
Alqmase M, Alshayeb M, Ghouti L. Threshold extraction framework for software metrics. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 34(5): 1063–1078 Sept. 2019. DOI 10.1007/s11390-019-1960-6

Threshold Extraction Framework for Software Metrics

Mohammed Alqmase, Mohammad Alshayeb∗, and Lahouari Ghouti

Information and Computer Science Department, King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

E-mail: {g201531270, alshayeb, lahouari}@kfupm.edu.sa

Received October 13, 2018; revised March 23, 2019.

Abstract Software metrics are used to measure different attributes of software. To practically measure software attributes

using these metrics, metric thresholds are needed. Many researchers attempted to identify these thresholds based on personal

experiences. However, the resulted experience-based thresholds cannot be generalized due to the variability in personal

experiences and the subjectivity of opinions. The goal of this paper is to propose an automated clustering framework based

on the expectation maximization (EM) algorithm where clusters are generated using a simplified 3-metric set (LOC, LCOM,

and CBO). Given these clusters, different threshold levels for software metrics are systematically determined such that each

threshold reflects a specific level of software quality. The proposed framework comprises two major steps: the clustering

step where the software quality historical dataset is decomposed into a fixed set of clusters using the EM algorithm, and

the threshold extraction step where thresholds, specific to each software metric in the resulting clusters, are estimated using

statistical measures such as the mean (µ) and the standard deviation (σ) of each software metric in each cluster. The paper’s

findings highlight the capability of EM-based clustering, using a minimum metric set, to group software quality datasets

according to different quality levels.

Keywords metric threshold, expectation maximization, empirical study

1 Introduction

Software metrics are used to measure different cha-

racteristics of software. Metric thresholds are needed to

understand different levels of software quality. Thresh-

olds can be used in the software quality assessment

process[1]. They can also be used to detect bad smell

code[2]. As a result, many thresholds have been pro-

posed according to the personal experiences of subject

matter experts (SMEs)[3−6]. However, these thresh-

olds cannot be generalized due to the variability in

personal experiences and the subjectivity of opinions.

This variation may lead to different thresholds for the

same metric. The main challenge is to provide a

method for identifying thresholds systematically that

can be representative of the variety of software sys-

tems. For these reasons, many attempts have been

made in the literature to define scientifically sound

thresholds proportional to a specific level of quality for

widely used software metrics[1,7]. In these attempts,

statistical measures, such as the mean and standard

deviation of each software metric in each cluster, are

used to extract thresholds from software quality his-

torical data with the assumption that the metrics fol-

low a normal distribution[1,7]. However, some studies

show that many object-oriented metrics do not fol-

low a normal distribution; rather, some follow power

law distribution[8,9] and other metrics follow Pareto or

log-normal distributions[10]. To avoid the assumption

that metrics should be normally distributed, French[11]

used the same statistical measures (mean and standard

deviation) combined with Chebyshev’s inequality theo-

rem. Other attempts are also reported in the literature

where the historical data and extracted thresholds are

analyzed using machine learning (ML) and data mining

(DM) algorithms[12−14]. However, the existing methods

for threshold extraction are restricted by the maximum

number of thresholds associated with the quality levels

for any software metric. In most cases, the extracted

thresholds cannot exceed four bins.

Regular Paper
∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China



1064 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Defining multiple threshold levels can help to re-

duce the time and effort associated with refactoring

since it can help the designer to focus only on the worst

code. Sometimes, the designer needs to focus only on

the very critical parts of the code and limit the number

of redesign entities. It can help test engineers to dis-

tribute the load of testing effort efficiently where more

test cases can be applied on those that have a very high

risk. It is also useful for maintenance as it can help to

concentrate on the worst code and reduce the range of

maintenance as much as possible.

This paper proposes a solution to alleviate this re-

striction using a new clustering framework based on

well-established ML algorithms. The proposed clus-

tering algorithm, using the expectation maximization

(EM) algorithm[15], groups software quality historical

data into related clusters and derives quality thresh-

olds for a simplified metric set. The simplified metric

set, attributed to He et al.[16], consists of the LCOM,

CBO, and LOCmetrics only. This simplified metric set,

used to build defect prediction models, is constructively

exploited in our framework to split any software qua-

lity historical data into different clusters with variable

quality thresholds.

Clustering groups data objects into a variable num-

ber of clusters or classes according to a specific simi-

larity/distance measure[17]. Similar data objects are

assigned to the same cluster in two different ways:

1) hard assignments; 2) soft assignments. In the

former approach, commonly known as the K-means

algorithm[18], objects are assigned to one specific cluster

with a probability of 1. In the latter, soft assignments,

based on the EM algorithm, are carried out where each

data object is assigned to different clusters with varying

membership probabilities. In this way, the EM-based

clustering maximizes the overall likelihood assignment

by iterating through its two main steps of expectation

(E-step) and maximization (M-step) after which the

EM algorithm is named. In the E-step, data objects are

associated with an initial guess of the model parameters

where a probability distribution is created. Then, this

initial model is refined using a likelihood maximization

procedure in the M-step. The final clustering decisions

of the EM algorithm are obtained when the model dis-

tribution becomes stable and does not change anymore

between the E-step and the M-step[15,17,18].

Following approaches similar to the ones described

above, the proposed framework consists of two distinct

steps: 1) software quality historical data is first split

into different clusters where entities or classes with

similar characteristics are grouped in the same cluster;

2) for each software metric, thresholds are extracted

from each cluster using statistical measures including

the mean and the standard deviation. The proposed

framework is characterized by its flexibility to extract

any number of thresholds for the software metric consi-

dered where these thresholds are guaranteed to reflect

a specific level of quality. It is noteworthy to mention

the practical usefulness of these thresholds in assess-

ing software product quality. In addition, our proposed

framework is language-agnostic and based on object-

oriented (OO) characteristics and properties.

The benchmarking approach, adopted in our frame-

work, ensures a seamless integration with software pro-

duct quality tools as an assisting component and its ef-

fectiveness is highlighted through automation. In fact,

our framework is fully automated and deployed as a

web application which can be used in practice to extract

any number of thresholds associated with software qua-

lity levels. This web application is developed using the

Oracle Application Development Framework (Oracle-

ADF) in conjunction with the Weka machine learning

tool. The threshold extraction framework (TEFSW 1○)

can be used with any software metric that is correlated

with the software defect attribute as demonstrated by

the minimum set of metrics, commonly used to predict

defects (LOC, LOM, CBO)[16], used in our framework.

The remainder of this paper is organized as follows.

Section 2 discusses the work related to the identifica-

tion of metric thresholds. The research methodology is

discussed in Section 3. In Section 4, we introduce the

experiment planning and setup. Validation and ana-

lysis of the results are provided in Section 5. Finally,

Section 6 concludes the paper with suggested directions

for future work.

2 Literature Review

In this section, we review the work related to this re-

search and survey different approaches and techniques

to derive, identify and validate metric thresholds.

2.1 Experience-Based Threshold

Many software engineering experts define metric

thresholds depending on their personal experiences.

For example, McCabe[3] proposed the McCabe metric

as a complexity measurement which counts the num-

ber of possible execution paths, and a threshold value

1○TEFSW. http://www.qumasi.com/TEFSW/, May 2019.



Mohammed Alqmase et al.: Threshold Extraction Framework for Software Metrics 1065

of 10 was suggested. In [4], Nejmeh proposed the

NPATH metric to measure software complexity using

the number of possible execution paths. Similar to

McCabe, a threshold value of 200 is recommended by

Nejmeh. Henderson-Sellers[5] quantified thresholds as-

sociated with software metrics to classify classes into

safe, flag, and alarm categories. A 3-range threshold,

attributed to Coleman et al.[6], is assigned to the main-

tainability index (MI) metric. In Coleman et al.’s multi-

valued threshold study, a threshold value smaller than

65 is assigned to software products which are difficult to

maintain. Moderately maintainable software products

are associated with threshold values 65 and 85. Thresh-

old values higher than 85 are used to represent highly

maintainable software products. The thresholds pro-

posed in [3] are based on personal experiences and may

be affected by subjective opinions, which limits their

generalization capability to other software metrics and

thresholds associated with varying quality levels.

2.2 Statistics-Based Threshold

Other existing solutions are based on software met-

rics and data analysis to derive thresholds in which the

mean and standard deviation measures are employed

to extract thresholds from project data[1,7] with the

assumption that the metric values are normally dis-

tributed. The mean and the standard deviation us-

ing Chebyshev’s inequality theorem are used to avoid

the normality assumption in the data[11]. However,

this approach is sensitive to a large number of outliers.

Chidamber and Kemerer used histograms to character-

ize and analyze data to identify the metric distribu-

tion and outliers[19]. Vale and Figueiredo proposed an-

other method that derives thresholds in software pro-

duct line context using a benchmark of 33 SPLs 2○[20].

This method was assessed using recall and precision

and two code smells (God Class and Lazy Class) de-

tection strategies were used[20]. However, these meth-

ods do not show how we can guarantee that the pro-

posed thresholds reflect a specific level of quality. In

addition, these approaches do not have the flexibility

of generating any number of thresholds for each met-

ric in which each threshold reflects a specific level of

quality. Furthermore, these approaches do not provide

a clear roadmap on how the findings can be applied

in practice for software quality assessments. The pro-

posed approach tends to be flexible enough to generate

any number of thresholds for each metric in which each

threshold reflects a specific level of quality.

2.3 Metric-Defect Correlation Threshold

Some studies identify thresholds by examining the

correlation between defects and metrics. Benlarbi et

al.[21] investigated the relation between metric thresh-

olds and software failures for a subset of Chidamber

and Kemerer (C&K)[19] metrics using linear regression.

They evaluated the effect of the threshold to detect

faults that lead to failures. Their results show that

there is no threshold effect. Emam et al.[22] also showed

that there is no empirical evidence for the threshold of

class size to predict faults. However, these results are

based on specific metrics and specific defect prediction

models that the authors used. Other models and met-

rics might give different outcomes. Shatnawi et al.[12]

conducted an empirical study to identify threshold val-

ues using receiver operating characteristic (ROC)curve

analysis which finds the relation between metrics and

errors in the Eclipse system. They performed an experi-

ment using C&K metrics[19] and applied the technique

to three releases of Eclipse. They conducted statisti-

cal analysis to find specific metric values that could

classify the Eclipse modules (classes) into four different

error categories (no error, low-impact error, medium-

impact error, and high-impact error). After identifying

the threshold values using ROC analysis, they were val-

idated by the classification performance of ROC. As a

result, the study identified useful threshold values for

the ordinal category. However, for the binary category,

the study could not obtain practical and useful thresh-

old values.

Since the information on defects cannot be easily

collected and sometimes is not available, we use a mini-

mum set of metrics that is correlated with defects as

proposed by He et al.[16] These metrics can be collected

and calculated automatically. We use the defect infor-

mation in our approach only for validation. Therefore,

the proposed method is applicable and can be extended

to extract thresholds for a wide range of metrics that

have a correlation with defects.

In comparison with the existing work, the proposed

approach is different in many aspects.

1) It is flexible enough to generate any number of

thresholds for each metric in which each threshold re-

flects a specific level of quality. In contrast, existing ap-

proaches extract either one or a fixed number of thresh-

old levels for each metric.

2○http://labsoft.dcc.ufmg.br/doku.php?id=%20about:spl list, May 2019.



1066 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

2) Since defect information is not easily available,

our approach uses a minimum set of metrics that is

correlated with defects instead of directly using the de-

fect information. This ensures the flexibility of the pro-

posed approach in clustering the dataset from different

perspectives (LOC, LOM, and CBO). Using defect in-

formation directly restricts the use of the extraction

method to only datasets that have defect information.

3) Our approach allows the use of other dependent

variables to build the EM cluster model, and the pro-

posed approach is not static to the three metrics that

are used in this paper. This will open the door for

future research to select and use other metrics.

4) Our approach provides evidence that clustering

using the EM algorithm can be used to group a software

dataset into different levels of quality.

5) We build online and available web tools that al-

low thresholds to be extracted using another dataset

and provide an easy and simple way to analyze and

explore the extracted thresholds.

6) The framework and the tool can be used to ex-

tract thresholds for all metrics that are related to the

defect under the research constraint.

3 Research Methodology

To use software metrics in practice for software qua-

lity assessment, we need to derive different thresholds

for different levels of quality for each metric, which al-

lows the evaluator to evaluate the software and rank it

into ordinal categorization. The main reason for cat-

egorizing the datasets into different levels (categories)

is to differentiate high-risk (error-prone) classes from

low-risk (error-prone) classes. Therefore, the data that

will be used to extract the threshold should be qualified

first into different levels of quality as needed. Thus, en-

tities with a high level of quality should be in the same

cluster and entities with low quality should be in the

same cluster. As a result, any threshold extracted from

the cluster of high-quality entities will reflect a high

level of quality. To achieve this goal, we use defect den-

sity as a standard measure of software quality to help

cluster the data and then use the appropriate method

to extract the threshold from each cluster. However,

the main obstacle of using defect density as a standard

measure of software quality is the difficulty in finding

sufficient information about defects. To address this

challenge and instead of using the number of defects as

a main attribute to cluster and classify the entities or

the data, we use metrics that have a high correlation

with defects, thereby the clustering algorithm can clus-

ter the data depending on these metrics. This leads to

another challenge that is what the simple set of metrics

that can identify defect density to cluster the data are.

We use the minimum set of metrics proposed by He

el al.[16] that can predict defected components. These

metrics are LOC, LCOM and CBO.

The framework we propose uses machine-learning

techniques and a minimum metric set (LOC, LCOM,

and CBO) to identify different clusters. This method-

ology to define the framework has three steps as shown

in Fig.1.

Step 1. This step is adopted from [16], in which the

authors used the CfsSubsetEval evaluator and GreedyS-

tepwise search algorithm inWeka to select features from

the original datasets automatically. Their findings help

us in our context to cluster the data into different lev-

els of quality using their suggested minimum metric set

(CBO, LCOM, AND LOC) as shown in step 1 of Fig.1.

The output of this step in our experiment is the mini-

mum set of metrics (CBO, LCOM, AND LOC) sug-

gested by [16]. These three metrics can be used by

the EM clustering algorithm to cluster the dataset into

different clusters where each cluster reflects a specific

level of quality, as shown in step 2.

Step 2. In this step, we use the EM clustering algo-

rithm which assigns a probability distribution to each

observation. Cross-validation can be used to decide how

many clusters to generate or to specify how many clus-

ters to create. We find this algorithm appropriate for

the intended outcome and our results show that this al-

gorithm successfully predicts different quality clusters

where each cluster has classes or entities with the same

characteristics. The EM clustering algorithm uses the

minimum metric set that was selected by the first step

to predict defect-prone classes as shown in step 1 of

Fig.1.

The input of the EM clustering algorithm is the

dataset of open source projects. The proposed ap-

proach is based on OO characteristics, which means it

is entity-based but not project-based. Therefore, each

instance in the dataset contains information about each

class, component or entity. This information includes

these three metrics (LOC, LCOM, and CBO) and in-

formation about the other metrics whose thresholds we

want to extract. The EM clustering algorithm will take

the dataset and cluster it into different clusters using

the minimum metric set (LOC, LCOM, and CBO). The

output of step 2 is different clusters where each clus-

ter contains many instances and each instance contains



Mohammed Alqmase et al.: Threshold Extraction Framework for Software Metrics 1067

Step 1

Step 2

Step 3
Highest-Level

Quality Threshold

Lowest-Level

Quality Threshold

Threshold

Extraction

Method

Cluster A
Cluster A Threshold A

Threshold B

Threshold C

Threshold ϑ

Cluster B
Cluster B

Cluster C

Cluster C

Cluster ϑ

Cluster ϑ

Selected

Metrics
Selected

Metrics

Output of

Step 1

Output of

Step 2

Output of

Step 3

EM Clustering Algorithm

Feature Selection

Dataset

Dataset

.
.

.

.
.

.

Fig.1. Architecture for the threshold extraction framework for software metrics.

information about a specific entity or class. In other

words, the output should cluster the dataset into diffe-

rent clusters where the data of each cluster reflects a

specific level of quality. As a result, any threshold that

is extracted from any cluster will reflect the cluster’s

level of quality. Note the flexibility of generating any

number of thresholds by specifying the number of clus-

ters where each threshold represents the quality of each

cluster. Different methods can be used to establish the

appropriate number of clusters, such as cluster-elbow.

This proposed framework is designed to be flexible so

that users can select their desired number of clusters

based on their experience or use other methods such as

cluster-elbow.

Step 3. After clustering the dataset into different

clusters successfully, the threshold can be extracted

from each cluster using any preferable method. We

use the mean and standard deviation as a method to

extract the threshold from each cluster. However, any

other method can be used to do this. Step 3 of Fig.1

shows how the thresholds are extracted from each clus-

ter using the mean and standard deviation.

The input of step 3 is the clusters that are generated

by the EM algorithm in step 2. In this step, the mean

is calculated for each metric of each cluster in which

the value of the mean of each metric in each cluster

is the threshold of that metric in that cluster. There-

fore, the output of this step is the thresholds of each

metric in each cluster. For example, if we need to gene-

rate five thresholds for each metric, we need to cluster

the dataset into five clusters and then we extract the

threshold of each metric from each cluster using the

mean method or any other method. The EM algorithm

allows the number of clusters that we want to generate

to be specified.

4 Experiment Planning

The goal of this study is to validate the feasibility

of using machine learning techniques and the EM clus-

tering algorithm using a simplified metric set to derive

different threshold levels of software metrics systemati-

cally, in which each threshold reflects a specific level of

quality.

4.1 Research Hypothesis

Because of the clustering concern with grouping in-

stances that are similar to each other[15,17,18], we as-

sume that the EM clustering algorithm will group the

instances that have characteristics of high risks into the

same cluster. While we can cluster the dataset into

many clusters, we assume that each cluster contains in-

stances with a specific level of risk, which result in the

extraction of different threshold levels.

To validate this assumption, we define the following

research question.

RQ. Do the metric thresholds derived from the

datasets clustered using the EM clustering algorithm

built with a minimum metric set (LOC, LCOM, and

CBO) reflect a specific level of quality where the defect

is used as the quality measure?



1068 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

To answer the research question, we define the fol-

lowing hypothesis.

H1. If the EM clustering algorithm is built with a

simplified metric set (LOC, LCOM, and CBO), then

the derived thresholds from each cluster reflect a spe-

cific level of quality for all metrics that are correlated

with the defect.

H0. If the EM clustering algorithm is built with a

simplified metric set (LOC, LCOM, and CBO), then

the derived thresholds from each cluster do not reflect

a specific level of quality for all metrics that are corre-

lated with the defect.

4.2 Research Variables

Twenty-one static code metrics are used in this re-

search. All these metrics are used after clustering the

datasets to extract three threshold levels for each met-

ric. These metrics are listed in Table 1 and their de-

scription is given in [23]. The metrics of the selected

minimum set (LOC, LCOM, and CBO) are used as de-

pendent variables and will be used to build the cluster-

ing model as shown in Fig.2.

As a result, the thresholds for the other variables

will be extracted after the EM clustering algorithm is

built with the three dependent variables to cluster the

data into different clusters.

4.3 Dataset

We use a dataset of 16 open-source Java-based

projects. The projects include more than 6 500 classes

and 1 903267 lines of code. The descriptive statistics of

the projects are shown in Table 2. #instances/classes,

#LOC, #buggy instances, % of buggy instances and

#defects are the number of instances or classes, the

number of lines of code, the number of buggy instances,

the percentage of buggy instances and the number of

defects respectively. Each instance represents a class

file that contains 20 static code metrics (e.g., CBO,

WMC, RFC, LCOM) which present all the variables

involved in our study. We adjust the dataset by adding

a new attribute. We transform the defect proneness at-

tribute into two different classes (bug and no bug). This

leads to the binary classification problem where only bi-

nary labels are required. Therefore, we transform the

label values into 0 and 1, where a label of 1 represents

data instances with one or more bugs. All the datasets

were collected by Jureczko and Madeyski[24], and Ju-

reczko and Spinellis[25] using BugInfo and Ckjm tools.

Table 1. 21 Static Code Metrics

Metric Suite (Number of Metrics) Metric Acronym Metric Full Name

CK suite (6) WMC Weighted method per class

DIT Depth of inheritance tree

LCOM Lack of cohesion in methods

RFC Response for a class

CBO Coupling between object classes

NOC Number of children

Martins metrics (2) CA Afferent couplings

CE Efferent couplings

QMOOM suite (5) DAM Data access metric

NPM Number of public methods

MFA Measure of functional abstraction

CAM Cohesion among methods

MOA Measure of aggregation

Extended CK suite (4) IC Inheritance coupling

CBM Coupling between methods

AMC Average method complexity

LCOM3 Normalized version of LCOM

McCabe’s CC (2) AVG CC Mean values of methods within the same class

MAX CC Maximum values of methods in the same class

Others (2) LOC Lines of code

BUG Non-buggy or buggy



Mohammed Alqmase et al.: Threshold Extraction Framework for Software Metrics 1069

Ckjm 3○ is used to collect static code metrics 4○ while

BugInfo, a method commonly used in many other re-

search studies[16,24,25], is used for defect information;

however, unfortunately, the URL of the tool is no longer

accessible. The dataset used in this paper can be found

in the PROMISE repository 5○, a repository for software

engineering research datasets. The dataset was pub-

licly available during the data collection in this study

and was used by Jureczko et al.[24,25]

EM Clustering

Algorithm

LOC

LCOM

CBO

Dependent

Variables

Fig.2. Selected dependent variables.

Table 2. Details of the 16 Java Open-Source Projects

No. Project #Instances/Classes #LOC #Buggy Instances % of Buggy Instances #Defects

1 Ant-1.7 745 208 653 166 22.3 338

2 Camel-1.6 965 113 055 188 19.5 500

3 Ivy-2.0 352 87 796 40 11.4 56

4 Jedit-4.3 492 202 363 11 2.2 12

5 Lucene-2.4 340 102 859 203 59.7 632

6 Poi-3.0 442 129 327 281 63.6 500

7 Synapse-1.2 256 53 500 86 33.6 145

8 Velocity-1.6 229 57 012 78 34.1 190

9 Xalan-2.6 885 411 737 411 46.4 1 213

10 Xerces-1.4 588 141 180 437 74.3 1 596

11 Tomcat-6.0.3 895 300 674 77 8.6 114

12 log4j-1.2 206 38 191 180 87.4 498

13 forrest-0.8 32 6 540 2 6.3 6

14 e-learning-1.0 64 3 639 5 7.8 9

15 Berek-1.0 43 32 320 16 37.2 70

16 Zuzel-1.0 29 14 421 13 44.8 22

5 Validation and Analysis

In this section, we validate the feasibility of using

machine learning techniques and the EM clustering al-

gorithm to derive different thresholds of software met-

rics.

5.1 Descriptive Statistics

Tables 3–9 summarize the estimated statistics in-

cluding the mean, median, standard deviation, maxi-

mum, minimum, skewness and kurtosis for each metric

in each cluster, respectively. First, the mean and me-

dian measures are given in Table 3 and Table 4 where

we characterize the central tendency of the data being

used. The standard deviation measure, reported in Ta-

ble 5, provides a description of the dispersion in the

data. Table 6 and Table 7 give a summary of the dy-

namic range for each metric using the maximum and

the minimum measures respectively. Finally, we cal-

culate the skewness and the kurtosis that measure the

degree of asymmetry and peakedness or flatness of the

distribution as shown in Table 8 and Table 9, respec-

tively. The size of each cluster is represented in Fig.3.

Table 3. Mean Measure for Each Metric in Each Cluster with 3-Level Threshold

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 62.8 4.9 2.2 3.9 11.0 2.0 2.1 0.5

Cluster 3 2 302.6 10.7 47.4 12.0 34.1 4.6 4.9 1.0

Cluster 1 3 1 340.2 36.0 931.5 39.2 93.8 23.9 11.3 2.4

3○http://www.spinellis.gr/sw/ckjm/, May 2019.
4○http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/metric.html, May 2019.
5○http://promise.site.uottawa.ca/SERepository/, July 2019.



1070 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Table 4. Median Measure for Each Metric in Each Cluster with 3-Level Treshold

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 39.0 4.0 1.0 3.0 8.0 1.0 1.0 0.0

Cluster 3 2 232.0 9.0 27.0 11.0 29.0 2.0 3.0 0.0

Cluster 1 3 943.0 23.0 374.0 33.0 79.0 6.0 6.0 1.0

Table 5. Standard Deviation Measure for Each Metric in Each Cluster with 3-Level Treshold

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 65.1 3.5 2.8 3.0 9.2 2.5 2.5 1.0

Cluster 3 2 272.0 8.4 55.0 6.8 23.2 6.8 6.4 1.7

Cluster 1 3 1 466.0 46.4 2 494.5 31.5 74.5 45.9 17.8 5.2

Table 6. Maximum Measure for Each Metric in Each Cluster with 3-Level Treshold

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 283.0 17.0 12.0 39.0 78.0 17.0 22.0 17.0

Cluster 3 2 1 383.0 45.0 276.0 83.0 178.0 44.0 85.0 24.0

Cluster 1 3 13 175.0 499.0 41 713.0 351.0 540.0 498.0 209.0 62.0

Table 7. Minimum Measure for Each Metric in Each Cluster with 3-Level Treshold

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cluster 3 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cluster 1 3 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0

Table 8. Skewness Measure for Each Metric in Each Cluster with 3-Level Treshold

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 1.2 0.8 1.4 3.4 1.3 2.3 3.0 4.8

Cluster 3 2 1.4 1.2 1.7 1.9 1.3 2.7 4.2 4.4

Cluster 1 3 3.1 4.5 10.1 3.3 2.0 4.8 5.5 5.3

Table 9. Kurtosis Measure for Each Metric in Each Cluster with 3-Level Treshold

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 3.7 3.2 4.0 27.7 5.7 9.3 14.3 45.9

Cluster 3 2 4.9 4.2 5.5 12.3 5.2 10.9 33.0 35.5

Cluster 1 3 18.7 34.4 138.9 24.6 9.4 37.7 46.8 42.3

12.85%

2.963%

25.46%

32.44%

26.27%

Cluster 2

Cluster 5

Cluster 4

Cluster 1

Cluster 3

Fig.3. Cluster size.

5.2 Validation Using Statistical Analysis

Several studies investigated the relationship be-

tween lines of code (LOC) and defects[26,27]. Their re-

sults show that the relationship between them is linear.

Since our dataset has information about defects (BUG)

and LOC, we can use them to validate that each clus-

ter reflects a specific level of quality. We use defects

to measure software quality and the LOC as a clus-

ter level indicator. The information about each clus-

ter is sorted increasingly using LOC as shown in Table

10 and Table 11. Table 10 shows three cluster models

and Table 11 shows five cluster models (the details of

the 5-level thresholds are shown in Appendix). Both

tables contain the mean for each cluster for LOC and

BUG as thresholds. Table 10 and Table 11 demonstrate

the linear relationship between LOC and BUG for each

cluster. Maintaining this relationship means that each

cluster represents a specific level of quality. Therefore,

the confusion matrix can be constructed using the fol-



Mohammed Alqmase et al.: Threshold Extraction Framework for Software Metrics 1071

lowing information.

For each generated cluster:

• if the current cluster has a lower value than the

previous cluster in both BUG and LOC attributes, then

add 1 into the true positive (TP);

• if the current cluster does not have a lower value

than the previous cluster in both BUG and LOC at-

tributes, then add 1 into the false positive (FP);

• if the current cluster has a higher value than the

next cluster in both the BUG and the LOC attributes,

then add 1 into the true negative (TN);

• if the current cluster does not have a higher value

than the next cluster in both BUG and LOC attributes,

then add 1 into the false negative (FN).

Table 10. 3-Level Clustering Result for

LOC Metric and Bug Measure

Cluster Threshold LOC BUG

Cluster 2 1 62.8 0.5

Cluster 3 2 302.6 1.0

Cluster 1 3 1 340.2 2.4

Table 11. 5-Level Clustering Result for

LOC Metric and Bug Measure

Cluster Threshold LOC BUG

Cluster 5 1 22.3 0.4

Cluster 1 2 119.5 0.7

Cluster 3 3 283.8 0.9

Cluster 4 4 768.0 1.7

Cluster 2 5 2 359.9 3.6

Table 10 shows the clustering result for LOC and

BUG, where each cluster represents a specific level of

quality from the defect perspective. We choose LOC

to relate with defect density to examine the relation

between them. Maintaining the correlation between

them means that the clustering algorithm is successful

in clustering the dataset into different levels of quality.

After calculating the mean and the standard deviation

for both, the mean of all clusters demonstrates a line

correlation. For example, the mean of cluster 3 has the

lowest value for both LOC and BUG while the mean

of cluster 2 has the highest values for both compared

with the other clusters. This confirms that the EM

clustering algorithm has the ability to group the high-

level risk entities in the same cluster (e.g., cluster 2),

the low-level risk entities in cluster 3, and the others in

between.

In Table 12, we compare each cluster with two other

clusters, the previous and the next cluster. Since we

have three clusters, each cluster is compared twice, once

with the next cluster and once with the previous clus-

ter, except for the first and last clusters which are com-

pared only once. Table 12 illustrates the results of this

comparison.

Table 12. Confusion Matrix

Comparing Each Cluster Lower Value Higher Value

with Adjacent Cluster of Defects of Defects

Lower value of LOC TP (2) FN (0)

compared with the next

Higher value of LOC FP (0) TN (2)

compared with the previous

To evaluate and validate the effectiveness of the de-

rived thresholds, a statistical and a comparative ana-

lysis are performed. For the statistical analysis, preci-

sion, recall and F1 score (F1) measures are computed.

These measures are usually used to assess the accuracy

and validate the thresholds derived from clustering the

datasets. These thresholds, based on the EM cluster-

ing algorithm, reflect a specific level of quality. In our

case, the obtained result is significant, which confirms

the research questions and the hypothesis.

Precision =
TP

TP + FP
=

2

2 + 0
= 1,

Recall =
TP

TP + FN
=

2

2 + 0
= 1,

F1 =
2× Precision×Recall

Precision+Recall
=

2× 1× 1

1 + 1
= 1.

In the next equation, we use the correlation coeffi-

cient (also called Pearson’s product moment coefficient)

for correlation analysis.

rA,b =

∑n
i=1(ai − µA)(bi − µB)

(ai − µB)σAσB

= 0.996,

where n is the number of clusters (as tuples), and µA

and µB are the respective means of A (LOC) and B

(Bug) respectively, σA and σB are the respective stan-

dard deviation of A and B respectively. The attribute

LOC used in Table 10 is considered as A in the above

equation while the attribute BUG is considered as B.

In order to assess whether a given correlation is sta-

tistically significant, we use the p-value. We obtain the

p-value using the regression procedure in the data ana-

lysis ToolPak in Excel.

The correlation P -value in Table 10 for three clus-

ters is 0.05 and the correlation P -value in Table 11 for

five clusters is 0.000 28. This shows that the correlation

is statistically significant, especially in Table 11.



1072 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

As we see, the result shows a strong correlation

which gives further evidence that the clustering algo-

rithm used is appropriate for extracting different level

thresholds in which each threshold reflects the specific

level of quality. For clustering quality measures, Ta-

ble 13 outlines the clustering quality using the purity

and F1 score measures.

purityi =
1

ni

maxkj=1{nij},

purity =

r∑

i=1

ni

n
purityi = 0.621.

The F1 score usedto measure the clustering quality

is defined as follows:

Fi =
2× niji

ni +mji

,

F1 =
1

r

r∑

i=1

Fi = 0.434.

From Table 13, we observe that the highest-quality

threshold 1 and the lowest quality threshold 3 have the

highest purity (0.70) and (0.61) respectively. On the

other hand, threshold 2 which has a moderate quality

level, has the lowest purity. In the highest-quality clus-

ter (threshold 1), most of the data points are unbuggy;

thus, purity is high from this perspective. For the

lowest-quality cluster (threshold 3), most of the data

points are buggy; thus, purity is high from this per-

spective. For the in-between clusters, purity decreases

from both sides. This result confirms the hypothesis

and gives further evidence that the clustering algorithm

used is appropriate for extracting different level thresh-

olds in which each threshold reflects a specific level of

quality.

In Subsection 5.3, we further validate the signifi-

cance of our findings by comparing the obtained results

with the method proposed by Ferreira et al.[28]

5.3 Validation Using Comparison Analysis

In this subsection, we compare the thresholds ex-

tracted by the proposed method with the thresholds

derived by the method proposed by Ferreira et al.[28]

The comparison process has four steps. 1) The val-

ues of each metric are collected for every system and

grouped into a unique file. 2) A weight ratio function is

computed for each value and each value with its weight

becomes unique. 3) The values are sorted in ascending

order and the values of entities are then aggregated. 4)

We select two thresholds (the range of the labels) that

define three different labels called good, regular, and

bad, respectively.

To conduct a fair comparison, we need to satisfy the

following criteria.

•We must derive the thresholds for both approaches

using the same dataset. We implement Ferreira et al.’s

method[28] using the TDTool tool. Then, we derive the

thresholds using the same dataset. Table 14 shows the

thresholds derived using our proposed method and Ta-

ble 15 demonstrates the thresholds extracted using Fer-

reira et al.’s method on the same dataset. The TDTool

implements four methods: Alves et al.’s method[29],

Ferreira et al.’s method[28], Oliveira et al.’s method[30]

and the method of Vale and Figueiredo[20]. The imple-

mentation is done by Veado et al.[31] and is available

online.

• The number of levels must be the same. Ferreira

et al.’s method extracts two-level thresholds to generate

three categories (good, regular and bad). Therefore, we

cluster the dataset using the proposed method into only

two clusters. Ferreira et al.’s method has three cate-

gories (good, regular and bad), as shown in Table 15

and the proposed method represents two clusters (two

levels) (cluster 2 as level 1 and cluster 1 as level 2), as

shown in Table 14 and Table 16.

• The size of each level must be the same. The size

of each cluster must be the same when using Ferreira et

Table 13. Clustering Quality Measures Using Purity and F1 Score with 3-Level Treshold

Threshold Cluster #Buggy Data Points #Unbuggy Data Points Count Max Purity F1 Score

1 Cluster 2 1 000 2 321 3 321 2 321 0.698 886 0.628 401 245

2 Cluster 3 1 309 1 483 2 792 1 483 0.531 160 0.432 487 606

3 Cluster 1 408 262 670 408 0.608 955 0.240 921 169

Total 2 717 4 066 6 783 4 212 0.620 964 0.433 936 673

Table 14. Two Thresholds Extracted Using the Proposed Method

Cluster Size (%) Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 75.76 1 113.1 6.4 9.2 5.8 16.5 2.6 2.7 0.6

Cluster 1 24.23 2 833.3 22.9 435.9 26.1 66.7 13.4 8.6 1.7



Mohammed Alqmase et al.: Threshold Extraction Framework for Software Metrics 1073

Table 15. Two-Level Thresholds Extracted Using the Method Proposed by Ferreira et al.[28]

Label Rang Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Good 0–49 1 < 101 < 6 < 5 < 6 < 17 < 2 < 2 < 0

Regular 49–90 2 101–699 6–21 5–154 6–23 17–66 2–10 2–10 0–2

Bad 90–100 3 > 699 > 21 >154 > 23 > 66 > 10 > 10 > 2

Table 16. Two-Level Thresholds Extracted Using Our Method to Get Three Groups

Label Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Good 1 < 113 < 6 < 9 < 6 < 17 < 3 < 3 < 1

Regular 2 113–833 6–23 9–435 6–26 17–67 3–13 3–9 1–2

Bad 3 > 833 > 23 > 435 > 26 > 67 > 13 > 9 >2

al.’s method when clustering the data into three clus-

ters as in our proposed method (as shown in Fig.4).

The second column in Table 15 illustrates the size of

each level for each method.

9.877%

48.96%

41.16%

Cluster 2

Cluster 3

Cluster 1

Fig.4. Size of clusters in the proposed method.

Table 15 and Table 16 summarize the results of

extracting two-level thresholds of both methods with

three categories of quality for both.

After conducting the comparison, we find that the

thresholds extracted by our method are within the

range of Ferreira et al.’s method[28]. They are close

in the range for each category. The gap between both

methods is small. For example, the first threshold

(threshold level 1) for the metric LOC which represents

a very high quality is 113 in Table 16 is close to the

threshold level 1 (101) of Ferreira et al.’s method[28], as

shown in Table 15. The threshold level 2 for LOC in

our method is 833 whereas the threshold level 2 in Fer-

reira et al.’s method is 699 and so on. Therefore, each

metric in each level threshold extracted by our method

is close to the range of the thresholds derived by Fer-

reira et al.’s method except for the thresholds of level

2 for the metric LCOM, which is more when using our

approach. The key advantage of the proposed approach

compared with Ferreira et al.’s method[28] is that the

proposed approach has the flexibility to generate one

or more thresholds while Ferreira et al.’s method is re-

stricted to two thresholds to identify three categories

(good, regular and bad). Identifying more than one

threshold can help in categorizing software entities into

several risk levels. If one threshold helps in differenti-

ating high-risk classes from low-risk classes, then more

than one threshold can help in distinguishing different

risk levels, as shown in [7, 20, 29]. This would help in

many software areas, for example, it can help to reduce

the time and effort of refactoring and bad smell detec-

tion as it allows the designer to focus only on the worst

code to limit the number of redesign entities. In testing,

it can help to distribute the load of testing effort effi-

ciently where more test cases can be applied on those

parts that have higher risks. In maintenance, it can

help to concentrate on the worst code and reduce main-

tenance effort. In our future work, we plan to conduct

experiments to show how we can use different threshold

levels to propose a software quality assessment model

that assesses and evaluates software projects and ranks

them to specific quality levels. The proposed method

will be implicitly used as a quality measure to rank the

software project into different levels of quality.

The result of the comparison illustrates the signifi-

cance of our findings and is the evidence that the metric

thresholds derived from the datasets clustered using the

EM clustering algorithm, reflect a specific level of qua-

lity and provides further evidence to accept the research

hypothesis.

5.4 Tool Support

We implemented a web application tool using Ora-

cle ADF integrated with Weka. Fig.5 shows the main

page of the tool. The tool simplifies the extraction of

thresholds for any software metric. It provides a visua-

lization tab to visualize and analyze the thresholds. It

has been deployed and hosted in the site 6○.

6○TEFSW. http://www.qumasi.com/TEFSW/, May 2019.



1074 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Fig.5. Main page of the implemented tool.

5.5 Threats to Validity

While we obtain significant results to answer the

research question, there are potential threats that may

affect the validity of this work. Threats to construct

validity concern the relationship between theory and

observation. These threats are primarily related to

the static code metrics and the tool used to extract

the metrics. There are many tools to extract software

metrics, but each tool might calculate specific met-

rics differently and produce different values for specific

metrics[32]. This might lead to different threshold val-

ues for specific metrics. In this research, all the datasets

were collected by Jureczko and Madeyski[24], and Ju-

reczko and Spinellis[25] using Ckjm and BugInfotools.

Ckjm 7○ is used to collect static code metrics while Bug-

Info is used to identify defects and can be found in the

PROMISE repository 8○.

For threats to internal validity, we cluster the

dataset using the EM clustering algorithm built with

the simplest metric set (LOC, LCOM, and CBO).

Building the EM clustering algorithm using other fea-

tures might not give the same result. However, we

adopt these metrics as they were proposed by He et

al.[16] using selection feature techniques. This means

that the metric set may depend on the dataset. How-

ever, we use the same dataset that was used by He et

al. to select these three metrics. In this stage, our work

may be considered as a foundation that opens the door

for future research.

A threat to external validity concerns the dataset

used by the proposed approach. It contains only Java

open-source projects; other languages might exhibit

different results. Another possible threat to external

validity concerns the tool that implements our approach

to extract thresholds easily. We develop a web applica-

tion to extract thresholds easily, but maybe with some

errors. However, we perform extensive testing, imple-

ment the clustering models in Weka and integrate them

with the tool.

6 Conclusions

Many software metrics have been proposed to mea-

sure different attributes of the software. For these met-

rics to be effectively used to measure and improve soft-

ware quality, metric thresholds should be identified.

These threshold values can guide the assignment of soft-

7○http://www.spinellis.gr/sw/ckjm/, May 2019.
8○All software datasets along with description are available at http://openscience.us/repo/, May 2019.



Mohammed Alqmase et al.: Threshold Extraction Framework for Software Metrics 1075

ware quality to a variable set of quality levels (such

as good, regular, and bad levels). In this paper, we

proposed a machine learning based framework to ex-

tract any number of thresholds associated with varying

quality levels. The proposed framework relies on a ro-

bust clustering scheme derived using the expectation-

maximization (EM) algorithm. First, this framework

selects a minimum metric set, commonly used in defect

prediction models, to assign historical software quality

datasets to different clusters. Each cluster consists of

entities or classes with similar characteristics. Then, for

each metric, thresholds are extracted from each cluster

using statistical measures based on the mean, standard

deviation, median or mode of each software metric in

each cluster. The resulting clusters are characterized

with different threshold levels for the metrics in a sys-

tematic fashion. Each extracted threshold reflects a

specific software quality level. To assess the perfor-

mance of the proposed framework, historical datasets,

consisting of 16 open-source Java-based projects with

more than 6 500 classes and 1 903267 lines of code,

were used. Based on the results reported in this pa-

per, the EM-based clustering algorithm, built with the

minimum metric set (LOC, LCOM, and CBO), can

cluster historical software quality datasets into diffe-

rent levels of quality from the perspective of defects as

a quality measure. Each cluster is characterized with

the extracted thresholds associated with a specific qua-

lity level. To evaluate and validate the effectiveness

of the derived thresholds, statistical and comparative

analysis was performed. Performance in the statistical

analysis is based on precision, recall, F -measure, and

p-value. Our proposed framework attained values of 1

for the first three measures and 0.000 2 for the p-value

on five clusters. In addition, the thresholds extracted

by our framework are well aligned and in agreement

with those proposed in the literature as reported in the

comparative analysis study carried out in this paper.

Furthermore, the proposed framework, unlike existing

ones, can extract a variable number of threshold levels,

which provides more flexibility and makes this frame-

work more appropriate for practical software quality

assessment tools and products.

In future research, we aim to find a minimum met-

ric set for other external attributes, such as perfor-

mance, reliability and security. In addition, we will

adapt/adjust/alter our framework to generate thresh-

olds of metrics that are not correlated with defects.

Moreover, we will conduct repeated research with other

datasets, other subsets of metrics and other clustering

algorithms.

Acknowledgement The authors acknowledge the

support of King Fahd University of Petroleum and Min-

erals in the development of this work.

References

[1] Erni K, Lewerentz C. Applying design metrics to object-

oriented frameworks. In Proc. the 3rd IEEE International

Software Metrics Symposium, March 1996, pp.64-74.

[2] Ab́ılio R, Padilha J, Figueiredo E, Costa H. Detecting code

smells in software product lines — An exploratory study.

In Proc. the 12th International Conference on Information

Technology — New Generations, April 2015, pp.433-438.

[3] McCabe T J. A complexity measure. IEEE Transactions

on Software Engineering, 1976, SE-2(4): 308-320.

[4] Nejmeh B A. NPATH: A measure of execution path comple-

xity and its applications. Commun. ACM, 1988, 31(2): 188-

200.

[5] Henderson-Sellers B. Object-Oriented Metrics: Measures of

Complexity. Prentice Hall, 1995.

[6] Coleman D, Lowther B, Oman P. The application of soft-

ware maintainability models in industrial software systems.

Journal of Systems and Software, 1995, 29(1): 3-16.

[7] Lanza M, Marinescu R. Object-Oriented Metrics in Prac-

tice: Using Software Metrics to Characterize, Evaluate, and

Improve the Design of Object-Oriented Systems. Springer,

2006.

[8] Wheeldon R, Counsell S. Power law distributions in class

relationships. In Proc. the 3rd IEEE International Work-

shop on Source Code Analysis and Manipulation, Septem-

ber 2003, pp.45-54.

[9] Concas G, Marchesi M, Pinna S, Serra N. Power-laws in a

large object-oriented software system. IEEE Transactions

on Software Engineering, 2007, 33(10): 687-708.

[10] Baxter G, Frean M, Noble J et al. Understanding the shape

of Java software. In Proc. the 21st Annual ACM SIG-

PLAN Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications, October 2006, pp.397-

412.

[11] French V. Establishing software metric thresholds. In Proc.

the 9th International Workshop on Software Measurement,

September 1999, Article No. 7.

[12] Shatnawi R, Li W, Swain J, Newman T. Finding software

metrics threshold values using ROC curves. Journal of Soft-

ware Maintenance and Evolution: Research and Practice,

2010, 22(1): 1-16.

[13] Catal C, Alan O, Balkan K. Class noise detection based on

software metrics and ROC curves. Information Sciences,

2011, 181(21): 4867-4877.

[14] Herbold S, Grabowski J, Waack S. Calculation and opti-

mization of thresholds for sets of software metrics. Empiri-

cal Software Engineering, 2011, 16(6): 812-841.

[15] Do C B, Batzoglou S. What is the expectation maximiza-

tion algorithm? Nature Biotechnology, 2008, 26: 897-899.

[16] He P, Li B, Liu X, Chen J, Ma Y. An empirical study on

software defect prediction with a simplified metric set. In-

formation and Software Technology, 2015, 59: 170-190.



1076 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

[17] Sharma N, Bajpai A, Litoriya M R. Comparison the various

clustering algorithms of Weka tools. International Journal

of Emerging Technology and Advanced Engineering, 2012,

2(5): 73-80.

[18] Hill T, Lewicki P. Statistics: Methods and Applications; A

Comprehensive Reference for Science, Industry, and Data

Mining. StatSoft, 2006.

[19] Chidamber S R, Kemerer C F. A metrics suite for object

oriented design. IEEE Transactions on Software Engineer-

ing, 1994, 20(6): 476-493.

[20] Vale G A D, Figueiredo E M L. A method to derive met-

ric thresholds for software product lines. In Proc. the 29th

Brazilian Symposium on Software Engineering, September

2015, pp.110-119.

[21] Benlarbi S, Emam K E, Goel N, Rai S. Thresholds for

object-oriented measures. In Proc. the 11th International

Symposium on Software Reliability Engineering, October

2000, pp.24-39.

[22] Emam K E, Benlarbi S, Goel N, Melo W, Lounis H, Rai

S N. The optimal class size for object-oriented software.

IEEE Transactions on Software Engineering, 2002, 28(5):

494-509.

[23] Spinellis D, Jureczko M. Metric descriptions. http://gromi-

t.iiar.pwr.wroc.pl/p inf/ckjm/metric.html, December 2018.

[24] Jureczko M, Madeyski L. Towards identifying software

project clusters with regard to defect prediction. In Proc.

the 6th International Conference on Predictive Models in

Software Engineering, September 2010, Article No. 9.

[25] Jureczko M, Spinellis D. Using object-oriented design met-

rics to predict software defects. In Proc. the 5th Interna-

tional Conference on Dependability of Computer Systems,

June 2010, pp.69-81.

[26] Zhang H. An investigation of the relationships between

lines of code and defects. In Proc. the 25th IEEE Inter-

national Conference on Software Maintenance, September

2009, pp.274-283.

[27] Lipow M. Number of faults per line of code. IEEE Trans-

actions on Software Engineering, 1982, SE-8(4): 437-439.

[28] Ferreira K A M, Bigonha M A S, Bigonha R S, Mendes L F

O, Almeida H C. Identifying thresholds for object-oriented

software metrics. Journal of Systems and Software, 2012,

85(2): 244-257.

[29] Alves T L, Ypma C, Visser J. Deriving metric thresholds

from benchmark data. In Proc. the 26th IEEE International

Conference on Software Maintenance, September 2010, Ar-

ticle No. 44.

[30] Oliveira P, Valente M T, Lima F P. Extracting relative

thresholds for source code metrics. In Proc. the 2014 IEEE

Conference on Software Maintenance, Reengineering, and

Reverse Engineering, February 2014, pp.254-263.

[31] Veado L, Vale G, Fernandes E, Figueiredo E. TDTool:

Threshold derivation tool. In Proc. the 20th International

Conference on Evaluation and Assessment in Software En-

gineering, June 2016, Article No. 24.

[32] Lincke R, Lundberg J, Löwe W. Comparing software met-

rics tools. In Proc. the 2008 International Symposium on

Software Testing and Analysis, July 2008, pp.131-142.

Mohammed Alqmase received his

M.S. degree in computer science from

King Fahd University of Petroleum and

Minerals, Dhahran, in 2019, and his

B.S. degree in information technology

(IT) from King Abdul-Aziz University,

Jeddah, in 2013. He worked as a

content management system analyst for

Hippo CMS in 2017. He also worked as an instructor in

Sana’a Community College, Sana, Yemen, from 2013 to

2015. His research interests include sentiment analysis,

natural language processing, machine learning, algorithms

and software engineering.

Mohammad Alshayeb received his

M.S. and Ph.D. degrees in computer

science and a Certificate of Software

Engineering from the University of

Alabama in Huntsville in 2000, 2002

and 1999, respectively. He received his

B.S. degree in computer science from

Mutah University, Jordan, in 1995. He

worked as a senior research associate in the Information

Technology and Systems Center, Huntsville, Alabama,

USA. Currently, he is working as an associate professor at

the Information and Computer Science Department, King

Fahd University of Petroleum and Minerals, Dhahram, a

position he has held since 2003. Dr. Alshayeb’s research

interests include software quality and quality improve-

ments, software measurement and metrics, and empirical

studies in software engineering.

Lahouari Ghouti received his Ph.D.

degree in computer science from Queen’s

University of Belfast, Belfast, UK, in

2005. He holds his M.Sc. degree in

electrical engineering from King Fahd

University of Petroleum and Minerals

(KFUPM), Dhahran. Dr. Ghouti

worked as a research fellow in Queen’s University of Belfast,

Belfast. In September 2007, he was appointed as an assis-

tant professor of Computer Science at KFUPM, Dhahran.

In May 2016, he became an associate professor. He received

the Best Paper Award from IEEE AHS 2006 Conference.

He is also the recipient of the Silver Medal of the John Wi-

ley Breast Journal in 2011. Dr Ghouti was selected as the

KFUPM Best Teacher and Best Academic Advisor in 2015

and 2016. His current research interests include artificial

intelligence, machine and deep learning.



Mohammed Alqmase et al.: Threshold Extraction Framework for Software Metrics 1077

Appendix

Tables A1–A7 show the five-level thresholds for each

metric generated by the proposed approach and tool,

and Table A8 shows the clustering quality measures us-

ing purity and F -measure for the five-level thresholds

for each metric generated by the proposed approach

and tool.

Table A1. Mean Measure for Each Metric in Each Cluster

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 22.3 3.5 0.9 2.4 5.6 1.7 1.1 0.4

Cluster 5 2 119.5 6.7 5.7 6.0 18.4 2.5 3.2 0.7

Cluster 4 3 283.8 10.4 43.6 12.1 33.9 4.3 4.9 0.9

Cluster 1 4 768.0 21.8 237.4 24.5 64.5 12.1 8.2 1.7

Cluster 3 5 2 359.9 59.0 2 312.7 61.4 139.2 43.3 16.5 3.6

Table A2. Median Measure for Each Metric in Each Cluster

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 17.0 3.0 1.0 2.0 5.0 1.0 1.0 0.0

Cluster 5 2 107.0 6.0 4.0 5.0 17.0 1.0 2.0 0.0

Cluster 4 3 242.0 9.0 35.0 11.0 31.0 2.0 3.0 0.0

Cluster 1 4 677.0 17.0 187.0 24.0 60.0 4.0 5.0 1.0

Cluster 3 5 1 863.0 35.5 1 319.5 59.0 131.0 13.0 8.0 1.5

Table A3. Standard Deviation Measure for Each Metric in Each Cluster

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 20.9 2.4 1.2 1.5 4.3 2.0 1.0 0.8

Cluster 5 2 82.8 4.3 5.8 3.4 10.7 3.2 3.8 1.4

Cluster 4 3 214.1 7.4 37.8 5.5 20.0 6.0 6.2 1.6

Cluster 1 4 610.5 18.5 229.1 14.0 42.9 17.8 10.2 3.3

Cluster 3 5 2 116.8 73.3 4 225.6 45.6 101.8 73.6 26.6 7.0

Table A4. Maximum Measure for Each Metric in Each Cluster

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 85.0 11.0 4.0 13.0 23.0 11.0 12.0 7.0

Cluster 5 2 357.0 20.0 22.0 39.0 78.0 19.0 85.0 17.0

Cluster 4 3 939.0 34.0 160.0 58.0 117.0 32.0 79.0 21.0

Cluster 1 4 2 891.0 90.0 1 044.0 122.0 346.0 88.0 143.0 40.0

Cluster 3 5 13 175.0 499.0 41 713.0 351.0 540.0 498.0 209.0 62.0

Table A5. Minimum Measure for Each Metric in Each Cluster

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cluster 5 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cluster 4 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cluster 1 4 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0

Cluster 3 5 1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0

Table A6. Skewness Measure for Each Metric in Each Cluster

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 0.9 0.5 1.1 1.3 0.9 1.7 3.5 3.1

Cluster 5 2 0.6 0.6 1.0 3.0 0.9 2.2 6.2 4.7

Cluster 4 3 0.7 0.8 1.0 1.3 0.8 2.2 4.1 4.3

Cluster 1 4 0.9 1.1 1.2 1.0 1.2 2.0 4.3 5.5

Cluster 3 5 2.0 2.9 5.9 2.2 1.2 3.1 4.2 4.5



1078 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Table A7. Kurtosis Measure for Each Metric in Each Cluster

Cluster Threshold LOC CBO LCOM WMC RFC CA MAX CC BUG

Cluster 2 1 2.9 2.7 2.9 6.7 3.2 5.8 24.5 17.6

Cluster 5 2 2.8 2.7 3.1 20.6 4.5 8.2 103.7 40.0

Cluster 4 3 2.7 2.9 3.4 8.9 3.4 7.8 30.5 32.7

Cluster 1 4 3.5 4.0 4.2 7.3 6.7 6.2 41.1 46.0

Cluster 3 5 9.0 14.2 47.9 12.7 5.1 15.3 24.6 29.9

Table A8. Clustering Quality Measures Using Purity and F -Measure (F1 Score)

Threshold Cluster #Buggy Data Points #Unbuggy Data Points Count Max Purity F -Measure

1 Cluster 5 459 1 279 1 738 1 279 0.735 903 0.440 730 531

2 Cluster 1 786 1 430 2 216 1 430 0.645 307 0.455 269 023

3 Cluster 3 845 92 1 767 922 0.521 788 0.316 132 350

4 Cluster 4 485 37 864 485 0.561 343 0.270 874 058

5 Cluster 2 142 56 198 142 0.717 172 0.097 427 101

Total 2 717 4 066 6 783 4 258 0.627 746 0.316 086 612


