is to determine if the date

is several months ago from now. The solution program

is shown in Fig.19.

Fig.19. Solution program of task 40.

ProSy can solve it in 33.75 seconds while SyPet can-

not solve it before timeout. There are two main reasons

for this problem. One is that the number of places and

transitions in the Petri net of SyPet is nearly twice of

the number in the pruned Petri net of ProSy, which

leads to that the solution space of SyPet is exponen-

tial times of that of ProSy. The other is that ProSy

enumerates the reachable path with the highest proba-

bility in the PRG first, which can significantly improve

the efficiency of program synthesis.

To further study the performance of ProSy, we con-

duct an experiment to compare ProSy with another

API-based synthesizer Bayou [20]. Bayou can synthe-

size API-heavy code in Java using a Bayesian statistical

approach. Given a set of evidence such as API calls or

data types, it can predict a sketch of the program based

on the evidence. Then Bayou completes the sketch into

code. We extract all the APIs and data types from the

solution of each task as the evidence of Bayou. The pro-

grams returned by Bayou are ranked according to their

probabilities. To evaluate the performance of Bayou,

we choose the top 10 solutions generated by Bayou as

the candidate solutions. If the top 10 solutions contain

the desired one, then we deem that this task can be

solved by Bayou 7○.

We divide the 50 programming tasks in Table 1 and

Table 3 into six categories, i.e., Math, Geometry, Time,

XML, Date, and Others. The experimental results are

shown in Fig.20, which indicates how many tasks can



1250 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

be solved by each tool. Among these tasks, ProSy can

solve all of them, while Bayou can only solve six of them

when enough evidence is provided (three in the domain

of XML, two in Date, and one in Others).

OthersDateXMLTimeGeomMath

10

8

6

4

2

0N
u
m

b
e
r 

o
f 
T
a
sk

s 
T

h
a
t 

C
a
n
 B

e
 S

o
lv

e
d

ProSy
Bayou

Fig.20. Comparison with Bayou on 50 programming tasks.

In this experiment, we only evaluate the ability of

ProSy and Bayou on synthesizing correct solutions for

the same set of tasks. Comparing these two synthe-

sizers in a fair and systematic way is difficult. Firstly,

the technical routes of ProSy and Bayou are different.

ProSy is a search-based approach. It uses the Petri

net to model the API usage and performs a reacha-

bility analysis on it to generate programs. Bayou is

a deep-learning based approach. It predicts programs

based on the generative model and the model needs to

be trained on a large dataset. Secondly, the inputs of

these two methods are different. The inputs of ProSy

include a method signature, a natural language descrip-

tion, a candidate API library, and test cases. The in-

put of Bayou is a set of evidence such as API calls

or data types. In our experiment, we provide all the

APIs and data types from the solution of each task as

the evidence of Bayou. Thirdly, the way of validating

candidate programs of these two methods is different.

ProSy evaluates them on test cases provided by users.

The returned program is ensured to pass all the test

cases (if it exists). Bayou can only ensure that the

programs generated are free from grammatical errors.

But the correctness of the programs cannot be ensured.

Fourthly, the metrics of evaluating these two methods

are different. In ProSy, we set a timeout to 30 minutes

and Bayou does not have a time limit. It only returns

candidate programs which are ranked according to the

trained generative model.

Next, we experiment on 16 tasks to evaluate the

strategy of handling field accesses. The results are

shown in Table 4. “N/A” means “not applicable”. All

these tasks cannot be solved by SyPet but can be solved

by ProSy in a short period of time (2.71 seconds on ave-

rage), which indicates that the strategy of handling field

accesses is very useful to synthesize such kind of tasks.

By using this strategy, we can extend the capability of

our approach.

Based on the experimental results above, we can

make the following conclusion.

Answer to RQ1. ProSy can significantly improve

the efficiency of synthesis and narrow down the search

space compared with SyPet. The strategy of handling

field accesses can extend the capability of our approach.

6.3 Evaluation of PRG and Optimization

Strategies (RQ2)

To evaluate the performance of PRG and the opti-

mization strategies in our approach, we experiment on

the 30 programming tasks of SyPet together with the

20 newly collected tasks with different configurations.

The experimental results are shown in Table 5. The

numbers of sketches and programs in the table only

calculate the average value of those tasks that can be

solved before timeout. The statistics for those tasks

that cannot be solved are not recorded.

Table 5. Summary of the Experimental Results of ProSy Under
Different Configurations



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1251

The numerator in the fraction of the success rate

represents the number of tasks that can be solved. The

denominator represents the total number of tasks. The

numbers of tasks that can be synthesized by “Only

PRG”, “Only Pruning” “Only Inheri” and “None” are

43, 41, 48, and 41 respectively. The average synthesis

time of “ProSy”, “Only PRG”, “Only Pruning” “Only

Inheri” and “None” is 11.75, 275.08, 352.09, 105.84, and

356.73 seconds respectively.

Comparing “Only PRG” with “None”, we can see

that by using the probabilistic model, we can reduce

22.88% of the synthesis time on average. The num-

bers of candidate sketches and programs are reduced

by 45.58% and 53.66% respectively. Comparing “Only

Pruning” with “None”, we can see that 1.3% of the

synthesis time can be reduced on average by using the

pruning strategy. That is because both two versions

of ProSy cannot solve nine tasks out of 50, which en-

larges the average synthesis time. The numbers of can-

didate sketches and programs are reduced by 40.38%

and 41.93% respectively. Comparing “Only Inheri”

with “None”, we can see that 70.33% of the synthesis

time can be reduced on average by using the strategy

of handling inheritance relationships. The numbers of

candidate sketches and programs are reduced by 63.15%

and 61.55% respectively.

We can see that the probabilistic model and the

optimization strategies of pruning and handling inheri-

tance relationships can effectively reduce the synthesis

time and eventually improve the efficiency.

Another view of the results of synthesis time is

shown in Fig.21, which can display the dispersal of the

results. The horizontal line at the top and the bottom

represents the maximum and minimum value of the syn-

thesis time respectively. The top and the bottom edge

of the box represent the third quartile and the first

quartile value of the synthesis time respectively. The

red line and the green dotted line in the middle of the

box represent the median value and the mean value of

synthesis time respectively. Note that we take the nat-

ural logarithm for each synthesis time to deal with the

problem of data sparsity.

We can see that the median value, mean value, as

well as the first and the third quartile values, are all

reduced in “Only PRG”, “Only Pruning”, and “Only

Inheri” compared with “None”, which means the prob-

abilistic model and the strategies of pruning and han-

dling inheritance relationships can reduce the synthesis

time.

ProSy

5

4

3

2

1

0

-1

NoneOnly
Inheri

Only
Pruning

Only
PRG

S
y
n
th

e
si

s 
T

im
e
 (

L
o
g
a
ri
th

m
ic

 S
c
a
le

)

Fig.21. Synthesis time (natural logarithm) of 50 tasks on diffe-
rent configurations.

From the experimental results above, we can con-

clude as follows.

Answer to RQ2. Both PRG and the optimization

strategies of the pruning model and handling inheri-

tance relationships can improve the efficiency of pro-

gram synthesis.

6.4 Evaluation of Generality of ProSy (RQ3)

The approach of acquiring knowledge from vari-

ous code resources and constructing a probabilistic

model to reduce the program space is a general ap-

proach, which can be applied to any API-based syn-

thesizers. To further evaluate the generality of our ap-

proach, we implement it on another API-based synthe-

sizer FrAngel [13]. FrAngel can generate Java programs

that are composed of APIs and control structures. The

input of FrAngel is the same as that of SyPet. It gene-

rates programs by randomly sampling programs and

evaluating them on the test cases. The basic procedure

of FrAngel is a random search.

FrAngel 9○ first analyzes the APIs in the component

library specified by the user and then uses these APIs

as basic fragments. In synthesis, it randomly samples

from these fragments to generate programs. To im-

plement our approach on it, we build the probability

calculator as we do in ProSy to obtain the probability

of each API in the library. In FrAngel, it samples frag-

ments all at random. Unlike the original approach, we

also build a probabilistic model and use the score of

each API to guide the sampling process. The API with

a higher score has a higher rate to be sampled. We then

experiment on it compared with the original version.



1252 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

We use the 95 programming tasks (group SyPet,

Geometry, and Control Structures) provided in

FrAngel [13]. We do not experiment on the 25 tasks

in group GitHub, because these tasks evolve too many

project-specific and self-defined APIs, which is unable

to retrieve knowledge about them. FrAngel uses a ran-

dom search in synthesizing. Therefore we run each ver-

sion of FrAngel 10 times and record the average value of

the statistics of these 10 runs. The experimental results

are shown in Table 6.

The column “FrAngel” represents the open-source

version of FrAngel. The column “Prob. Model” rep-

resents the modified version of FrAngel with the prob-

abilistic model. We record the success rate, synthe-

sis time, and the number of candidate programs gene-

rated for each benchmark group. For the tasks in group

SyPet, the average synthesis time is reduced by 56.09%,

and the number of candidate programs is reduced by

51.77% on average. For the tasks in group Geometry,

the average synthesis time is reduced by 3.84%, and the

number of candidate programs is reduced by 4.98% on

average. For the tasks in group Control Structures, the

average synthesis time is reduced by 23.34%, and the

number of candidate programs is reduced by 24.58% on

average.

In group SyPet and Control Structures, the syn-

thesis time and the number of candidate programs are

both reduced significantly. However, the improvement

in group Geometry is only a little. In the SyPet group,

the component library is specified by package name

like java.awt.geom, which contains many classes. The

number of APIs in these classes is quite large. In group

Geometry, some tasks’ component libraries are not spe-

cified by the user but inferred from the input and out-

put types. In some tasks, the component library only

contains one or two classes. The number of APIs in it

is often small. That is the reason why our approach

cannot bring too much speedup for tasks in group Geo-

metry.

Another view of the experimental results is shown

in Fig.22. It shows the success rate of synthesizing in

30 minutes for different benchmark groups. The dotted

line represents the modified version and the solid line

represents the original version. Different groups of tasks

are represented in different colors. For each benchmark

group, our modified version can generate more tasks

in less time than the original version of FrAngel. The

experimental result shows that by combining the prob-

abilistic model, the performance of synthesis can be ef-

fectively improved.

From the experimental results above, we can con-

clude as follows.

Answer to RQ3. The approach of building a proba-

bility model to reduce the program space is a general

approach, which can be applied to other API-based syn-

thesizers to improve the efficiency of synthesis.

6.5 Sensitivity Analysis of the Weighing

Function (RQ4)

In order to evaluate the performance of ProSy un-

der different parameter settings, we conduct an experi-

ment to analyze the weighing parameter in the simila-

rity function. The similarity function is the weighted

average of the similarity function for Javadoc and

Stack Overflow. Here, we analyze the parameter of ω1

through an experiment. We vary the parameter from 0

to 1 to evaluate its impact on the synthesis time of the

50 tasks.

We vary ω1 from 0 to 1 (ω2 from 1 to 0) increment-

ing by 0.1 each time and obtain the synthesis time on

the 50 benchmarks. The results are shown in Fig.23,

where we take the natural logarithm for each synthesis

time. We can see that the median value and the mean

value of the synthesis time reach the minimum value

when ω1 is 0.5.

Answer to RQ4. The value of ω1 has an effect on

the performance of ProSy. The optimum value for ω1

is 0.5.

7 Related Work

In this section, we discuss some work that is related

to our study from four categories.

Table 6. Summary of the Experimental Results on FrAngel



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1253

0 5 10 15

100

80

60

40

20

0
20 25 30

S
u
c
c
e
ss

 R
a
te

 (
%

)

SyPet
SyPet_PM
Geometry
Geometry_PM
Control
Control_PM

Synthesis Time (min)

Fig.22. Success rate of synthesizing in 30 minutes of FrAngel.

0.0 0.2 0.4 0.6 0.8 1.00.1 0.3 0.5 0.7 0.9

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

S
y
n
th

e
si

s 
T

im
e
 (

L
o
g
a
ri
th

m
ic

 S
c
a
le

)

ω

Fig.23. Synthesis time (natural logarithm) of 50 tasks under
different parameter settings.

7.1 Program Synthesis

Programming by examples (PBE) is an important

sub-field of program synthesis, where the specifica-

tions are provided in the form of input-output exam-

ples. PBE usually synthesizes programs in an underly-

ing domain-specific language to constrain the program

space and combines various techniques to accelerate the

search process [3]. The specification is normally very

straightforward and easy to collect; therefore it has

been studied by many researchers [21–25]. In PBE, the

users need to provide a DSL and some input-output

examples for the desired program’s behavior. Then it

can synthesize a ranked set of DSL programs that are

consistent with the examples. Unlike these studies, we

use input-output pairs only as test cases to verify the

correctness of candidate programs.

Component-based synthesis is to construct a

loop-free program from a given library of compo-

nents. It have been widely used in many domain-

specific applications including bit-vector programs [5],

geometry constructions [26], deobfuscating [11], string

manipulation [9], data structure transformation [27], and

table transformation [10], etc. In component-based syn-

thesis, users should provide a library of components.

Each component is a domain-specific function that may

be used in the desired program. Some studies also an-

notate each component with a specification [11]. Un-

like these studies, our work and SyPet [12] as well as

FrAngel [13] are designed for synthesizing general Java

programs with various intents, and the components

here refer to Java APIs. Apart from the component

library, we ask the user to provide a natural language

description to describe the intent of the desired method,

which is then used to acquire API usage knowledge from

different code resources.

Program sketching is a synthesis methodology

where the intent of a programming task is given by

a program sketch and leaves the rest of the imple-

mentation to the synthesis procedure [6]. Apart from

the sketch, the users should define the behavior of the

program through code, either in the form of a refe-

rence implementation, or as a set of parameterized

unit tests. The synthesis procedure can be done by

counterexample-guided inductive synthesis (CEGIS).

Similarly, we use an off-the-shelf SAT solver to com-

plete the program sketch. Unlike the above work, the

program sketch in our approach is generated automati-

cally instead of provided by users. Bayou [20] is another

work which learns a Bayesian probabilistic model from

code and uses it to infer program sketches.

Neural programming is to generate programs with

deep learning on neural networks. Some approaches

build neural networks conditioned on input/output ex-

amples and learn to predict programs [7, 8, 28]. These

techniques are constrained to generate programs in

domain-specific languages. There is also a class of ap-

proaches that generate programs in general program-

ming languages like Python from natural language de-

scriptions. Many of them adopt encoder-decoder archi-

tectures to predict programs. The attention mechanism

and other modules are combined to improve the perfor-

mance of the model. They have shown the effective-

ness on benchmarks like Trading Card Games (TCGs)

such as Magic the Gathering and Hearth-stone, as well

as benchmarks of semantic parsing [29–31]. Some work

builds a neural network to incorporate statistical in-

formation to guide the synthesis process [32]. In neu-



1254 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

ral programming, the user should prepare a dataset to

train the neural network and the input to the genera-

tive model is consistent with the input of the training

phase of the model.

Another work that has much in common with our

approach is Mars
[33]. It takes as input a multi-layer

specification, which is composed of input/output ex-

amples, natural language description, and partial code

snippets. It also encodes the synthesis problem into

a Max-SMT problem. The input/output examples are

encoded as hard constraints which have to be satisfied

and other specifications are encoded as soft constraints,

which are preferably satisfiable. In our work, the syn-

thesis problem is encoded to a PB-problem. The basic

rules of enumerating reachable paths are encoded as

hard constraints and the probabilities of API usages

are encoded as an objective function, which is similar

to soft constraints of Mars.

7.2 Code Search

Code Search returns code snippets to users by

searching from the codebase. Most approaches in code

search are based on techniques of information retrieval,

such as Sourcerer [34] and Portfolio [35]. To improve the

performance of code search, different approaches are

proposed. Some approaches adopt query expansion

or reformulation to enhance the specifications [36, 37].

Some approaches take into consideration the character-

istics of source code [38, 39]. Many approaches adopt se-

mantic analysis on source code [40–42]. Many approaches

also retrieve knowledge from various sources to improve

performance [43]. Both the approaches of code search

and program synthesis can return code snippets when

given a specification. However, the key difference lies in

that code search can only retrieve existing code snip-

pets from the codebase, while program synthesis can

generate code snippets from scratch that may not exist

before.

7.3 API Recommendation

API recommendation aims to return relevant APIs

given some kind of specifications. Different approaches

have been proposed in recent years. APIREC [44] uses a

statistical learning model trained on fine-grained code

changes to recommend API calls. DeepAPI [45] trains

a recurrent neural network encoder-decoder model to

generate API sequences from a given natural lan-

guage query. BIKER [46] uses both Stack Overflow and

API documentation to recommend APIs in class and

method level. RecRank [47] applies a ranking-based

discriminative approach to rerank the API identified

by GraLan. Word2API [48] uses the CBOW model to

generate word and API vector embeddings published

as a dictionary. Given a word or a query, based on

the vector dictionary and the corresponding similarity

calculation formula, a ranked list of APIs is returned.

The idea of API recommendation is similar to the prob-

abilistic model in our approach. However, our work

differs from the approaches above. Firstly, the ways

of calculating the probabilities of APIs are different.

Different approaches adopt different ways of calculating

API probabilities from different sources. Secondly, the

purposes of the probabilistic model are different. The

probability model used in our approach is to acquire

APIs for API-based synthesis. However, the model in

API recommendation approaches is mostly used to rec-

ommend APIs to programmers.

7.4 Representing Code as Graph

In this paper, we use Petri net to model the relations

between APIs and data types. There is some related

work which also represents code as a graph. Prospec-

tor
[49] uses a signature graph to represent API “Jun-

gloids”, the nodes of which are the class types declared

by the API and the edges represent the elementary jun-

gloids of the API. Another work models API invoca-

tions as an API graph [50] for API reuse where its nodes

represent classes or methods and its edges indicate the

invocation relationship between the nodes. T2API [51]

uses an API usage graph [52] to synthesize the API us-

age template from a query which can represent data

and control dependencies among API elements. Unlike

these studies, Petri net represents API methods and

data types separately and can represent the procedure

of consuming and creating tokens which contains more

information on API usage.

8 Conclusions

In this paper, we studied how to improve the per-

formance of API-based synthesis by utilizing the know-

ledge from various coding resources. We found the ma-

jor obstacle in existing work is the huge space when

searching the solution program for a given task. Thus,

we proposed the method of assigning each API in reach-

ability space a probability, which is calculated based

on the task description and the API usage knowledge

in Javadoc and Stack Overflow. Several extension and



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1255

optimization strategies were also studied. The exper-

imental results showed that the proposed method can

obtain significant improvement in program synthesis.

Although the proposed method can obtain better

capability and performance, there are still more poten-

tialities that can be dug. Now only the probability for

individual API is calculated. Actually, APIs are usually

used with certain patterns, which may bring more ben-

efits to synthesis since its purpose is to find a proper

API sequence. In addition, now the output program

has no branches or loops, which is important for real

tasks. All these aspects will be considered in our future

work.

References

[1] Gulwani S, Polozov O, Singh R. Program synthesis. Foun-

dations and Trends in Programming Languages, 2017,

4(1/2): 1-119.

[2] Pnueli A, Rosner R. On the synthesis of a reactive module.

In Proc. the 16th Annual ACM Symposium on Principles

of Programming Languages, January 1989, pp.179-190.

[3] Gulwani S, Jain P. Programming by examples: PL meets

ML. In Proc. the 15th Asian Symposium on Programming

Languages and Systems, November 2017, pp.3-20.

[4] Alur R, Bod́ık R, Juniwal G, Martin M M K, Raghothaman

M, Seshia S A, Singh R, Solar-Lezama A, Torlak E, Udupa

A. Syntax-guided synthesis. In Proc. the 13th International

Conference on Formal Methods in Computer-Aided Design,

October 2013, pp.1-8.

[5] Gulwani S, Jha S, Tiwari A, Venkatesan R. Synthesis of

loop-free programs. In Proc. the 32nd ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation, June 2011, pp.62-73.

[6] Solar-Lezama A. Program sketching. Int. J. Softw. Tools

Technol. Transf., 2013, 15(5/6): 475-495.

[7] Parisotto E, Mohamed A, Singh R, Li L, Zhou D, Kohli

P. Neuro-symbolic program synthesis. In Proc. the 5th In-

ternational Conference on Learning Representations, April

2017.

[8] Balog M, Gaunt A L, Brockschmidt M, Nowozin S, Tarlow

D. DeepCoder: Learning to write programs. In Proc. the

5th International Conference on Learning Representations,

April 2017.

[9] Perelman D, Gulwani S, Grossman D, Provost P. Test-

driven synthesis. In Proc. the ACM SIGPLAN Conference

on Programming Language Design and Implementation,

June 2014, pp.408-418.

[10] Feng Y, Martins R, Geffen J V, Dillig I, Chaudhuri

S. Component-based synthesis of table consolidation and

transformation tasks from examples. In Proc. the 38th ACM

SIGPLAN Conference on Programming Language Design

and Implementation, June 2017, pp.422-436.

[11] Jha S, Gulwani S, Seshia S A, Tiwari A. Oracle-guided

component-based program synthesis. In Proc. the 32nd

ACM/IEEE International Conference on Software Engi-

neering, May 2010, pp.215-224.

[12] Feng Y, Martins R, Wang Y, Dillig I, Reps T W.

Component-based synthesis for complex APIs. In Proc. the

44th ACM SIGPLAN Symposium on Principles of Pro-

gramming Languages, January 2017, pp.599-612.

[13] Shi K, Steinhardt J, Liang P. FrAngel: Component-based

synthesis with control structures. Proc. the ACM on Pro-

gramming Languages, 2019, 3(POPL): Article No. 73.

[14] Mei H, Zhang L. Can big data bring a breakthrough for

software automation? SCIENCE CHINA Information Sci-

ences, 2018, 61(5): Article No. 056101.

[15] Petri C A, Reisig W. Petri net. Scholarpedia, 2008, 3(4):

Article No. 6477.

[16] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation

of word representations in vector space. arXiv:1301.3781,

2013. https://arxiv.org/abs/1301.3781, Sept. 2020.

[17] Pennington J, Socher R, Manning C D. Glove: Global vec-

tors for word representation. In Proc. the 2014 Conference

on Empirical Methods in Natural Language Processing, Oc-

tober 2014, pp.1532-1543.

[18] Eén N, Sörensson N. Translating pseudo-boolean con-

straints into SAT. J. Satisf. Boolean Model. Comput., 2006,

2(1/2/3/4): 1-26.

[19] Darwin I F. Java Cookbook. O’Reilly, 2001.

[20] Murali V, Qi L, Chaudhuri S, Jermaine C. Neural sketch

learning for conditional program generation. In Proc. the

6th International Conference on Learning Representations,

April 2018.

[21] Gulwani S. Automating string processing in spreadsheets

using input-output examples. In Proc. the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, January 2011, pp.317-330.

[22] Singh R, Gulwani S. Learning semantic string transforma-

tions from examples. Proc. the VLDB Endowment, 2012,

5(8): 740-751.

[23] Albarghouthi A, Gulwani S, Kincaid Z. Recursive program

synthesis. In Proc. the 25th International Conference on

Computer Aided Verification, July 2013, pp.934-950.

[24] Singh R, Gulwani S. Synthesizing number transformations

from input-output examples. In Proc. the 24th Interna-

tional Conference on Computer Aided Verification, July

2012, pp.634-651.

[25] Gulwani S, Harris W R, Singh R. Spreadsheet data manipu-

lation using examples. Communications of the ACM, 2012,

55(8): 97-105.

[26] Gulwani S, Korthikanti V A, Tiwari A. Synthesizing geo-

metry constructions. In Proc. the 32nd ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation, June 2011, pp.50-61.

[27] Feser J K, Chaudhuri S, Dillig I. Synthesizing data structure

transformations from input-output examples. In Proc. the

36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, June 2015, pp.229-239.

[28] Kalyan A, Mohta A, Polozov O, Batra D, Jain P, Gulwani S.

Neural-guided deductive search for real-time program syn-

thesis from examples. In Proc. the 6th International Confe-

rence on Learning Representations, April 2018.

[29] Ling W, Blunsom P, Grefenstette E, Hermann K M, Ko-

ciský T, Wang F, Senior A W. Latent predictor networks

for code generation. In Proc. the 54th Annual Meeting of the

Association for Computational Linguistics, August 2016.



1256 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

[30] Yin P, Neubig G. A syntactic neural model for general pur-

pose code generation. In Proc. the 55th Annual Meeting of

the Association for Computational Linguistics, July 2017,

pp.440-450.

[31] Rabinovich M, Stern M, Klein D. Abstract syntax networks

for code generation and semantic parsing. In Proc. the 55th

Annual Meeting of the Association for Computational Lin-

guistics, July 2017, pp.1139-1149.

[32] Lee W, Heo K, Alur R, Naik M. Accelerating search-based

program synthesis using learned probabilistic models. In

Proc. the 39th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, June 2018,

pp.436-449.

[33] Chen Y, Martins R, Feng Y. Maximal multi-layer specifi-

cation synthesis. In Proc. the ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium

on the Foundations of Software Engineering, August 2019,

pp.602-612.

[34] Linstead E, Bajracharya S K, Ngo T C, Rigor P, Lopes C

V, Baldi P. Sourcerer: Mining and searching Internet-scale

software repositories. Data Min. Knowl. Discov., 2009,

18(2): 300-336.

[35] McMillan C, Grechanik M, Poshyvanyk D, Xie Q, Fu C.

Portfolio: Finding relevant functions and their usage. In

Proc. the 33rd International Conference on Software Engi-

neering, May 2011, pp.111-120.

[36] Lu M, Sun X, Wang S, Lo D, Duan Y. Query expan-

sion via WordNet for effective code search. In Proc. the

22nd IEEE International Conference on Software Analysis,

March 2015, pp.545-549.

[37] Haiduc S, Bavota G, Marcus A, Oliveto R, Lucia A D, Men-

zies T. Automatic query reformulations for text retrieval in

software engineering. In Proc. the 35th International Confe-

rence on Software Engineering, May 2013, pp.842-851.

[38] Lv F, Zhang H, Lou J, Wang S, Zhang D, Zhao J. CodeHow:

Effective code search based on API understanding and ext-

ended Boolean model (E). In Proc. the 30th IEEE/ACM In-

ternational Conference on Automated Software Engineer-

ing, November 2015, pp.260-270.

[39] Gu X, Zhang H, Kim S. Deep code search. In Proc. the 40th

International Conference on Software Engineering, May

2018, pp.933-944.

[40] Ke Y, Stolee K T, Goues C L, Brun Y. Repairing pro-

grams with semantic code search (T). In Proc. the 30th

IEEE/ACM International Conference on Automated Soft-

ware Engineering, November 2015, pp.295-306.

[41] Reiss S P. Semantics-based code search. In Proc. the 31st

International Conference on Software Engineering, May

2009, pp.243-253.

[42] Stolee K T, Elbaum S G, Dobos D. Solving the search

for source code. ACM Trans. Softw. Eng. Methodol., 2014,

23(3): Article No. 26.

[43] Sirres R, Bissyandé T F, Kim D, Lo D, Klein J, Kim K,

Traon Y L. Augmenting and structuring user queries to sup-

port efficient free-form code search. In Proc. the 40th Inter-

national Conference on Software Engineering, May 2018,

pp.945-945.

[44] Nguyen A T, Hilton M, Codoban M, Nguyen H A, Mast L,

Rademacher E, Nguyen T N, Dig D. API code recommenda-

tion using statistical learning from fine-grained changes. In

Proc. the 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, November 2016,

pp.511-522.

[45] Gu X, Zhang H, Zhang D, Kim S. Deep API learning. In

Proc. the 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, November 2016,

pp.631-642.

[46] Huang Q, Xia X, Xing Z, Lo D, Wang X. API method rec-

ommendation without worrying about the task-API know-

ledge gap. In Proc. the 33rd ACM/IEEE International

Conference on Automated Software Engineering, Septem-

ber 2018, pp.293-304.

[47] Liu X, Huang L, Ng V. Effective API recommendation

without historical software repositories. In Proc. the 33rd

ACM/IEEE International Conference on Automated Soft-

ware Engineering, September 2018, pp.282-292.

[48] Li X, Jiang H, Kamei Y, Chen X. Bridging semantic gaps

between natural languages and APIs with word embedding.

arXiv:1810.09723, 2018. https://arxiv.org/abs/1810.09723,

Sept. 2020.

[49] Mandelin D, Xu L, Bod́ık R, Kimelman D. Jungloid mining:

Helping to navigate the API jungle. In Proc. the 2005 ACM

SIGPLAN Conference on Programming Language Design

and Implementation, June 2005, pp.48-61.

[50] Chan W, Cheng H, Lo D. Searching connected API sub-

graph via text phrases. In Proc. the 20th ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

November 2012, Article No. 10.

[51] van Nguyen T, Rigby P C, Nguyen A T, Karanfil M, Nguyen

T N. T2API: Synthesizing API code usage templates from

English texts with statistical translation. In Proc. the 24th

ACM SIGSOFT International Symposium on Foundations

of Software Engineering, November 2016, pp.1013-1017.

[52] Nguyen T T, Nguyen H A, Pham N H, Al-Kofahi J M,

Nguyen T N. Graph-based mining of multiple object usage

patterns. In Proc. the 7th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT

International Symposium on Foundations of Software En-

gineering, August 2009, pp.383-392.

Bin-Bin Liu is a Ph.D. candidate

in software engineering at National

University of Defense Technology,

Changsha. He received his B.S. degree

in computer science and technology

and M.S. degree in software engineering

from National University of Defense

Technology, Changsha, in 2013 and

2015 respectively. His research interests include intelligent

methods in software engineering, and data-driven software

engineering.



Bin-Bin Liu et al.: ProSy: API-Based Synthesis with Probabilistic Model 1257

Wei Dong is a professor in College of

Computer Science, National University

of Defense Technology, Changsha. He

received his B.S. and Ph.D. degrees in

computer science from National Univer-

sity of Defense Technology, Changsha,

in 1997 and 2002 respectively. From

2007 to 2008, he was a visiting scholar

in Technical University Munich, Munich. His research

interests include program analysis and verification, run-

time monitoring of mission-critical systems, and intelligent

methods in software engineering.

Jia-Xin Liu is a Master student

in software engineering at National

University of Defense Technology,

Changsha. She received her B.S. degree

in software engineering from Hunan

Normal University, Changsha, in 2018.

Her research interests include program

synthesis and API recommendation.

Ya-Ting Zhang is a Master student

in software engineering at National

University of Defense Technology,

Changsha. She received her B.S. degree

in software engineering from Hunan

Normal University, Changsha, in 2018.

Her research interests include program

synthesis and machine learning.

Dai-Yan Wang is a Master student

in software engineering at National

University of Defense Technology,

Changsha. She received her B.S. degree

in management from China Pharma-

ceutical University, Nanjing, in 2018.

Her research interests include program

synthesis and machine learning.


	1 Introduction
	2 Preliminaries
	3 Motivation and Approach Overview
	3.1 Motivation
	3.2 Approach Overview

	4 Probabilistic Model Construction
	4.1 Data Preparation
	4.1.1 Javadoc Data
	4.1.2 Stack Overflow Data

	4.2 Probability Calculator
	4.2.1 Similarity Function
	4.2.2 Frequency Function

	4.3 PRG Construction
	4.4 Enumerating Reachable Paths with Symbolic Encoding
	4.5 Handling Field Accesses

	5 Optimization Strategies
	5.1 Pruning Strategy
	5.2 Handling Inheritance Relationships

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.1.1 Benchmarks
	6.1.2 Metrics

	6.2 Comparison Against the Baselines (RQ1)
	6.3 Evaluation of PRG and Optimization Strategies (RQ2)
	6.4 Evaluation of Generality of ProSy (RQ3)
	6.5 Sensitivity Analysis of the Weighing Function (RQ4)

	7 Related Work
	7.1 Program Synthesis
	7.2 Code Search
	7.3 API Recommendation
	7.4 Representing Code as Graph

	8 Conclusions

