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Abstract With the growing popularity of somatosensory interaction devices, human action recognition is becoming

attractive in many application scenarios. Skeleton-based action recognition is effective because the skeleton can represent

the position and the structure of key points of the human body. In this paper, we leverage spatiotemporal vectors between

skeleton sequences as input feature representation of the network, which is more sensitive to changes of the human skeleton

compared with representations based on distance and angle features. In addition, we redesign residual blocks that have

different strides in the depth of the network to improve the processing ability of the temporal convolutional networks

(TCNs) for long time dependent actions. In this work, we propose the two-stream temporal convolutional networks (TS-

TCNs) that take full advantage of the inter-frame vector feature and the intra-frame vector feature of skeleton sequences in

the spatiotemporal representations. The framework can integrate different feature representations of skeleton sequences so

that the two feature representations can make up for each other’s shortcomings. The fusion loss function is used to supervise

the training parameters of the two branch networks. Experiments on public datasets show that our network achieves superior

performance and attains an improvement of 1.2% over the recent GCN-based (BGC-LSTM) method on the NTU RGB+D

dataset.

Keywords skeleton, action recognition, temporal convolutional network (TCN), vector feature representation, neural

network

1 Introduction

Human action recognition is an important and

challenging research problem in computer vision. At

present, this problem has a wide range of applications

in the fields of video surveillance, somatosensory games,

patient monitoring, intelligent security, human-machine

interaction, and robotics [1–3]. In addition, human ac-

tion recognition and crowd evacuation algorithms [4] can

be combined to analyze crowd behaviors and provide

navigation. With the development of data acquisition

devices, dynamic human skeleton sequences can be ef-

ficiently obtained. Therefore, it is highly desired to

design a framework to encode both the spatial and tem-

poral changes in human data.

Initial work on human action recognition focused on

RGB videos [5, 6]. Hou et al. [7] proposed a method to

extract the key-frames of videos. Sermanet et al. [8] pro-

posed a self-supervised approach for learning represen-

tations and robotic behaviors entirely from unlabeled

videos. However, it is non-trivial to capture the com-

plete human skeleton transitions in the 3D space due to
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the lack of depth channel in the source images/videos.

With the innovation of 3D data acquisition technology,

RGB-D data has become popular in recent years, which

makes it possible to infer the motion sequence of a skele-

tal joint in the 3D space. For example, Sholl et al. [9]

proposed an algorithm for obtaining human skeletons in

real time with a depth sensor. Wang et al. [10] also pro-

posed an efficient and robust human pose estimation

algorithm on RGB videos. Significant advances have

been made in human action recognition based on RGB

and RGB-D data [11, 12]. With the increasing availa-

bility of skeleton acquisition tools, research on human

action recognition using skeleton data has generated

growing interest.

In this paper, we simultaneously consider the spatial

and temporal changes of the human skeleton and pro-

pose a more powerful learning model to capture skele-

ton variability in both spatial and temporal dimensions.

Most existing methods lack the ability to extract the

spatiotemporal feature representations. In such meth-

ods, it is often difficult to extract a single feature rep-

resentation that can be used to recognize all action

classes. Designing a model with a greater learning abi-

lity for spatiotemporal feature representations is also

a key problem in human action recognition. Previous

methods for identifying human actions are mainly based

on convolutional neural networks (CNNs) [13–15], recur-

rent neural networks (RNNs) [16–19], or graph convolu-

tional networks (GCNs) [20–23]. Typically, these meth-

ods only consider a single feature representation of the

human body. In recent years, the temporal convolu-

tional networks (TCNs) [24, 25] have shown outstanding

ability in processing time sequence data, and exten-

sive experiments have shown that TCNs are superior

to RNNs such as Long Short Term Memory networks

(LSTMs). Based on TCNs, designing a multi-channel

network model that learns multiple feature represen-

tations simultaneously can improve the accuracy of hu-

man action recognition. We consider two important fea-

ture representations in the new network, i.e., the move-

ments of each skeletal joint between two adjacent ac-

tion frames and the relative positions of the constituent

joints in a single skeletal frame. The main contributions

of our work include the followings.

• We propose a novel method that leverages both

the inter-frame vector feature representation between

adjacent frames and the intra-frame vector feature rep-

resentation within a single frame. Experiments show

that these two vector feature representations play the

role of mutual promotion in recognition of many action

classes.

• We redesign residual blocks for TCNs and pro-

pose the two-stream temporal convolutional networks

(TS-TCNs) that can integrate multiple feature repre-

sentations to bring notable improvement in recognition

performance.

• We perform a comprehensive experimental val-

idation using four widely well-known datasets: NTU

RGB+D [11], NTU RGB+D 120 [26], Northwestern-

UCLA [27], and UTKinect-Action [28]. Our results show

the proposed two-stream network achieves superior per-

formance compared with most previous methods.

2 Related Work

In this section, we review relevant literature on hu-

man action recognition. First, we present methods for

extracting the dynamics feature representation of hu-

man actions. We then describe network-based models

to process skeleton sequences for human action recog-

nition.

2.1 Dynamics Representation

The human action recognition task consists in iden-

tifying human body behaviors from sequence data such

as images, videos, and skeletons. The main contents

of action behaviors include gestures, actions in daily

life, interaction and group activities. Early research on

human action recognition focused on still images and

videos [5, 12]. RGB data is rich in color, shape, and

texture features. Initial methods for action recogni-

tion mainly use the color and texture information in

2D images. However, various factors, such as back-

ground clutter and human body occlusion, make this

identification task complicated. Liu et al. [29] proposed

a method based on deep learning that uses depth se-

quences and the corresponding skeleton joint informa-

tion. Since depth images lack information such as color

and texture, related work based on depth maps is lim-

ited. Wang et al. [30] proposed a method using RGB and

depth features to coordinate training for action recog-

nition. Skeleton data, which has obvious advantages

over RGB and depth data, contains 3D information

on the joint points of the human body and thus pro-

vides higher-level geometric features. Wang et al. [31]

developed an action ensemble model that characterizes

the conjunctive structure of 3D human actions by cap-

turing the correlations of the joints. Zhang et al. [32]

introduced a related geometric feature on joints and
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selected lines. Liu et al. [16] proposed a more power-

ful tree-structure based traversal method. Zhang et

al. [33] proposed a novel view adaptation scheme to let

the network selected by itself the most suitable obser-

vation viewpoints. Ke et al. [34] proposed a method to

transform a skeleton sequence into three clips, and then

used a multi-task learning network. Ghorbel et al. [35]

adopted a learning method using a Log-Euclidean dis-

tance and kernel methods such as support vector ma-

chines and multiple kernel learning to classify actions.

The images and skeletons can be obtained by devices

such as the Microsoft Kinect. The 3D skeletons are out-

putted by the corresponding depth images. In general,

a 3D skeleton has 25 joints or 20 joints.

2.2 Skeleton-Based Networks on Human

Action Recognition

We review existing work on human action recog-

nition using deep networks. We can divide the

proposed models into three categories: CNN-based

models [13–15], RNN-based models [16–19], and GCN-

based models [20–23]. Many previous methods are based

on CNN. Huang et al. [13] adopted a CNN called LieNet

and designed a rotation mapping layer and a rotation

pooling layer. Ke et al. [14] converted the skeleton fea-

tures to the image and fed the converted data into a

deep CNN. Weng et al. [15] applied Naive-Bayes Mu-

tual Information Maximization (NBMIM) [36] to CNN

for recognizing actions. The majority of RNN models

for action recognition are based on LSTM. Liu et al. [16]

introduced a new gate mechanism in LSTM to learn

action sequences and proposed a framework based on

tree-structure traversal. Lee et al. [17] designed a tem-

poral sliding LSTM that includes short-term, medium-

term, and long-term units. Zhang et al. [18] proposed an

element-wise-attention gate to empower the RNN’s at-

tentiveness capability. Attention-based recurrent neu-

ral networks [37] also have some applications in active

object recognition. Meng et al. [19] proposed a sample

fusion model that is combined with an LSTM autoen-

coder. Their main improvement is a data augmentation

model to extend the original training dataset. Graph

convolutional networks also led to recent progress in hu-

man action recognition. Yan et al. [20] proposed a graph

convolutional network and presented several partition-

ing strategies to construct convolution operations. Li et

al. [22] combined the actional and structural links into

a generalized skeleton graph to learn more features for

action recognition. Si et al. [23] proposed an attention

enhanced graph convolutional LSTM network for ac-

tion recognition. However, these GCN methods need

to rely on a fixed graph topology and cannot utilize the

inter-frame and intra-frame vector feature representa-

tions that we design. Recently, TCNs [24, 25] have shown

outstanding performance in handling time sequences in

various tasks. Compared with the above models, we

propose a two-stream temporal convolutional network

(TS-TCN) with better learning ability for spatiotem-

poral skeleton sequences.

3 Vector Feature Representations of Skeleton

Sequence

In this section, we introduce the feature representa-

tion of the proposed network, including the extraction

of spatial variation of the skeletal joints in the time di-

mension and the spatial feature representation of the

skeletal joints in each skeleton frame.

In our proposed network, the input data is 3D skele-

ton sequences that can be captured by RGB-D cameras.

A single skeletal frame comprises a set of skeletal joints

defined as 3D points and connection relationships be-

tween joints. Here, we take the 16-joint skeleton se-

quence as an example to explain the definition of the

input vector feature representations.

As shown in Fig.1(a), converting an action sequence

to an inter-frame vector feature representation makes

it easier to capture varying joints. We can subtract

the joints of the previous skeletal frame with the cor-

responding joints of the latter skeletal frame to get the

inter-frame vector feature representation. The action

shown in Fig.1(a) is “raising the arm”. Based on the

above inter-frame vector feature representation, we can

make the network focus on the movement of certain

joints. Let sit ∈ R
1×d be the coordinates of the i-th

joint of the t-th skeletal frame, where d is the dimen-

sion of the skeletal joint. Moreover, st ∈ R
1×D denotes

the coordinates concatenation of skeletal joints of the

t-th frame:

st = concat
(

[s0t , s
1
t , s

2
t , ..., s

J−1
t ], 1

)

, ∀t ∈ T,

where concat([elements], k) and k = 0, 1 denote the con-

catenation along the k-th axis of the elements. Here, T

and J represent the total number of frames in an action

sequence and the total number of joint points on each

frame, respectively. D = d× J. The inter-frame vector

feature representation concatenation in Fig.1(a) can be

obtained by

x
(a)
t = st − st−1, ∀t ∈ T, t > 0.
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Fig.1. Vector feature representations of the skeleton sequence used in our proposed TS-TCN network. (a) Skeleton inter-frame vector
feature representation, which shows the process to acquire the inter-frame vector feature representation. (b) Skeleton intra-frame vector
feature representation, which shows the process to acquire the intra-frame vector feature representation. In (b), the basic skeletal joints
of the left arm, the right arm, the left leg, the right leg, the trunk, and the whole-body are 11, 14, 5, 8, 2, 1, respectively.

We use inter-frame vector feature representation x
(a)
t

as the first input feature representation of our network.

The feature representation in Fig.1(b) is extracted

from each skeletal frame. Instead of using the origi-

nal coordinates of the skeleton in each frame, the fea-

ture representation is extracted by dividing the skele-

ton into five main body parts. We divide the whole

skeleton into five parts: the left arm, the left leg, the

right arm, the right leg, and the trunk. We also extract

features encoding the relationship between these five

parts and select joint 1 as the basic point. These basic

points usually move with a slight magnitude when a hu-

man performs actions, and thus can better capture the

movement characteristics of the human skeleton. We

represent the five parts including the left arm, the right

arm, the left leg, the right leg, and the trunk as s
(la)
t ,

s
(ra)
t , s

(ll)
t , s

(rl)
t , s

(t)
t , respectively. The relationship be-

tween these five parts is noted as s
(fp)
t . For example,

s
(la)
t is obtained by

s
(la)
t = concat

(

[s12t − s11t , s13t − s11t ], 1
)

, ∀t ∈ T,

as shown in Fig.1(b). Then, the intra-frame vector fea-

ture representation x
(b)
t is defined as

x
(b)
t = concat

(

[s
(la)
t , s

(ra)
t , s

(ll)
t , s

(rl)
t , s

(t)
t , s

(fp)
t ], 0

)

.

Finally, we get the two input feature representations of

the network: x
(a)
t and x

(b)
t . Note that we also test us-

ing the angle and the distance between the joint points

of the skeleton as intra-frame feature representations.

These preliminary experiments show no significant ad-

vantage over the feature representations in our pro-

posed network.

4 Two-Stream TCNs Framework

In this section, we introduce the components of our

proposed two-stream temporal convolutional networks

(TS-TCNs) in detail.

4.1 Residual Block of Networks

Inspired by the residual block in Res-TCNs [25], we

redesign a residual block with greater learning abi-
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lity. In Res-TCNs, the residual block contains only

one convolution layer, and each residual block is set

to the same stride size. The residual block we pro-

pose contains two convolution layers that have the same

number of convolution kernels and expand the recep-

tive field as the network becomes deeper. The expan-

sion of the receptive field is more favorable to long-

term time-dependent actions. Additionally, we per-

form BatchNormalization [38], PReLU [39] activation be-

fore each convolution layer. The two convolution layers

will make the residual block learn more discriminative

features.

We use PReLU to implement nonlinear activations

in the network. Compared with ReLU, PReLU adds a

linear term to the negative input, and the slope of the

linear term is learned in model training. In the PReLU

layer, the network adds only a few parameters; there-

fore the computation of the network and the risk of

over-fitting increase minimally. The PReLU activation

formula is defined as follows:

PReLU(x) =

{

x, if x > 0,
ax, if x 6 0.

Fig.2 shows our modified residual block. It uses a

residual connection to enhance the accuracy and in-

terpretability of the recognition of time sequence data.

When the number of network layers increases, the resid-

ual connection can solve the problem of vanishing gradi-

ent and network degradation. The residual block of the

l-th layer can be calculated by the following equation:

Yl = Yl−1 + F
(

Wl,1,Wl,2,Yl−1

)

,

where Yl−1 is the input of the l-th layer, and Wl,1 and

Wl,2 represent the weights of the first convolution layer

and the second convolution layer of block l, respectively.

Residual Connection
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Fig.2. Residual block architecture we redesign. Convs-1 repre-
sents the first convolution layer and Convs-2 represents the sec-
ond convolution layer. BN is the BatchNormalization layer.

The residual block F is defined as

F (Wl,1,Wl,2,Yl−1) = Wl,2 · σ
(

Wl,1 · σ
(

Yl−1)
)

,

with σ representing the PReLU activation function.

4.2 Temporal Convolutional Networks Branch

In this subsection, we give a brief introduction to

the modified TCN, which is originally designed for

time-series tasks [24, 25]. We adopt the architecture of

the temporal convolutional networks which is presented

in [25]. However, our TCN is stacked up by 12 basic

residual blocks and can learn longer-term historical in-

formation. The number of output channels for each

block is 64, 64, 64, 128, 128, 128, 256, 256, 256, 512,

512 and 512, respectively. The improved TCN frame-

work is shown in Fig.3. As can be seen, we add three

residual blocks (B10, B11, B12) into the framework.

The number of output channels in these three residual

blocks is 512, 512, 512 and the stride length is 2, 1, 1,

respectively. B10 adopts a convolution with a stride size

of 2. This block can help TCN improve the recognition

ability by getting high-level features.

Convs
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Fig.3. Illustration of the redesigned TCN. There are a total of
12 residual blocks (B1-B12). The three numbers of each block
represent the stride, the size of the convolution kernels, and the
number of convolution kernels, respectively. GAP represents the
global average pooling layer. FC represents a fully connected
layer.

The input of our TCN is a D-dimensional feature

obtained from each skeletal frame. For each action,

we splice the input X with features of all frames, de-

noted as X ∈ R
T×D. Each non-linear activation is

followed by a convolution layer so that features can be

extracted step by step from the input data. Specifically,
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in the l-th convolution layer, there are Nl convolution

kernels with a size of dl, and the set of all kernels is

denoted by {W (i)}Nl

i=1 where each convolution kernel is

W (i) ∈ R
dl×Nl−1 . If the output of the upper block is

Yl−1 and the next block has a stride of 2, the next block

output is

Yl = Wl,2 · (Wl,1 · Yl−1) + F (Wl,1,Wl,2,Yl−1),

where the non-linear activation function is PReLU.

TCN uses a backpropagation algorithm during the

training process.

4.3 Two-Stream TCNs Architecture

We present a two-stream TCN architecture to train

the inter-frame vector feature representation and intra-

frame vector feature representation with two parallel

TCNs. As shown in Fig.4, our overall network com-

prises two TCN branches, which are used to focus

on learning two different vector feature representations

presented in Section 3. Each TCN branch comprises

a one-dimensional convolution and 12 residual blocks.

BatchNormalization can improve the training speed of

the network and avoid the problem of disappearing in

the network. Moreover, dropout is used to avoid over-

fitting in the training process. At the end of the two-

stream network, we use the Softmax layer for classifi-

cation and employ cross-entropy over the two branches

as loss function. In the testing phase, we take the ave-

rage of the softmax output in each branch as our final

output. The first layer of the two TCN branches in

our network uses a one-dimensional convolution that

acts on vector feature representations to generate ac-

tivation map Y
(a)
1 . Assuming that each branch of the

two-stream TCN has M residual blocks, Y
(a)
1 is given

by

Y
(a)
1 = W

(a)
1 · X(a)

n , (1)

and the activation map generated by the M -th block is

Y
(a)
M+1 = Y

(a)
1 +

M+1
∑

i=2

Wi,2
(a) · σ

(

Wi,1
(a) · σ(Y

(a)
i−1)

)

,

where (a) represents the first TCN branch. Similarly,

the activation map generated by the first layer in the

second branch is

Y
(b)
1 = W

(b)
1 · X(b)

n ,

and the activation map generated by the M -th layer in

this branch is

Y
(b)
M+1 = Y

(b)
1 +

M+1
∑

i=2

W
(b)
i,2 · σ

(

W
(b)
i,1 · σ(Y

(b)
i−1)

)

,

where (b) represents the second TCN branch.

4.4 Loss Function

Taking the first TCN branch as an example, Y
(a)
1 is

the result with no nonlinear activation. The result of

W
(a)
i,2 · σ(W

(a)
i,1 · σ(Y

(a)
i−1)) is added to Y

(a)
i−1, and all re-

maining residual blocks are added based on Y
(a)
1 in (1).

As shown in Fig.4, through our proposed Two-Stream

TCNs, vector feature representations are integrated to

improve the training accuracy. After the last residual

block of each network branch, we apply a global ave-

rage pooling followed by a Softmax layer in which the

number of neurons is equal to the number of classes.

In the training phase, the Softmax functions of the two

TCN branches are thus

S(a)
c =

exp
(

z
(a)
c

)
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where c and Nc are the corresponding class index and

the total number of action classification, respectively.

Let zk be the k-th action class values. Finally, the to-

tal loss is the sum of the loss values of the two branches,

computed with cross-entropy:

L = −

Nm−1
∑

k=0

yk ln
{

S
(a)
k · S

(b)
k

}

,

where Nm and yk are the total number of samples in

the training set and the ground-truth label of k-th sam-

ple respectively. During learning, we train our model

by minimizing the loss function.

In the testing phase, we get the output with an en-

semble average among the two linear activation values

S
(a)
c , S

(b)
c . Finally, the output value and the ground-

truth are used to calculate the loss value of the testing

set.

5 Experiments

In this section, we validate our proposed ap-

proach and compare it with recent methods based

on CNN, RNN, and GCN. Our experiments use

four well-known action recognition datasets: NTU

RGB+D [11], NTU RGB+D 120 [26], Northwestern-

UCLA [27], and UTKinect-Action [28]. Next, we intro-

duce these datasets and analyze the performance of our

approach.

5.1 Dataset and Network Parameters

NTU RGB+D Dataset. This dataset is the most

widely used and challenging dataset for action recogni-

tion and includes 60 types of single and double-person

daily action. The evaluation method on this dataset in-

cludes two benchmarks: cross-subject (CS) evaluation,

in which half the subjects are used as the training set

and the other half is used as the testing set; cross-view

(CV) evaluation, where the data collected on the sec-

ond and third devices is used as the training set and the

data collected on the first device is used as the testing

set.

NTU RGB+D 120 Dataset. The dataset expands

the NTU RGB+D dataset by adding 60 additional

action classes and 57 600 additional action sequences.

The addition of categories and changes in perspective

makes this dataset even more challenging. For the huge

amount of data, this dataset is more suitable for deep

learning based on action recognition.

Northwestern-UCLA Dataset. This dataset con-

tains 1 494 action sequences, including 10 daily action

classes. Three Kinect V1.0 devices are used to collect

each action sequence. All skeletons contain the 3D co-

ordinates of 20 joint points. Each type of movements

is collected by 10 different subjects. The challenge of

the dataset is the repetitive actions of subjects from

different directions.

UTKinect-Action Dataset. The dataset contains

199 skeleton action sequences that are captured by a

stationary Kinect V1.0. The whole dataset contains

10 action classes which are completed by 10 different

subjects, and each subject repeats every type of ac-

tions twice. This dataset is very challenging because of

changes in viewpoints and changes within classes.

As described in Subsection 4.3, we divide the entire

process into a training part and a testing part. In the

training part, we use backpropagation to continuously

optimize the network parameters after calculating the

total loss value. In testing, we do not calculate the loss

value in the last layer but use the ensemble average

output of the two branch networks as the total out-

put of the network. We use the Keras 1○ deep learning

framework with the TensorFlow [40] backend. We set

the initial learning rate of the network to 0.01. When

the total loss value does not change after 15 epochs, we

change the learning rate to one half of its value. For

all convolution layers, we set the L1 regularizer with a

weight of 1e−4. Because the above four datasets have

different numbers of samples, the batchsize used on the

four datasets is selected as 128, 128, 128 and 16 respec-

tively. We perform all our experiments on two NVIDIA

GTX 2080 GPUs and with RAM of 128 G.

5.2 Ablation Study

In this subsection, we firstly use eight kinds of ac-

tions in cross-view on the NTU RGB+D dataset to ex-

amine the validity of our proposed Two-Stream TCNs

(TS-TCNs). The accuracy of the original Res-TCN is

83.1%. By integrating the inter-frame and the intra-

frame feature representations of the skeleton sequence

and using our proposed Two-Stream TCNs, we achieve

an improvement of 7.1%. The detailed confusion ma-

trices are given in the supplementary files 2○.
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5.2.1 TS-TCNs Results

To show the learning capabilities of our model more

intuitively, we analyze the learning capabilities of each

network branch and evaluate their accuracy on the

testing set. Moreover, to analyze the proposed TS-

TCNs in detail, we visualize the softmax outputs of

the three parts containing the two branches’ predic-

tion and the ensemble average prediction on the NTU

RGB+D dataset as depicted in Fig.5. The recogni-

tion accuracy of “drink water” in inter-frame stream (in

Fig.5(a)) is higher than that in intra-frame stream (in

Fig.5(b)), which shows that, in such action classes, the

inter-frame feature representations have a greater im-

pact on performance than the intra-frame feature repre-

sentations. Similarly, “eat meal/snack” performs better

on intra-frame stream (in Fig.5(b)) than on inter-frame

stream (in Fig.5(a)), highlighting that intra-frame fea-

ture representations have a greater impact on perfor-

mance than inter-frame feature representations. Ob-

viously, inter-frame stream (in Fig.5(a)) will produce a

lower misclassification in some actions than intra-frame

stream (in Fig.5(b)), which makes it less likely for the

model to overfit certain actions. For example, inter-

frame has lower misclassification probabilities from the

actions “drink water & brushing hair & throw & sit-

ting down” to the actions “eat meal/snack & brushing

teeth & pick up” than intra-frame, which demonstrates

that inter-frame can compensate the weakness of intra-

frame. Finally, as shown in Fig.5(c), all action classes

perform better than any action in Fig.5(a) and Fig.5(b).

Therefore, our Two-Stream TCN can use the comple-

mentary characteristics of inter-frame and intra-frame

in different actions to improve recognition accuracy.

Section 3 mentions two different types of feature

representations, one allowing the network to have a

strong learning ability for changes in skeleton points

over time, and one allowing the network to have a

strong learning ability for the relative changes of the

skeleton point in space. From Fig.5, we count the recog-

nition accuracy of each branch and TS-TCN in action

classes. By doing so, we can see the superiority of the

proposed feature representations and the superiority of

TS-TCN. These two critical feature representations in

time and space are indispensable, playing a vital role in

the improvement of network recognition capabilities. If

either of the two branch networks is removed, the per-

formance obtained by the network in each action class

will not reach the current experimental results.

5.2.2 Comparison with Res-TCN

In this subsection, we take Res-TCN [25] as the base-

line. Firstly, we validate the learnability and rationality

of inter-frame and intra-frame feature representations.

As shown in “Two-Stream (Res-TCN)” in Table 1, we

put the inter-frame and the intra-frame feature rep-

resentations into Res-TCN and use our Two-Stream

TCNs to improve the accuracy of CV from 83.1% to

87.4%. The bold numbers in all tables indicate the

best experimental accuracy. From these results, we see

that these two feature representations are more suit-

able for TCNs learning. Then, we validate the learning

ability of the redesigned residual blocks. Each residual
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Fig.5. Confusion matrices of our Two-Stream TCNs according to action set on NTU RGB+D. We select eight types of actions (“drink
water”, “eat meal/snack”, “brushing teeth”, “brushing hair”, “drop”, “pick up”, “throw” and “sitting down”) from the NTU RGB+D
dataset to show the confusion matrix. The row and the column of each confusion matrix denote the ground truth and the prediction,
respectively. (a) Inter-frame stream. (b) Intra-frame stream. (c) Two-stream. Because the value of the blank position in the confusion
matrix is less than 0.01, we do not fill in the value.
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block of Res-TCN contains a convolution layer, while

our modified residual block contains two convolution

layers. Increasing the number of convolution layers in

residual blocks will further enhance the learning abi-

lity of the network. As shown in “Two-Stream (B1–

B9)”, the accuracy of CV can be improved from 83.1%

to 88.1% by using our proposed residual blocks, which

is a significant breakthrough in the learning ability of

the TCNs. Finally, we verify the contribution of the

last three residual blocks to the network. Similarly,

as shown in “Two-Stream (B1–B12)”, using our re-

designed TCNs can further improve the accuracy of CV

from 83.1% to 90.2%.

Table 1. Accuracy Comparison with Res-TCN on Dataset NTU
RGB+D with CS and CV Benchmarks
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NTU RGB+D 120 Dataset. On this dataset, the

evaluation strategy is the same as the NTU RGB+D

dataset. We implement two deep learning based ap-

proaches on NTU RGB+D 120, i.e., Res-TCN [25] and

ST-GCN [20]. Table 5 gives a comparison of the specific

algorithm accuracy. The accuracy of our method is

8.1% higher than the latest TCN-based (Res-TCN [25])

approach with the CV benchmark and achieves better

performance on inter-frame and intra-frame than Res-

TCN. Compared with the GCN-based approach, our

performance is 1.9% higher than that of ST-GCN [20].

Table 5. Accuracy Comparison with Skeleton-Based Action
Recognition Methods on Dataset NTU RGB+D 120 with CS and
CV Benchmarks
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in the “reading” class are mistakenly assigned to “writ-

ing” because of the high similarities between the two

action classes in the skeleton sequence. Similarly, 22%

of the samples in the “writing” category are mistakenly

assigned to the “keyboarding” category. For the NTU

RGB+D dataset, the recognition accuracy of these five

categories is lower because they highly depend on the

skeleton points of the hand and the dataset has only

two points for this body part.

6 Conclusions

We presented a two-stream network based on TCN

for human action recognition. Firstly, we designed the

inter-frame vector feature representation between adja-

cent frames and the intra-frame vector feature repre-

sentation within a single frame. These vector feature

representations are extracted from the original human

skeleton sequences and composed as the input of the

network. We proposed a modified residual block for

TCN, which significantly improves its performance.

In this work, we achieved a competitive recogni-

tion accuracy of 90.2% on the most widely used NTU

RGB+D dataset. The experimental results proved the

feasibility of our TS-TCN network. The integration

of inter-frame and intra-frame vector feature represen-

tations is currently the most effective way to improve

the accuracy of human action recognition; therefore the

two-stream network has a great practical value. At the

same time, some failure cases based on skeleton-based

action recognition are also given in Subsection 5.4. This

problem can be supplemented by RGB images in con-

junction with skeleton data to make up for the lack

of skeleton information, which can further improve ac-

tion recognition accuracy and promote the application

of this research in industry. In the future, we hope

to combine the skeleton sequence with the RGB video

sequence to improve the performance of action recogni-

tion.
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