
Gao JU, Chen W, Xu JJ et al. An efficient framework for multiple subgraph pattern matching models. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 34(6): 1185–1202 Nov. 2019. DOI 10.1007/s11390-019-1969-x

An Efficient Framework for Multiple Subgraph Pattern Matching

Models

Jiu-Ru Gao1, Wei Chen1, Jia-Jie Xu1, Member, CCF , ACM , An Liu1, Member, CCF , ACM

Zhi-Xu Li1, Member, CCF,ACM , Hongzhi Yin2, Member, CCF,ACM , and Lei Zhao1,∗, Member, CCF,ACM

1School of Computer Science and Technology, Soochow University, Suzhou 215006, China
2School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4072, Australia

E-mail: jrgao@stu.suda.edu.cn; wchzhg@gmail.com; {xujj, anliu, zhixuli}@suda.edu.cn; db.hongzhi@gmail.com
E-mail: zhaol@suda.edu.cn

Received December 14, 2018; revised September 12, 2019.

Abstract With the popularity of storing large data graph in cloud, the emergence of subgraph pattern matching on a

remote cloud has been inspired. Typically, subgraph pattern matching is defined in terms of subgraph isomorphism, which

is an NP-complete problem and sometimes too strict to find useful matches in certain applications. And how to protect the

privacy of data graphs in subgraph pattern matching without undermining matching results is an important concern. Thus,

we propose a novel framework to achieve the privacy-preserving subgraph pattern matching in cloud. In order to protect

the structural privacy in data graphs, we firstly develop a k-automorphism model based method. Additionally, we use a

cost-model based label generalization method to protect label privacy in both data graphs and pattern graphs. During the

generation of the k-automorphic graph, a large number of noise edges or vertices might be introduced to the original data

graph. Thus, we use the outsourced graph, which is only a subset of a k-automorphic graph, to answer the subgraph pattern

matching. The efficiency of the pattern matching process can be greatly improved in this way. Extensive experiments on

real-world datasets demonstrate the high efficiency of our framework.

Keywords subgraph pattern matching, k-automorphism, label generalization

1 Introduction

Usually we can use a graph to represent objects and

their relationships. The increasing number of applica-

tions making use of graph data in recent years, such

as disease transmission[1,2], communication patterns[3],

and social networks[4−7], has promoted the develop-

ment of graph data management, especially subgraph

pattern matching. Subgraph pattern matching is tradi-

tionally defined in terms of subgraph isomorphism[8,9],

which is an NP-complete problem[10]. It is often too

strict to catch sensitive matches, as it requires matches

to have the same topology with data graphs. The

problem will hinder its applicability in some certain

applications like social networks and crime detection.

The family of graph simulation models provide a prac-

tical alternative to subgraph isomorphism by relax-

ing its matching conditions[11,12]. Our work focuses

on multiple subgraph pattern matching models includ-

ing strong simulation[13], strict simulation[14], and tight

simulation[15]. These models are revisions of graph

simulation, which impose more flexible constraints on

topology in data graphs and retain cubic-time comple-

xity.

Example 1. Consider a real-life social network

shown in Fig.1. Each vertex in graph G represents

an entity, such as a human resources person (HRi),

a development manager (DMi), and a project manager

(PMi). Each directed edge in G indicates one recom-

mendation relationship, e.g., edge HR1 → PM1 repre-

1186 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

<Name: Alice>
<Gender: Female>
<State: California>

<Name: Bob>
<Gender: Male>
<State: Washington>

DM

PM

HR

<Name: Tom>
<Gender: Male>
<School: Cornel>

<Name: Ruby>
<Gender: Female>
<School: Harvard>

<Name: Millie>
<Gender: Female>
<School: Harvard>

<Name: Ablett>
<Gender: Male>
<School: Columbia>

<Name: Jack>
<Gender: Male>
<School: Columbia>

<Name: Rose>
<Gender: Female>
<School: Harvard>

<Name: Lucy>
<Gender: Female>
<State: Illinois>

<Name: Adrian>
<Gender: Male>
<State: Illinois>

<Name: Daniel>
<Gender: Male>
<State: Illinois>

<Name: David>
<Gender: Male>
<State: Washington>

<School: Cornel>

<State: California>

G

HR
HR

PMDMDMPM

PM DM PM PM
DM PM

<State: Illinois>

(b)(a)

Fig.1. (a) Pattern graph Q and (b) original data graph G.

sents HR1 recommends PM1. Each entity has some at-

tributes like “name”, “gender”, “state”, and “school”.

As shown in Fig.1, a headhunter wants to employ

development manger DM to help project manger PM .

A qualified candidate must live in Illinois and at the

same time, he/she must recommend the PM and be

recommended by the HR and the PM . The head-

hunter issues a subgraph pattern matching of Q over

G, as shown in Fig.1. When subgraph isomorphism

is taken, no match can be found. When it comes to

strong simulation, we can find the subgraph G1 is an

appropriate match to pattern Q, since there exists a

path (DM1, PM2, PM1) from DM1 to PM1. Obvi-

ously, compared with subgraph isomorphism which im-

poses a very strict constraint on the topology of the

matched graphs, strong simulation provides a more flex-

ible constraint.

We can clearly find from example 1 that subgraph

isomorphism returns the strictest matches for subgraph

pattern matching in terms of topology and the problem

is of high computation cost. In order to lower its time

complexity, variants of the subgraph pattern matching

models have been proposed[10,11,13−16].

Although storing large-data graphs in cloud can

greatly save storage cost, it brings another inevitable

challenge, i.e., how to process users’ queries without

compromising sensitive information in cloud[17]. The

sensitive information in our work focuses on personal

information like names, occupations and social secu-

rity number[18]. We cannot make sure that the cloud

platform is completely credible in many real scenar-

ios; therefore the sensitive information in graphs may

be disclosed. The main privacy leakage problem is the

“identity disclosure” problem[19,20]. Assuming a graph

G containing sensitive information is uploaded to the

cloud platform, when an adversary can locate target

t as a vertex v in G with a high probability, we say

the entity t’s identity is disclosed[19]. A naive anony-

mous approach is to remove all identifiable personal

information from a data graph before uploading it to

cloud. However, even though the data graph is up-

loaded without any sensitive information, it is still pos-

sible for an adversary to locate the target through struc-

tural attacks[20−23]. For example, if an attacker knows

the structure (such as degree) around the target t, it

is of a high probability that he/she can locate a vertex

v according to the target t. All sensitive information

associated with v will be compromised as a result. This

is called structural attack[18,24,25]. Many methods have

been proposed to protect the privacy of data graphs

from multiple structural attacks. One typical approach

is k-automorphism, which uses the symmetry of the

published data graph[18]. For each vertex v in a k-

automorphic graph, there are at least k−1 structurally

equivalent counterparts. An adversary cannot distin-

guish v from other k − 1 symmetric vertices, because

there is no structural difference between them.

Uploading the original graph G to cloud directly

will cause privacy leakage. To address the problem,

we propose a basic solution which can protect the pri-

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1187

vacy of both data graphs and pattern graphs during

the matching process. In this solution, we propose a

k-automorphism model based method to protect struc-

tural privacy in data graphs. In order to protect the la-

bel privacy in both data graphs and pattern graphs, we

apply a label generalization technique[17], where each

vertex in the k-automorphic graph and pattern graph

is replaced by a label group.

However, the basic solution suffers from the fol-

lowing limitation. During the generation of a k-

automorphic graph, it may generate a large number of

noise edges, which will result in more expensive storage

cost and much larger communication overhead. Thus,

we add some optimizations into the basic framework to

achieve a more efficient framework. Firstly, we only up-

load the outsourced graph (the definition of outsourced

graph is given in Subsection 4.2), which is only a subset

of the k-automorphic graph, to cloud. Secondly, we re-

design a cost-model based label generalization method

which has been proved to greatly improve the efficiency

of the pattern matching process in our experiments.

Contributions. Our work provides an efficient

framework for multiple subgraph pattern matching

models in cloud. In this paper, the cloud always offers

correct computations without cheating, but it is curi-

ous about the information of the data graph. The main

contributions of our work are summarized as follows.

• We propose an efficient framework to provide mul-

tiple subgraph pattern matching services while preserv-

ing private information in both data graphs and pattern

graphs in public cloud.

• In order to reduce the search space in pattern

matching process, we re-design a cost-model based la-

bel generalization method to select effective vertex la-

bel combinations for anonymizing labels in both data

graphs and pattern graphs.

• We conduct extensive experiments on several real-

world datasets to study the efficiency of our framework.

The rest of the paper is organized as follows. Sec-

tion 2 narrates the related work. Section 3 gives the

problem formulation. Section 4 describes the main solu-

tion. Section 5 reports the experimental analysis. Sec-

tion 6 concludes the paper.

2 Related Work

Privacy Preserving. The question of how to pub-

lish information on graphs in a privacy-preserving way

has been of interest for a number of years[21,26−28].

Most previous work focused on protecting data privacy

from structural attacks[21,26,27]. Some of them assume

that the adversary only launches one type of structural

attack[21,26,27]. For example, Liu and Terzi[25] studied

how to protect privacy in published data from degree

attack only. However, an attacker can launch multi-

ple types of structural attacks to identify the target

in practice. Some privacy preserving techniques may

cause the data graph losing of structure information

in the original, which will lead to the infeasibility of

subgraph pattern matching on published graphs or up-

loaded graphs[24]. Thus, Zou et al.[18] proposed the

k-automorphism based framework. Each vertex in a k-

automorphic graph has at least k − 1 counterparts so

that it is hard for an adversary to identify the vertex

from others. The k-automorphism model can protect

privacy of data graph from multiple structural attacks.

It can also significantly preserve the integrity of the

data since the model does not need to delete any ver-

tices or edges from the data graph. Chang et al. pro-

posed a framework which can well protect the privacy

in both data graph and pattern graph[17]. However, the

framework only adapts to subgraph isomorphism and it

is significantly needed to propose a privacy-preserving

framework for more subgraph pattern matching mod-

els.

Differential privacy[29,30] is also an essential and

prevalent model that has been widely explored in recent

decades. However, due to the perturbation introduced

to the data graph, these techniques[28,31,32] only adapt

to finding statistics information of a graph. They are

not feasible in answering subgraph pattern matching

queries exactly. Zhang et al.[33] defined an isomorphic

graph possessing similar statistical properties with the

original graph. However, their work only returns sub-

graph counts instead of matching subgraphs; therefore

we cannot determine the correctness of the query an-

swers.

Graph Simulation. Subgraph pattern matching is

typically defined in terms of subgraph isomorphism[8,9].

Subgraph isomorphism is an NP-complete problem[34]

since it returns the strictest matches for subgraph

pattern matching in terms of topology. Some pre-

vious work focuses on subgraph similarity matching

on large graphs[35,36]. Given a query graph Q and

a data graph G, subgraph similarity matching is to

retrieve all matches of Q in G with the number of

missing edges bounded by a given threshold ε. Also,

the family of graph simulation algorithms has been

considered[10,11,13−16] to lower the complexity of graph

isomorphism. Fan et al.[11] extended simulation by al-

1188 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

lowing bounds on the number of hops in pattern graphs

and further and proposed bounded simulation. Fan et

al. extended it by incorporating regular expressions as

edge constraints on pattern graphs[16]. Both the two

extensions of simulation are in cubic-time.

Nevertheless, the lower complexity comes with the

price that two extentions of simulation do not preserve

the topology of data graphs and yield false matches.

Thus, Ma et al.[13] proposed the notation of strong sim-

ulation by enforcing two additional conditions: the du-

ality to preserve the parent relationships and the local-

ity to eliminate excessive matches. Strong simulation is

capable of capturing the topological structures of pat-

tern and data graphs, and it retains the same cubic-time

complexity of former extensions of graph simulation[10].

However, it is still computationally expensive for very

large data graphs. Thus, Fard et al. introduced a new

model named strict simulation[14], which is more scal-

able and preserves the important properties of strong

simulation. Strict simulation reduces the computation

time of strong simulation by decreasing the size of balls,

but the number of the balls remains the same. More-

over, it is still desirable to shrink the size of the balls in

terms of both computation time and the quality of the

matching results. Therefore Fard et al. proposed tight

simulation[15]. Tight simulation not only decreases the

size of balls in comparison to strict simulation, but also

reduces the number of balls.

Compared with our previous work[37], this paper

provides a privacy-preserving framework for multiple

simulation models. The framework can be applied to

strong simulation, strict simulation and tight simula-

tion and can greatly decrease the running time of the

subgraph pattern matching in cloud.

3 Problem Formulation

In this section, we first present the basic notations

and definitions frequently used in this paper. Then we

give a definition of our problem.

We model a social network as an attributed

graph[17], G = {V (G), E(G), LG(V (G))}, where V (G)

is the set of vertices, E(G) is the set of edges, and

LG(V (G)) is the set of vertex labels. The notational

conventions of this paper are summarized in Table 1.

Definition 1 (Path). A directed path p is a se-

quence of nodes (v1, v2, ..., vn), where i ∈ [1, n− 1] and

(vi, vi+1) is an edge in graph G. The number of edges

in a path p is the length of p, denoted by len(p).

Definition 2 (Distance and Diameter). Consider

two nodes u, v in graph G, the distance from u to v

is the length of the shortest undirected path from u to

v, denoted by dis(u, v). The diameter of the connected

graph G is defined as the longest distance of all pairs

of nodes in G, denoted by dG. More specifically, dG =

max{dis(u, v)} for all nodes u, v in graph G.

Table 1. Notations

Notation Description

dQ Diameter of pattern Q

G Original data graph

G∗ “Undirected” data graph

Gk Data graph released by the k-automorphism model

Go Outsourced data graph

G[v, dQ] Ball with center v and radius dQ

Q Original pattern graph

Qo Anonymous pattern graph of Q

r(Q,G) Set of graph pattern matches of Q over G

dis(u, v) Distance between u and v

For example, the distance between HR and PM in

pattern graph Q in Fig.1 is 1 since HR can directly

arrive PM . The diameter of Q is 1 because the longest

distance of all pairs of nodes in Q is 1.

Definition 3 (Ball). For a node v in graph G, a

ball is a subgraph of G, where v is the center node and

r is the radius, denoted by
⌢

G[v, r]. For all nodes u in
⌢

G[v, r], the shortest distance between u and v should

satisfy dis(u, v) 6 r and edges must exactly appear in

graph G over the same node set.

Considering the pattern Q and the data graph G

in Fig.1, we can figure out that dQ = 1 according to

Definition 2. If we take the vertex DM1 as the center

node and dQ as the radius, then we can obtain the ball
⌢

G[DM1, dQ] (i.e., G1), which is a subgraph of G based

on Definition 3.

Definition 4 (Subgraph Isomorphism). Subgraph

isomorphism is the most traditional model for subgraph

pattern matching. It preserves most restrictive topolog-

ical features of the query graph. Given a pattern graph

Q and a subgraph Gs of data graph G, if there exists a

bijective function f from vertices of Q to the vertices in

Gs such that:

1) for each pattern vertex u in Q, u and f(u) have

same labels and

2) there exists an edge (u, u′) in Q if and only if

(f(u), f(u′)) is an edge in Gs,

then Gs is a match of via Q subgraph isomorphism.

For example, a subgraph of data graph containing

vertices {A1, B1, C1} and edges A1 → B1, B1 → A1

and B1 → C1 in Fig.2 is a subgraph isomorphic match

of the pattern graph in Fig.2.

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1189

A B C

(a)

(b)

C4

A5

A3

A1

A2

A4

C3

C1

C2

B6

B4

B5

B2
B3

B1

Fig.2. Example for different models. (a) Pattern graph. (b)
Data graph.

Definition 5 (Graph Simulation). Given a pattern

graph Q{V (Q), E(Q), LQ(V (Q))} and a data graph

G{V (G), E(G), LG(V (G))}, a binary relation R ⊆

V (Q) × V (G) is a match if

1) for each (u, v) ∈ R, u and v have same labels and

2) for each edge (u, u′) ∈ E(Q), there exists an edge

(v, v′) in E(G) such that (u′, v′) ∈ R.

The matching result is a maximum match set of

vertices. Graph G matches pattern Q via graph simu-

lation, if there exists a total match relation M that for

each u ∈ V (Q), there exists v ∈ V (G) and (u, v) ∈ M .

Definition 6 (Dual Simulation). Graph simulation

only preserves child relationships of each vertex in pat-

tern graph Q. Dual simulation improves the matching

results of graph simulation by taking the parent rela-

tionships into consideration.

Pattern graph Q{V (Q), E(Q), LQ(V (Q))} matches

G{V (G), E(G), LG(V (G))} via dual simulation, if

1) Q matches G via graph simulation with a binary

match relation R ⊆ V (Q) × V (G), and

2) for each edge (u′, u) ∈ E(Q), there exists an edge

(v′, v) in E(G) such that (u′, v′) ∈ R.

Definition 7 (Strong Simulation[13]). Given a data

graph G = {V (G), E(G), LG(V (G))} and a pattern

graph Q = {V (Q), E(Q), LQ(V (Q))}, if there exists a

node v in Gs of G such that:

1) Q is a match result of Gs via dual simulation

with maximum match relation S and Gs is the match

graph towards match relation S;

2) Gs is contained in
⌢

G[v, dQ], where dQ is the di-

ameter of pattern graph Q,

Q is a subgraph match to G via strong simulation.

Definition 8 (Strict Simulation[14]). Pattern graph

Q = {V (Q), E(Q), LQ(V (Q))} matches data graph

G = {V (G), E(G), LG(V (G))} via strict simulation if

there exists a vertex v ∈ V (G) such that:

1) Gd = {V (Gd), E(Gd), LGd
(V (Gd))} is the match

result of Q over G via dual simulation and v ∈ V (Gd);

2) Q is the dual match result of
⌢

Gd[v, dQ], where
⌢

Gd[v, dQ] is extracted from Gd and dQ is the diameter

of pattern Q;

3) v is contained in the matching result.

Definition 9 (Tight Simulation[15]). Pattern graph

Q = {V (Q), E(Q), LQ(V (Q))} matches data graph

G = {V (G), E(G), LG(V (G))} via tight simulation if

there exist vertices u ∈ Q and u′ ∈ G such that:

1) u′ is the matching vertex of u in dual match re-

lation Rd;

2) u is the center of Q with the highest defined

selectivity;

3) Gd = {V (Gd), E(Gd), LGd
(V (Gd))} is the match

result of Q over G via dual simulation and Q is the dual

match result of
⌢

Gd[u
′, rQ], where

⌢

Gd[u
′, rQ] is extracted

from Gd = {V (Gd), E(Gd), LGd
(V (Gd))} and rQ is

the diameter of pattern Q;

4) u′ is contained in the matching result.

There is an example to show the difference in the

results of different pattern matching models in Fig.2.

In this example, all vertices in the data graph will re-

main in the dual match graph. The subgraph con-

taining vertices {A1, B1, C1} and edges A1 → B1,

B1 → A1 and B1 → C1, will be the matching result

when subgraph isomorphism is taken, since the sub-

graph has the same topology with the pattern in Fig.2.

In strong and strict simulation, a ball with radius 2

will be created for any vertex in the data graph. For

the ball centered at vertex A1, strong simulation results

in a subgraph containing all vertices in the data graph,

while strict simulation results in a subgraph contain-

ing vertices {A1, A2, B1, B2, B3, C1, C2, C3} and edges

between them.

In tight simulation, the center of the pattern is ver-

tex B and it will be picked as the candidate vertex.

Therefore, the ball centered with vertices {B1, B2, B3,

B4, B5, B6} and radius 1 will be the matching can-

didates. Only the ball centered at vertex B1 which

contains vertices {A1, B1, C1} can be a matching result

in tight simulation. Compared with strict simulation,

the matching results of tight simulation are the closest

to subgraph isomorphism, since the matching results

of tight simulation are subgraphs of the corresponding

results of strict simulation and they always contain all

the subgraph isomorphic matches.

Problem Definition. Given a data graph G and a

pattern graph Q, our work is to find all subgraph pat-

tern matches of Q over G without compromising the

1190 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

privacy of graphs through the cloud server. We propose

a framework which can protect both label privacy and

structure privacy in graphs. The framework can apply

to multiple subgraph matching models including strong

simulation, strict simulation, and tight simulation.

Our work aims to protect the privacy of data graph

and pattern graph against cloud. When the cloud

server returns the matching results to the client, the

client has the ability to de-anonymize, filter, and verify

the results.

4 Privacy-Preserving Framework

Our framework mainly consists of three parts, and

they are privacy preserving, subgraph pattern match-

ing, and result processing. In the privacy preserving

process, we consider both structural privacy and label

privacy in data graphs and pattern graphs. Given a

data graph G, we firstly transform the original graph

G to an “undirected” graph G∗. During the process, if

an edge u → v is unidirectional, we will add an edge

v → u. For example, we add an edge PM2 → DM1 for

the edge DM1 → PM2 in Fig.1. Then, we can use the

k-automorphism model to generate graph Gk, where k

= 2 in Fig.3. On the other hand, to protect label pri-

vacy, we apply a cost-model based label generalization

technique[17], where each vertex label in Gk and Q is

replaced by a label group. The mapping between label

groups and vertex labels is given in the label correspon-

dence table (LCT), presented in Fig.3(a).

Since Gk will be very large, we only upload part of

it, i.e., G0 to cloud. Next, the cloud executes subgraph

pattern matching of Q0 over G0 to obtain r(Q0, G0)

and transmits it to the client side. On the basis of k-

automorphic functions Fki
(i = 1, 2, ..., k−1), the client

can firstly compute r(Q0, Gk) according to r(Q0, G0).

Then, it filters out false positives based on the original

data graph G and pattern Q to derive r(Q,G). Note

that we assume the client is the data owner who has ac-

cess to the original graph G for the filtering step. The

entire process of our framework is shown in Fig.4.

4.1 Privacy Preserving

In order to provide a privacy-preserving matching

process, we need to consider two aspects: one is the

structural privacy, and the other is the label privacy.

4.1.1 Structural Privacy

We firstly develop a novel approach based on k-

automorphism model to protect structural privacy in

data graphs. When a directed data graph G is given,

we firstly transform it to an “undirected” graph G∗ by

introducing noise edges. Then we convertG∗ into graph

Gk, where Gk satisfies the k-automorphic graph model.

Definition 10 (k-Automorphic Graph). A

k-automorphic graph Gk is defined as Gk =

{V (Gk), E(Gk)}, where |V (Gk)| is the number of

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

Label
Group Labels

A HR, PM, DM

B Female, Male

C
California, Illinois,

Washington

D
Harvard, Conell,

Columbia

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<School: D>

<State: C>

<State: C>

p4 p5 p6

p2 p3

p1 p7

p8 p9

p10 p11 p12

p1

p2

p3

(b)(a) (c)

Fig.3. k-automorphic graph Gk and anonymous pattern Q0. (a) Label correspondence table (LCT). (b) Graph Gk. (c) Anonymous
pattern Q0.

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1191

Data Graph G

Pattern Graph Q

Anonymous, k-

Automorphic Graph

Anonymous Pattern

Graph Q

Outsourced Graph
G

Cloud

k-Automorphic Model

Label Generalization

Label

Generalization

AVTFilter

Client

Subgraph Pattern

Matching of Q

over G

r↼Q֒ G↽ r↼Q֒ Gk↽ r↼Q֒ G↽

Gk

Fig.4. Privacy-preserving framework.

V (Gk). |V (Gk)| can be divided into k blocks and each

block has ⌈ |V (Gk)|

1192 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

Fk1(p1) = p7 Fk1(p7) = p1

Fk1(p2) = p9 Fk1(p8) = p3

Fk1(p3) = p8 Fk1(p9) = p2

Fk1(p4) = p12 Fk1(p12) = p4

Fk1(p5) = p11 Fk1(p11) = p5

Fk1(p6) = p10 Fk1(p10) = p6

Fig.6. Automorphic function.

4.1.2 Label Privacy

Since the k-automorphism model based method can

only protect the structural privacy of the original graph

G, we define a cost-model based label generalization

method to protect label privacy in both data graph G

and pattern graph Q. The method considers two fac-

tors: label matching and searching space, while esti-

mating the number of candidates of a vertex u in Q0,

denoted as sim(u).

According to the definition of strong simulation[13],

strict simulation[14], and tight simulation[15], when a

vertex v in graph Gk matches vertex u in pattern Q0, it

must firstly contain u’s label groups. We let |Vg(G
k, i)|

and |Vg(Q
0, i)| denote the set of vertices with the label

group i in Gk and Q0 that are obtained after the label

generalization respectively. Then, we define:

P
g

Gk(i) =
|Vg(G

k, i)|

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1193

can decrease the cost of the searching space of pattern

graph Q over G. We choose the component that con-

cerns the label combination to define label combination

cost.

cost(L) =
α

i=1

(
θ

j=1

PG(pθ(i−1)+j))×

(
θ

j=1

PQ(pθ(i−1)+j)). (2)

There is an iterative solution that can explore the

optimal permutation to decrease cost(L) according to

(2). At first, a random label combination is generated.

For example, we define θ = 2 and firstly we combine

California and Harvard in Fig.1 randomly as a label

group A, and Male, Illinois and Cornel as a label group

B. Then, we try to swap two labels in two different

label groups for each iteration randomly. For exam-

ple, we can swap California and Male and compute the

cost(L) according to (2). If cost(L) becomes smaller, we

will keep the swap; otherwise, we will ignore that. We

consider all possible swap sequentially and once there

is no swap that can lead to a smaller cost, the iteration

stops and we obtain the effective combination.

4.2 Subgraph Pattern Matching

Given a data graph G = {V (G), E(G), LG(V (G))}

and a pattern graph Q = {V (Q), E(Q), LQ(V (Q))},

Q is a subgraph match to G via strong simulation, if

there exists a node u in Q and a connected subgraph

Gs of G such that:

1) there exists a match relation R, and for each pair

(u, v) in R:

a) LQ(u) ⊆ LGs
(v);

b) ∀ (u′, u) ∈ E(Q), there exists a path (v′, ..., v) in

E(Gs);

c) ∀ (u, u′) ∈ E(Q), there exists a path (v, ..., v′) in

E(Gs);

2) Gs is contained in the ball
⌢

G[v, dQ], where dQ is

the diameter of pattern Q.

Strict simulation is a novel modification of strong

simulation which not only improves its performance but

also maintains a better quality of results because of its

revised definition of locality[14]. Compared with strong

simulation, strict simulation creates balls from the dual

result match graph rather than from the original graph.

For strict simulation, the match relation of dual simu-

lation is computed first, and then a ball
⌢

G[v, dQ] is cre-

ated for each vertex contained in the dual match set.

The members of the ball are selected regardless of their

relationship in pairs of dual match set.

Strict simulation decreases the size of the balls to re-

duce the computation time of strong simulation, while

tight simulation[15] not only decreases the size of balls,

but also reduces the number of balls. In the reprocess-

ing of tight simulation, a single vertex u ∈ Q, is chosen

as candidate match to the center of a potential ball in

the data graph G. The radius of a potential ball is de-

fined as the longest distance between u and any other

vertex in Q. In the phase of ball creation, only those

vertices in the data graph which are contained in the

dual match set of u would be selected as the center of

balls.

After obtaining an anonymous k-automorphic graph

Gk, a basic solution is to upload Gk to cloud directly.

However, Gk is larger than the original graph G since

Gk contains a large number of noise edges. Therefore,

we only upload the outsourced graph, which is only a

subset of Gk, denoted as G0, to the cloud platform.

The definition of G0 is given below.

Definition 11 (Outsourced Graph). An outsourced

graph is defined as G0 = {V (G0), E(G0), LG0(V (G0))}

where 1) V (G0) is the set of vertices in the first block

of Gk (i.e., block B0), denoted as V (B0), together with

their neighbors within 2dQ-hops, denoted as V (N2dQ
);

2) E(G0) is the set of edges that connect vertices within

V (B0) and vertices between V (B0) and V (N2dQ
); 3)

LG0(V (G0)) is the set of vertex labels in graph G0.

According to Definition 11, we can generate an out-

sourced graph G0 based on the graph Gk and upload

it to cloud. For example, an outsourced graph G0 (as

shown in Fig.7) can be generated based on graph Gk

in Fig.3. Although G0 is a part of Gk, we can easily

recover Gk based on G0 together with k-automorphic

functions Fki
(i = 1, 2, ..., k − 1).

When a pattern Q is given at a client side, we first

generalize its vertex labels by the label generalization

technique introduced in Subsection 4.1.2 to form Q0

and submit Q0 to cloud. According to the match-

ing process of strong simulation, strict simulation, and

tight simulation, we define |V (G0)| contains the ver-

tices in the first block B0 of the k-automorphic graph

Gk and the vertices within their 2dQ-hops neighbors.

Since each match iteration aims to find the maximum

perfect subgraph match and each subgraph match is

involved in a ball
⌢

G[w, dQ] (w is an arbitrary vertex

in G0), the operation can guarantee that all subgraph

matches could be found.

1194 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

p

p p

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

p

p p

pp

p

pp

Fig.7. Outsourced graph G0 for Gk.

An algorithm for the subgraph pattern matching is

designed as Algorithm 1. At first, a MatchSet would

contains all dual match sets (line 2 in Algorithm 1). For

each match in MatchSet, if it satisfies the simulation

conditions (strong simulation, strict simulation, or tight

simulation), the graph Gs constructed for match would

be added to the results r(Q0, G0). Else, match would

be removed from MatchSet (lines 3–8 in Algorithm 1).

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1195

tight simulation) to pattern Q in Gs, it is a right posi-

tive and we need to add it to r(Q,G) (lines 15 and 16

in Algorithm 2).

1196 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

All

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1197

Table 4. Number of Noise Edges in Generating Gk

1198 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

4 6 8 10

E↼Q↽

(a)

4 6 8 10

E↼Q↽

(b)

4 6 8 10

E↼Q↽

(c)

M
a
tc

h
in

g
 T

im
e
 (

s)

70

60

50

40

30

20

10

0

M
a
tc

h
in

g
 T

im
e
 (

s)

90

80

70

60

50

40

30

20

10

M
a
tc

h
in

g
 T

im
e
 (

s)

100

90

80

70

60

50

40

30

20

10

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.12. Matching time vs |E(Q)| of tight simulation (k = 3). (a) p2p-Gnutella08. (b) Brightkite

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1199

2 3 4 5

k

(a)

2 3 4 5

k

(b)

2 3 4 5

k

(c)

M
a
tc

h
in

g
 T

im
e
 (

s)

60

50

40

30

20

10

0

M
a
tc

h
in

g
 T

im
e
 (

s)

100

90

80

70

60

50

40

30

20

10

M
a
tc

h
in

g
 T

im
e
 (

s)

100

90

80

70

60

50

40

30

20

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.15. Matching time vs k of tight simulation (|E(Q)| = 6). (a) p2p-Gnutella08. (b) Brightkite

1200 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

r(Q0, Gk) on the basis of r(Q0, G0) together with Fki

(i = 1, 2, ..., k − 1) can be omitted. Thus, the time

costs of result processing with All

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1201

References

[1] Lu H, Chang Y. Mining disease transmission networks from

health insurance claims. In Proc. the 2017 International

Conference on Smart Health, June 2017, pp.268-273.

[2] Ray B, Ghedin E, Chunara R. Network inference from mul-

timodal data: A review of approaches from infectious dis-

ease transmission. Journal of Biomedical Informatics, 2016,

64: 44-54.

[3] Balsa E, Pérez-Solà C, Dı́az C. Towards inferring commu-

nication patterns in online social networks. ACM Trans.

Internet Techn., 2017, 17(3): Article No. 32.

[4] Yin H, Zhou X, Cui B, Wang H, Zheng K, Hung N Q V.

Adapting to user interest drift for POI recommendation.

IEEE Trans. Knowl. Data Eng., 2016, 28(10): 2566-2581.

[5] Yin H, Hu Z, Zhou X, Wang H, Zheng K, Hung N Q V,

Sadiq S W. Discovering interpretable geo-social communi-

ties for user behavior prediction. In Proc. the 32nd IEEE

International Conference on Data Engineering, May 2016,

pp.942-953.

[6] Xie M, Yin H, Wang H, Xu F, Chen W, Wang S. Learning

graph-based POI embedding for location-based recommen-

dation. In Proc. the 25th ACM International Conference on

Information and Knowledge Management, October 2016,

pp.15-24.

[7] Yin H, Wang W, Wang H, Chen L, Zhou X. Spatial-aware

hierarchical collaborative deep learning for POI recom-

mendation. IEEE Trans. Knowl. Data Eng., 2017, 29(11):

2537-2551.

[8] Aggarwal C C, Wang H. Managing and Mining Graph Data.

Spring, 2010.

[9] Gallagher B. Matching structure and semantics: A survey

on graph-based pattern matching. In Proc. the 2006 AAAI

Fall Symposium on Capturing and Using Patterns for Ev-

idence Detection, October 2006, pp.45-53.

[10] Henzinger M R, Henzinger T A, Kopke P W. Computing

simulations on finite and infinite graphs. In Proc. the 36th

Annual Symposium on Foundations of Computer Science,

October 1995, pp.453-462.

[11] Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y. Graph pattern

matching: From intractable to polynomial time. Proceed-

ings of the VLDB Endowment, 2010, 3(1): 264-275.

[12] Brynielsson J, Högberg J, Kaati L, Mårtenson C, Svenson

P. Detecting social positions using simulation. In Proc. the

2010 International Conference on Advances in Social Net-

works Analysis and Mining, August 2010, pp.48-55.

[13] Ma S, Cao Y, Fan W, Huai J, Wo T. Strong simula-

tion: Capturing topology in graph pattern matching. ACM

Trans. Database Syst., 2014, 39(1): Article No. 4.

[14] Fard A, Nisar M U, Ramaswamy L, Miller J A, Saltz M.

A distributed vertex-centric approach for pattern matching

in massive graphs. In Proc. the 2013 IEEE International

Conference on Big Data, October 2013, pp.403-411.

[15] Fard A, Nisar M U, Miller J A, Ramaswamy L. Distributed

and scalable graph pattern matching: Models and algo-

rithms. International Journal of Big Data, 2014, 1(1): 1-14.

[16] Fan W, Li J, Ma S, Tang N, Wu Y. Adding regular expres-

sions to graph reachability and pattern queries. In Proc. the

27th International Conference on Data Engineering, April

2011, pp.39-50.

[17] Chang Z, Zou L, Li F. Privacy preserving subgraph match-

ing on large graphs in cloud. In Proc. the 2016 International

Conference on Management of Data, June 2016, pp.199-

213.

[18] Zou L, Chen L, Özsu M T. K-automorphism: A general

framework for privacy preserving network publication. Pro-

ceedings of the VLDB Endowment, 2009, 2(1): 946-957.

[19] Tai C, Tseng P, Yu P S, Chen M. Identity protection in se-

quential releases of dynamic networks. IEEE Trans. Knowl.

Data Eng., 2014, 26(3): 635-651.

[20] Liu K, Terzi E. Towards identity anonymization on graphs.

In Proc. the ACM SIGMOD International Conference on

Management of Data, June 2008, pp.93-106.

[21] Zhou B, Pei J. Preserving privacy in social networks

against neighborhood attacks. In Proc. the 24th Interna-

tional Conference on Data Engineering, April 2008, pp.506-

515.

[22] Li J, Xiong J, Wang X. The structure and evolution of large

cascades in online social networks. In Proc. the 4th Interna-

tional Conference on Computational Social Networks, Au-

gust 2015, pp. 273-284.

[23] Hay M, Miklau G, Jensen D et al. Resisting structural re-

identification in anonymized social networks. VLDB, 2010,

19(6): 797-823.

[24] Cheng J, Fu A W, Liu J. K-isomorphism: Privacy preserv-

ing network publication against structural attacks. In Proc.

the ACM SIGMOD International Conference on Mana-

gement of Data, June 2010, pp. 459-470.

[25] Wu W, Xiao Y, Wang W et al. K-symmetry model for iden-

tity anonymization in social networks. In Proc. the 13th In-

ternational Conference on Extending Database Technology,

March 2010, pp.111-122.

[26] Liu K, Terzi E. Towards identity anonymization on graphs.

In Proc. the ACM SIGMOD International Conference on

Management of Data, June 2008, pp.93-106.

[27] Tai C H, Yu P S, Yang D H, Chen M S. Privacy preserv-

ing social network publication against friendship attacks.

In Proc. the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, August 2011,

pp.1262-1270.

[28] Chen S, Zhou S. Recursive mechanism: Towards node

differential privacy and unrestricted joins. In Proc. the

ACM SIGMOD International Conference on Management

of Data, June 2013, pp.653-664.

[29] Zhu T, Li G, Zhou W, Yu P S. Differentially private data

publishing and analysis: A survey. IEEE Trans. Knowl.

Data Eng., 2017, 29(8): 1619-1638.

[30] Qian Q, Li Z, Zhao P et al. Publishing graph node strength

histogram with edge differential privacy. In Proc. the 23rd

International Conference Database Systems for Advanced

Applications, May 2018, pp.75-91.

[31] Sala A, Zhao X, Wilson C et al. Sharing graphs using dif-

ferentially private graph models. In Proc. the 11th ACM

SIGCOMM Internet Measurement Conference, November

2011, pp.81-98.

[32] Chen R, Fung B C, Yu P S et al. Correlated network data

publication via differential privacy. VLDB, 2014, 23(4):

653-676.

1202 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

[33] Zhang J, Cormode G, Procopiuc C M et al. Private release

of graph statistics using ladder functions. In Proc. the 2015

ACM SIGMOD International Conference on Management

of Data, May 2015, pp.731-745.

[34] Ullmann J R. An algorithm for subgraph isomorphism. J.

ACM, 1976, 23(1): 31-42.

[35] Yuan Y, Wang G, Chen L et al. Efficient subgraph simila-

rity search on large probabilistic graph databases. VLDB,

2012, 5(9): 800-811.

[36] Yuan Y, Wang G, Xu J Y et al. Efficient distributed sub-

graph similarity matching. VLDB, 2015, 24(3): 369-394.

[37] Gao J, Xu J, Liu G et al. A privacy-preserving frame-

work for subgraph pattern matching in cloud. In Proc. the

23rd International Conference on Database Systems for

Advanced Applications, May 2018, pp.307-322.

[38] Karypis G, Kumar V. Analysis of multilevel graph parti-

tioning. In Proc. the 1995 ACM/IEEE Conference on Su-

percomputing, December 1995.

[39] Karypis G, Kumar V. Multilevel k-way partitioning scheme

for irregular graphs. Journal of Parallel and Distributed

computing, 1998, 48(1): 96-129.

Jiu-Ru Gao received her B.S. degree

in computer science and technology

from Changshu Institute of Technology,

Changshu, in 2016. She is currently a

M.S. candidate in Soochow University,

Suzhou. Her research interests include

data mining, data analysis and graph

computing.

Wei Chen is a lecturer at the School

of Computer Science and Technology,

Soochow University, Suzhou. He got

his Ph.D. and M.S. degrees in com-

puter science and technology from

the Soochow University, Suzhou. His

research interests include data mining

and spatial-temporal database. text

Jia-Jie Xu is an associate profes-

sor at the School of Computer Science

and Technology, Soochow University,

Suzhou. He got his Ph.D. and M.S. de-

grees in computer science from the Swin-

burne University of Technology, Victo-

ria, and the University of Queensland,

Brisbane, in 2011 and 2006 respectively.

Before joining Soochow University in 2013, he worked as

an assistant professor in the Institute of Software, Chinese

Academy of Sciences, Beijing. His research interests mainly

include spatio-temporal database systems, big data analy-

tics and workflow systems.

An Liu is a professor in the Depart-

ment of Computer Science and Techno-

logy at Soochow University, Suzhou. He

received his Ph.D. degree in computer

science from both City University of

Hong Kong (CityU), Hong Kong, and

University of Science and Technology

of China (USTC), Hefei, in 2009. His

research interests include spatial databases, crowdsourc-

ing, recommender systems, data security and privacy, and

cloud/service computing.

Zhi-Xu Li is an associate profes-

sor in the School of Computer Science

and Technology at Soochow University,

Suzhou. He worked as a research fel-

low at King Abdullah University of Sci-

ence and Technology, Thuwal. He re-

ceived his Ph.D. degree in computer sci-

ence from the University of Queensland,

Brisbane, in 2013, and his B.S. and M.S. degrees in com-

puter science from Renmin University of China, Beijing, in

2006 and 2009 respectively. His research interests include

data cleaning, big data applications, information extraction

and retrieval, machine learning, deep learning, knowledge

graph and crowdsourcing.

Hongzhi Yin received his Ph.D. de-

gree in computer science from Peking

University, Beijing, in 2014. His re-

search interests include recommender

system, user profiling, topic models,

deep learning, social media mining, and

location-based services. He has pub-

lished more than 30 papers in the most

prestigious journals and conferences such as SIGMOD,

KDD, VLDB, ICDE, the IEEE Transactions on Knowledge

and Data Engineering, the ACM Transactions on Informa-

tion Systems, the ACM Transactions on Intelligent Systems

and Technology, and the ACM Transactions on Knowledge

Discovery from Data. In addition, he has one monograph

published by Springer. He is an ARC DECRA Fellow with

the University of Queensland, Brisbane.

Lei Zhao is a professor in the School

of Computer Science and Technology at

Soochow University, Suzhou. He re-

ceived his Ph.D. degree in computer sci-

ence from Soochow University, Suzhou,

in 2006. His research focuses on graph

databases, social media analysis, query

outsourcing, parallel and distributed

computing. His recent research is to analyze large graph

database in an effective, efficient, and secure way.

