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Abstract Slot filling and intent prediction are basic tasks in capturing semantic frame of human utterances. Slots and

intent have strong correlation for semantic frame parsing. For each utterance, a specific intent type is generally determined

with the indication information of words having slot tags (called as slot words), and in reverse the intent type decides that

words of certain categories should be used to fill as slots. However, the Intent-Slot correlation is rarely modeled explicitly

in existing studies, and hence may be not fully exploited. In this paper, we model Intent-Slot correlation explicitly and

propose a new framework for joint intent prediction and slot filling. Firstly, we explore the effects of slot words on intent

by differentiating them from the other words, and we recognize slot words by solving a sequence labeling task with the

bi-directional long short-term memory (BiLSTM) model. Then, slot recognition information is introduced into attention-

based intent prediction and slot filling to improve semantic results. In addition, we integrate the Slot-Gated mechanism

into slot filling to model dependency of slots on intent. Finally, we obtain slot recognition, intent prediction and slot filling

by training with joint optimization. Experimental results on the benchmark Air-line Travel Information System (ATIS)

and Snips datasets show that our Intent-Slot correlation model achieves state-of-the-art semantic frame performance with a

lightweight structure.
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1 Introduction

Spoken language understanding (SLU) systems,

which aim to capture semantic frame of human ut-

terances, play a crucial role in spoken dialogue sys-

tems. SLU typically involves two basic tasks: intent

prediction and slot filling [1]. Intent prediction identifies

speakers’ intent and slot filling extracts semantic con-

stituents as constraints for natural language queries.

Let us take a flight-related sentence as an example,

“List flights from Boston to Baltimore on Friday”, as

shown in Fig.1(a). There is a specific intent type for

the whole sentence and are different slot labels for each

word.

Intent prediction and slot filling are generally

treated as a classification task and a sequence label-

ing task respectively, and the two tasks are usually

processed separately. Popular approaches for intent

prediction include support vector machine (SVM) [2]

and deep neural network methods [3, 4]. Different se-

quence labeling methods, such as conditional random

fields (CRF) [5] and recurrent neural network (RNN) [6],

have been applied to slot filling. To address the er-

ror propagation problems of independent models, seri-

als of joint models for intent prediction and slot filling

have been proposed [7–10]. Typical structures of neu-

ral joint models include encoder-decoder (or sequence

to sequence) [8, 11], attention [11] and Bi-model RNN [10].

With joint models, performance can be improved via

mutual enhancement between intent prediction and slot

filling tasks [11–13].

Slots and intent have strong correlation for semantic

frame parsing. Firstly, intents depend on the informa-

tion of slots. A specific intent type is generally deter-

mined based on the sentence constituents, which give
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Fig.1. Two example utterances of Intent-Slot correlation, where constituent elements are tagged in the “SO” (Slot, Other) format and
slots are tagged in the “BIO” (Begin, Inside, Other) format.

rich indication information to intent prediction. The

words having slot tags (called as slot words) are the

most typical prediction indicators. As shown in Fig.1,

1) in Fig.1(a), intent “atis flight” is mainly deter-

mined based on “flights from Boston to Baltimore on

Friday”, where “Boston” and “Baltimore” describe lo-

cations, “Friday” describes depart date, and the other

words denote auxiliary information about “flights”;

2) in Fig.1(b), intent “atis ground service” is mainly

determined based on “ground transportation in Boston

and in Baltimore”, where “Boston” and “Baltimore”

describe locations, and the other words denote related

auxiliary information.

Secondly, the intent type decides that words of certain

categories should be used to fill as slots. For the ex-

amples in Fig.1(a) and Fig.1(b), “Boston” and “Bal-

timore” are recognized as location constraints and are

tagged with proper slot labels corresponding to intent

“atis flight” and “atis ground service” respectively.

However, the Intent-Slot correlation is rarely mod-

eled explicitly in existing studies, and hence may not be

fully exploited. Most existing studies model Intent-Slot

correlation implicitly by applying joint loss function

or sharing internal information (such as hidden states)

among multi-models [8, 10,11,14]. Recently, researchers

have modeled the dependency of slots on intent ex-

plicitly by introducing a Slot-Gated mechanism [12] or

by proposing a novel self-attentive model with gate

mechanism [15], while they ignore the dependency of in-

tents on slots. Zhang et al. [16] proposed a capsule-based

neural network model with a dynamic routing schema

to exploit hierarchical relationship among words, slots,

and intents, and model the impact of the intent on slot

indirectly by updating word vectors. E et al. [17] mod-

eled the bi-directional interrelated connections for in-

tent and slot explicitly by introducing a complex SF-ID

network.

In this paper, we focus on modeling Intent-Slot cor-

relation explicitly and propose a new lightweight frame-

work for joint intent prediction and slot filling. Firstly

we explore the effects of slot words on intent by dif-

ferentiating them from the other words. As shown

in Fig.1, slot words are tagged as “S” and the other

words are tagged as “O”. We propose to recognize

slot words by solving a sequence labeling task with

the bi-directional long short-term memory (BiLSTM)

model [18]. Secondly, we improve attention-based in-

tent prediction by leveraging information about diffe-

rences between slot words and the other words. To im-

prove slot filling, we leverage beforehand slot location

information from the slot recognition layer and mean-
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while integrate Slot-Gated mechanism [12] for modeling

dependency of slots on intent. Finally, we obtain slot

recognition, intent prediction and slot filling by training

with joint optimization. We conduct experiments on

the benchmark ATIS and Snips datasets and compare

our model with sequence-based model [8], attention-

based model [11], Slot-Gated model [12], capsule-based

model [16] and SF-ID network [17] on semantic frame

parsing related metrics. Experimental results show that

leveraging our Intent-Slot correlation model achieves

state-of-the-art semantic frame performance with a

lightweight structure. In addition, we conduct an abla-

tion study and a case study to evaluate our model.

The contributions of this paper are three-fold.

1) We explore the effects of slot words on intent and

model with a sequence labeling task. In our knowledge,

this is the first work that explicitly models the effects

of slots on intent by sequence labeling.

2) Our design of slot recognition benefits intent pre-

diction, slot filling and semantic frame parsing effec-

tively.

3) We propose a new framework for joint intent pre-

diction and slot filling by integrating slot recognition

and Slot-Gated mechanism, which is lightweight and

achieves state-of-the-art semantic frame performance.

2 Related Work

As slot filling and intent prediction can be treated

as a sequence labeling task and an utterance classifi-

cation task respectively, pipelined approaches are the

initial choices and the two tasks are usually processed

separately [2–6]. Different sequence labeling methods,

such as conditional random fields (CRFs) [5] and recur-

rent neural network (RNN) [6], have been applied to slot

filling. Popular approaches for intent prediction include

support vector machine (SVM) [2] and deep neural net-

work methods [3, 4]. However, pipelined approaches usu-

ally suffer from error propagation problems due to the

independency of models [12].

To address the issues of pipelined approaches, se-

rials of joint models for intent prediction and slot fill-

ing have been proposed [7–10] and performance has been

improved via mutual enhancement between the two

tasks [11–13]. Nowadays, structures of neural joint mod-

els typically include encoder-decoder (or sequence to

sequence) [8, 11], attention [11] and Bi-model RNN [10].

Hakkani-Tür et al. [8] proposed an RNN-LSTM archi-

tecture for joint modeling of slot filling, intent deter-

mination and domain classification by building a joint

multi-domain model, which enables multi-task deep

learning and reinforces the data from multi-domain.

Liu and Lane [11] explored joint models for intent pre-

diction and slot filling with an encoder-decoder model

and attention mechanism. With respect to the encoder-

decoder model, they used one encoder and two de-

coders, where the first decoder generates sequential se-

mantic tags and the second decoder generates intent

types. They proposed another approach that consoli-

dates hidden states information from an RNN slot fill-

ing model and then generates its intent type using an

attention model. Wang et al. [10] designed new Bi-model

based RNN network structures for joint intent predic-

tion and slot filling by considering their cross-impact

to each other. In their structures, two inter-correlated

BiLSTMs are used for intent prediction and slot filling

respectively, and an asynchronous training approach is

designed to adapt to the new structures. In all these

studies, Intent-Slot correlation is modeled implicitly by

applying joint loss function or sharing internal informa-

tion (such as hidden states) among multi-models.

With respect to studies on modeling of Intent-Slot

correlation explicitly, Goo et al. [12] modeled the depen-

dency of slots on intent by introducing a Slot-Gated

mechanism, which leverages intent context vector for

modeling slot-intent relationships in order to improve

slot filling performance. Li et al. [15] proposed a novel

self-attentive model with gate mechanism and utilized

intent semantic representation for labeling slot tags.

However, the dependency of intents on slots is ignored

by them. Zhang et al. [16] proposed a capsule-based

neural network model with dynamic routing schema to

achieve synergistic effects for joint slot filling and in-

tent detection, and they modeled the impact of intent

on slot indirectly by updating word vectors. E et al. [17]

modeled the connections for intent and slot explicitly by

introducing an complex SF-ID network, in which they

designed a new iteration mechanism to enhance the bi-

directional interrelated connections. In this paper, we

focus on modeling Intent-Slot correlation explicitly with

a lightweight model.

3 Proposed Model

This section explains our Intent-Slot correlation

model for joint intent prediction and slot filling. The

model architecture is illustrated in Fig.2. As shown in

Fig.2, the shared layer encodes an input word sequence

by applying a BiLSTM model [18], and the encoding re-

sults are fed as input into the layers of slot recognition,
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Fig.2. Architecture of Intent-Slot correlation model.

intent prediction, and slot filling. The slot recognition

layer labels the word sequence as slot words and the

other words, and the labeling results are fed as input

into the layers of intent prediction and slot filling. With

word encoding and slot recognition information, the in-

tent prediction layer applies attention mechanism to de-

code intent types, and the slot filling layer applies the

attention mechanism and Slot-Gated mechanism [12] to

decode slot labels.

We first describe slot recognition, which models the

impact of slots on intent in Subsection 3.1. Second,

we describe intent prediction and slot filling based on

the information provided by slot recognition in Subsec-

tions 3.2 and 3.3 respectively. Finally, in Subsection 3.4

we describe the joint optimization of slot recognition,

intent prediction and slot filling.

3.1 Slot Recognition

We first focus on modeling the effects of slots on

intent. The roles played by slot words and the other

words are significantly different in intent prediction,

where slot words generally describe crucial semantic in-

formation and constraints and the other words denote

auxiliary semantic information. For intent “atis flight”

in Fig.1(a), “Boston” and “Baltimore” describe loca-

tions about “flights” and the other words denote auxi-

liary information about “flights”. Therefore we explore

the effects of slot words by differentiating them from

the other words.

We divide constituent elements of each sentence into

two categories, slot words tagged with “S” (Slot) and

the other words tagged with “O” (Other). The “BIO”

(Begin, Inside, Other) tagging schema for slot filling

can be transformed into the “SO” schema by substitut-

ing “B” and “I” with “S”. Our aim is to recognize slot

words of sentences. Note that we do not recognize slot

categories because wrong slot categories introduce noise

to intent prediction. For the examples in Fig.1(a) and

Fig.1(b), “Boston” and “Baltimore” are tagged with

different slot categories in the two sentences as their

intent types are different.

We first apply a BiLSTM model [18] on a shared

layer to sequentially encode the sequence of T words

x = (x1, x2, ..., xT ) into hidden state sequence h0 =

(h0
1,h

0
2, ...,h

0
T ), where the i-th hidden state h0

i =[−→
h0
i ,
←−
h0
i

]
,
−→
h0
i is forward hidden state generated with

forward LSTM and
←−
h0
i is backward hidden state gene-

rated with backward LSTM.

Then we regard slot recognition as a sequence la-

beling task that maps hidden state sequence h0 =
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(h0
1,h

0
2, ...,h

0
T ) to its corresponding constituent label

sequence yC = (yC1 , y
C
2 , ..., y

C
T ). We solve the sequence

labeling task by first applying a BiLSTM model, which

sequentially encodes hidden state sequence h0 into hid-

den state sequence h1 = (h1
1,h

1
2, ...,h

1
T ), where the i-th

hidden state h1
i =

[−→
h1
i ,
←−
h1
i

]
. Then the hidden state se-

quence h1 is utilized to generate constituent labels:

yCi = softmax
(
WCh1

i + bC
)
,

where yCi is the constituent label of the i-th word in the

sentence, WC is the weight matrix, and bC is the bias

vector.

For the example in Fig.1(a), the shared layer takes

sentence “List fights from Boston to Baltimore on Fri-

day” as an input, and encodes corresponding word se-

quence into the hidden state sequence. Then the slot

recognition component generates labels for each word,

i.e., “S” for “Boston”, “Baltimore” and “Friday”, and

“O” for “List”, “fights”, “from”, “to”, and “on”.

3.2 Intent Prediction

We improve intent prediction with information

about differences between slot words and the other

words of slot recognition output.

Firstly, features f = (f1,f2, ...,fT ) are computed

with hidden states h0 and slot recognition output yC :

fi = W F (
[
h0
i ; yC

i

]
),

where W F is the weight matrix guaranteeing that fi

has the same shape with h0
i .

For each feature fi, we compute the intent context

vector cIi as the weighted sum of features, f1,f2, ...,fT ,

by the learned attention weights αI
i,j :

cIi =

T∑
j=1

αI
i,j fj ,

where the intent attention weights are computed as:

αI
i,j =

exp (ei,j )∑T
k=1 exp (ei,k )

,

ei,k = σ
(
fi W

I
e fk

)
,

where W I
e is the weight matrix and σ is the activation

function. cI is computed as the sum of intent context

vectors, cI1, c
I
2, ..., c

I
T , to provide additional information

to intent classification:

cI =

T∑
j=1

cIj .

Then intent is computed with h0
T and intent context

vector cI :

yI = softmax
(
W I

y

(
h0
T + cI

))
,

where yI is the intent type and W I
y is the weight ma-

trix.

For the example in Fig.1(a), intent prediction com-

ponent computes intent attention based on feature vec-

tors combining slot recognition outputs with hidden

states, and predicts the intent of the input sentence,

i.e., “atis flight”.

3.3 Slot Filling

We leverage beforehand slot locations information

of slot recognition output to improve slot filling, and

meanwhile integrate the Slot-Gated mechanism [12] for

dependency of slots on intent. The Slot-Gated mecha-

nism is proposed to use the information of intent con-

text vector to model the impact of intent on slot, which

can improve slot filling.

We first compute slot context cS = (cS1 , c
S
2 , ..., c

S
T )

on features f , where cSi is computed in the same man-

ner as cIi , and then we take as input cS and cI into

the slot gate as illustrated in Fig.3 to get a weighted

feature g of the joint context vector:

g =

T∑
i=1

v · tanh
(
WcI + cSi

)
,

where v and W are trainable parameters. In detail, g

indicates the degree that the slot context and the in-

tent context pay attention to the same part of the input

sequence, and a larger g infers that the correlation be-

tween the slot and the intent is stronger and the intent

context contributes the prediction result more reliably.

tanh

c
i

W

v

g

S cI

S

Fig.3. Illustration of slot gate [12].
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With features f , slot context cS and g, the slot fill-

ing is modeled as below:

ySi = softmax
(
W S

y

(
gcSi + fi

))
,

where ySi is the slot label of the i-th word and W S
y

is the weight matrix. Larger g indicates that intent

context vector contributes more information for pre-

diction of slots. For the example in Fig.1(a), slot at-

tention is computed based on feature vectors combin-

ing slot recognition outputs with hidden states, then

the slot gate gets a weighted feature with intent at-

tention and slot attention, and finally the slot filling

component generates labels for each word, i.e., “B-

fromloc.city name” for “Boston”, “B-toloc.city name”

for “Baltimore”, “B-depart data.day name” for “Fri-

day”, and “O” for “List”, “flights”, “from”, “to”, and

“on”.

As shown in [12], to compare the power of the slot

gate in our model architecture, we also propose a model

with only intent attention, where g and ySi are defined

as follows:

g =

T∑
i=1

v · tanh
(
WcI + fi

)
,

ySi = softmax
(
W S

y (gfi + fi )
)
.

3.4 Optimization

We obtain slot recognition, intent prediction and

slot filling jointly and formulate the objective as joint

optimization:

p
(
yC , yI ,yS |x

)
=

T∏
n=1

p
(
yCn |x

)
p
(
yI |x

) T∏
n=1

p
(
ySn |x

)
=

T∏
n=1

p
(
yCn |x1, · · ·, xT

)
p
(
yI |x1, · · ·, xT

)
T∏

n=1

p
(
ySn |x1, · · ·, xT

)
,

where p
(
yC , yI , yS |x

)
is the conditional probability of

slot recognition, intent prediction, and slot filling given

the input word sequence.

4 Experiment

To evaluate our model, we conduct experiments

on the benchmark ATIS (air-line travel information

System) [19] and Snips [20] datasets.

The ATIS dataset contains audio recording of peo-

ple making flight reservations and is widely used in

the SLU research. Selected from ATIS-2 and ATIS-3

corpora 1○, 4 978 utterances are divided into 4 478 ut-

terances in the training set and 500 utterances in the

development set. Selected from ATIS-3 NOV93 and

DEC94 corpora, 893 utterances are contained in the

testing set. There are 21 intent types and 120 slot la-

bels in the training set.

The Snips dataset 2○ is collected from the Snips per-

sonal voice assistant. There are 13 084 utterances in the

training set and 700 utterances in the testing set. An-

other 700 utterances are contained in the development

set. There are seven intent types and 72 slot labels in

the training set.

Comparison between the ATIS and Snips datasets

is shown in Table 1. The ATIS dataset is single-domain

and has intents all about flight information with similar

vocabularies, while the Snips dataset has more diverse

intents and a larger vocabulary.

Table 1. Statistics of ATIS and Snips Datasets

ATIS Snips

Vocabulary size 722 11 241

Training set size 4 478 13 084

Development set size 500 700

Testing set size 893 700

Types of slots 120 72

Types of intents 21 7

Based on the benchmark ATIS and Snips datasets,

we evaluate the SLU performance of our model using

F1-score of slot filling, the accuracy of intent predic-

tion, and the semantic frame accuracy of sentences.

In Subsections 4.1–4.3, we first compare our model

with existing sequence-based model [8], the attention-

based model [11], the Slot-Gated model [12], the SF-ID

model [17] and the capsule-based model [16], then we con-

duct an ablation study of our model, and finally we

conduct a case study of our model.

4.1 Model Comparison

4.1.1 Baselines

The compared baselines for joint intent prediction

and slot filling include the followings:

1○https://github.com/Microsoft/CNTK/tree/master/Examples/LanguageUnderstanding/ATIS/Data, Mar. 2022.
2○https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines, Aug. 2020.
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1) the sequence-based joint model using BiLSTM [8],

which proposes an RNN-LSTM architecture for joint

modeling of slot filling, intent determination, and do-

main classification by building a joint multi-domain

model;

2) the attention-based model [11], which proposes

joint models for intent prediction and slot filling with

the encoder-decoder model and the attention mecha-

nism;

3) the Slot-Gated model [12], which models the de-

pendency of slots on intent by introducing a Slot-Gated

mechanism and leverages the intent context vector for

modeling slot-intent relationships;

4) the SF-ID network [17], which establishes direct

connections for intent prediction and slot filling with

SF subnet and ID subnet, where the SF-First model

(referred to as SF-ID Network (SF-First)) executes the

SF subnet first and the ID-First model (referred to as

SF-ID Network (ID-First)) executes the ID subnet first;

5) the capsule-based model (referred to as

CAPSULE-NLU) [16], which accomplishes slot fill-

ing and intent prediction via a dynamic routing-by-

agreement schema and promotes slot filling with the

inferred intent representation.

4.1.2 Experimental Setting

Under the same experimental settings as [17], we

compare our model with the sequence-based model [8],

the attention-based model [11], the Slot-Gated model [12]

and the SF-ID model [17]. For each BiLSTM in the

model, one layer is contained, and the hidden size is

set to 64. The word embeddings size is set to 64. The

batch size is set to 16 and the dropout rate to 0.01. The

optimizer is adam.

We compare our Intent-Slot model with the capsule-

based model [16] under a different experimental setting.

In detail, the Intent-Slot model uses a BiLSTM with

two layers. The batch size is set to 64. Both the word

embedding size and the BiLSTM hidden size are set to

128. Under this experimental setting, our Intent-Slot

model still has far fewer parameters than the capsule-

based model.

4.1.3 Experimental Results

Table 2 displays the evaluation results of the Intent-

Slot model compared with baseline models.

1) Compared with the sequence-based model [8],

the attention-based model [11], the Slot-Gated model [12]

and the capsule-based model [16], our Intent-Slot model

achieves the best performance on both datasets.

Firstly, both intent prediction and slot filling obtain

significant improvement, demonstrating that our slot

recognition module can benefit intent prediction and

slot filling effectively. Secondly, semantic frame parsing

for whole utterances obtains significant improvement,

demonstrating that our Intent-Slot correlation model

can benefit SLU effectively. Finally, our Intent-Slot

model has far fewer parameters than the capsule-based

model, demonstrating that our model performs better

with a more lightweight structure.

2) Compared with the SF-ID model [17], our Intent-

Slot model achieves close intent prediction accuracy,

slot filling F1, sentence-level semantic frame accuracy,

which means our Intent-Slot model achieves state-of-

the-art semantic frame performance.

In sum, the experiments show that our Intent-Slot

correlation model can achieve state-of-the-art semantic

frame performance with a lightweight structure. This

result is probably because that our slot recognition dif-

ferentiates slot words from the other words to enhance

intent prediction, and meanwhile slot locations in slot

Table 2. Model Comparison Results of Intent-Slot

Model ATIS Snips

Slot (F1) Intent (Acc) Sentence (Acc) Slot (F1) Intent (Acc) Sentence (Acc)

Joint Seq [8] 94.3 92.6 80.7 87.3 96.9 73.2

Attention-Based [11] 94.2 91.1 78.9 87.8 96.7 74.1

Slot-Gated [12] 95.4 95.4 83.7 89.3 96.9 76.4

SF-ID Network (SF-First) [17] 95.6 97.4 86.0 90.3 97.3 78.4

SF-ID Network (ID-First) [17] 95.6 96.6 86.0 90.5 97.0 78.4

Intent-Slot 95.6 96.5 86.4 90.0 97.4 78.5

CAPSULE-NLU [16] 95.2 95.0 83.4 91.8 97.3 80.9

Intent-Slot∗ 95.8 95.3 85.5 91.9 97.4 81.7

Note: ∗ denotes the Intent-Slot model is under different experimental settings, in which the embedding size and the hidden size are set
to 128 (see details in Subsection 4.1.2). Acc: Accuracy. The best results of all models and better results between Intent-Slot models
are in bold.
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recognition output improve slot filling, and the joint op-

timization for the three tasks achieves better semantic

frame performance.

4.2 Ablation Study

We first conduct an ablation study to evaluate

whether and how each part of our model contributes

to our full model. In detail, we ablate four important

components and conduct experiments under the same

setting as [17].

1) w/o (without) Slot Recognition, Where No Slot

Recognition Is Contained in Our Intent-Slot Model. No

slot labeling results are fed as input into the layers of

intent prediction and slot filling, and the model is the

same as the Slot-Gated model with full attention.

2) w/o Intent Attention, Where No Attention Mech-

anism Is Performed in the Intent Prediction Layer. The

intent prediction layer decodes intent types with word

encoding and slot recognition information.

3) w/o Slot Attention, Where No Attention Mecha-

nism Is Performed in the Slot Filling Layer. The slot

filling layer applies the Slot-Gated mechanism to decode

slot labels with word encoding and slot recognition in-

formation.

4) w/o Slot Gated, Where No Slot-Gated Mechanism

Is Performed in the Slot Filling Layer. The slot filling

layer applies attention mechanism to decode slot labels

with word encoding and slot recognition information.

Table 3 shows the performance of our model on the

ATIS and Snips datasets by removing one module at

a time. We find that if we remove the slot recognition

layer from the holistic model, the semantic frame per-

formance drops dramatically. The result can be inter-

preted as that our slot recognition can provide helpful

information for the global optimization of joint intent

prediction and slot filling. We can see that slot recog-

nition does improve performance a lot in a large scale.

If we remove the Slot-Gated mechanism from the holis-

tic model, the semantic frame performance drops a lot,

which demonstrates that the Slot-Gated mechanism is

essential to determine the slot labels. If we remove slot

attention or intent attention from the holistic model,

the performance variation differs on the ATIS and Snips

datasets, and it is probably because the two datasets

have different complexity.

We then evaluate the effects of training epochs on

F1-score of slot recognition, F1-score of slot filling, ac-

curacy of intent prediction, and semantic frame accu-

racy of sentences. Fig.4 displays the evaluation results.

1) The average F1-score of slot recognition is 99.3 on

ATIS and 98.7 on Snips respectively, which are strong

guarantees for improving F1-score of slot filling, the

accuracy of intent prediction, and the semantic frame

accuracy of sentences.

2) When epochs increase, F1-score of slot filling, the

accuracy of intent prediction, and the semantic frame

accuracy of sentences increase to a high level (as shown

with dotted lines) at the beginning and then fluctuate

continuously around peak values.

3) Overall, F1-score of slot filling and the accu-

racy of intent prediction reach peak values earlier than

the semantic frame accuracy of sentences, as our model

needs some more epochs to fine-turn with respect to the

semantic frame accuracy of sentences based on Intent-

Slot correlation.

4.3 Case Study

Table 4 displays four examples for case study. Case

1 and case 2 show two examples of the ATIS dataset

for comparing the Intent-Slot model and the Slot-Gated

model. Case 1 shows that the Intent-Slot model recog-

nizes the label of “ap58” correctly with the slot location

information from slot recognition, but the Slot-Gated

model cannot. Case 2 illustrates that with the same slot

information, the Intent-Slot model predicts the intent

type correctly with the help of slot recognition informa-

tion, but the Slot-Gated model cannot. The examples

demonstrate the effectiveness of our Intent-Slot corre-

lation model on intent prediction and slot filling.

Table 3. Results of Ablation Study

Model ATIS Snips

Slot (F1) Intent (Acc) Sentence (Acc) Slot (F1) Intent (Acc) Sentence (Acc)

Intent-Slot 95.6 96.5 86.4 90.0 97.4 78.5

Slot-Gated (w/o slot recognition) 95.4 95.4 83.7 89.3 96.9 76.4

Intent-Slot (w/o intent attention) 95.4 95.8 84.8 90.0 98.9 78.1

Intent-Slot (w/o slot attention) 95.5 97.1 86.5 89.4 96.9 78.2

Intent-Slot (w/o slot gated) 95.5 95.7 84.5 89.6 98.9 77.2
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Fig.4. Evaluation results of training epochs on Intent-Slot with the (a) ATIS and (b) Snips datasets. Rec: Recognition.

Case 3 and case 4 show two examples of the ATIS

dataset for error prediction of the Intent-Slot model.

Case 3 displays that the Intent-Slot model incorrectly

recognizes the slot label of “lax” and the intent type of

the whole sentence. Case 4 shows that the Intent-Slot

model incorrectly recognizes the slot label of “snacks”

and the intent type of the whole sentence. It is prob-

ably due to the OOV (Out Of Vocabulary) problem of

test datasets. For example, with respect to the ATIS

dataset, there are 32 words in the test dataset but out

of the training dataset. These OOV words are initial-

ized with random embeddings, which may mislead our

model in slot recognition and further mislead slot filling

and intent prediction. We will further study these bad

cases and improve models in the future work.

5 Conclusions

In this paper, we explored a new framework for

joint intent prediction and slot filling by integrating

slot recognition and Slot-Gated mechanism. Experi-

Table 4. Examples for Case Study

Case Sentence and Slot Filling Intent

Case 1 Sentence what does the restriction ap58 mean \
Slot-Gated O O O O O O −
Intent-Slot O O O O B-restriction code O −

Case 2 Sentence Flight numbers from Chicago to Seattle on continental \
Slot-Gated O O O B-from.city O B-to.city O B-airline flight time

Intent-Slot O O O B-from.city O B-to.city O B-airline flight no

Case 3 Sentence (part 1) List the airfare for american airlines lax \
Ground truth (part 1) O O O O B-airline name I-airline name airfare#flight

Intent-Slot (part 1) O O O O B-airline name I-airline name airfare

Sentence (part 2) flight 19 from jkf to

Ground truth (part 2) O B-fight number O B-fromloc.

airport code

O B-toloc.

airport code

Intent-Slot (part 2) O B-fight number O B-fromloc.

airport code

O B-toloc.

city name

Case 4 Sentence Are snacks served on tower air \
Ground truth O B-meal description O O B-airline name I-airline name meal

Intent-Slot O O O O B-airline name I-airline name flight

Note: Red represents incorrect slot labels or intent types. Slots are tagged in the “BIO” (Begin, Inside, Other) format. \ denotes there
is no information and − denotes Intent is not the comparison content of this case.
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mental results revealed that our Intent-Slot correlation

model can achieve state-of-the-art semantic frame per-

formance.

Currently, we obtained slot recognition, intent pre-

diction and slot filling by assigning the same weight to

each task in the joint optimization. In the future, we

will study how the weights affect results and improve

joint optimization. Besides, we will study the bad cases

to improve our design of models, and we will explore the

combination of implicit and explicit Intent-Slot corre-

lation modeling to improve performance.
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