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Abstract Inter-process communication (IPC) provides a message passing mechanism for information exchange between

applications. It has been long believed that IPCs can be abused by malware writers to launch collusive information leak using

two or more applications. Much work on privacy protection focuses on the simple information leak caused by the individual

applications and lacks effective approaches to preventing the collusive information leak caused by IPCs between multiple

processes. In this paper, we propose a hybrid approach to prevent the collusive information leak based on information

flow control. Our approach combines static information flow analysis and dynamic runtime checking together. Information

leak caused by individual processes is prevented through static information flow control, and dynamic checking is done at

runtime to prevent the collusive information leak. Such a combination may effectively reduce the runtime overhead of pure

dynamic checking, and reduce false-alarms in pure static analysis. We develop this approach based on an abstract and

simplified programming model, and formalize a novel definition of the leak-freedom property as our target security property.

A simulation-based proof technique is used to prove that our approach is able to guarantee leak-freedom. All proofs are

mechanized in Coq.

Keywords privacy protection, dynamic runtime checking, static information flow control, Android, verification

1 Introduction

Sensitive information stored in mobile devices such

as mobile phones is under the threat of being stolen.

Android, as one of the most popular mobile operating

systems, provides a permission-based access control

mechanism for privacy protection. Each application re-

quires the permissions to access the corresponding in-

formation when it is installed. The information can be

accessed in the subsequent execution only if the per-

mission is granted by the user at the installation time.

There are several problems with this access control

mechanism. First, it is sometimes too coarse-grained to

use in practice. An untrusted application may need cer-

tain private information for some useful functionality.

It should be safe to grant the corresponding permission

to the application if the information is used only locally

and is never sent out of the device. One such example is

the input method applications, which may need to read

the contact book to generate better hints of names for

user inputs. The access to the contact book should

be permitted as long as it cannot be sent out. How-

ever, based on the existing mechanism, the users have

to either deny the permission and lose the improved

name hint functionality, or simply grant the permission

and have no further control on how the contact book is

propagated.

Second, it is well known that access control cannot

effectively prevent information leak, especially the leak

through the collusion of multiple applications. Consider

the program shown in Fig.1. It consists of two processes

t0 and t1. Process t0 sends a non-confidential constant
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value 1 to t1. Depending on the content of the incom-

ing message, t1 decides whether to send out the contact

book (i.e., CB) or not. Here we use out(y) to represent

an output operation that sends the value of y out of the

device. The send and recv primitives are used for inter-

process communication (IPC). In this case, although

t0 may have no permissions to access and send out the

contact book, it could do so by sending a message to

t1 who has the permissions.

t0. x := 1;

send(t1,x);

t1. recv(t,x);

if (x==1)

then y := get(CB);

out(y);

else skip;

Fig.1. Example of information leak via collusion of processes.

To address the first problem, we refine the permis-

sions into two kinds: the access permissions and the

send permissions. The access permissions are similar

to the permissions of the Android system, which spec-

ify the information that the application is allowed to

access. The send permissions specify the information

that the application can send out. In the example of the

input method application, if the user wants to use the

name hint functionality but does not want to leak his or

her contact book, the application should be granted the

access permission of {contactbook} only and the send

permission should be empty (i.e., {}). Because two ap-

plications are allowed to communicate with each other,

to enforce the send permission, the security mechanism

should prevent the application not only from sending

out the privacy without the proper send permission by

itself, but also from sending it out with the help of an-

other authorized application.

The second problem, however, is much more chal-

lenging to solve. To prevent the privacy leak caused by

the inter-process communication, the traditional static

analysis[1−8] regards each message-sending point as a

leak point, which is overly restrictive and prevents be-

nign cooperation among the applications as well. Con-

sider the program shown in Fig.2. Process t0 sends

the privacy contact book (i.e., CB) to process t1 and

process t1 does not send it out. Therefore this commu-

nication is benign and should not be prevented. The

work[9] analyzes the possible communications among

applications statically, and allows the communications

that will definitely not lead to the privacy leak. But it

is still conservative when one of the receivers may leak

the privacy. Since the concrete receiver which may re-

ceive the message cannot be determined statically, one

safe method is to prevent the communications with all

receivers.

t0. x := get(CB);

send(t1,x);
t1. recv(t,y);

Fig.2. Example of benign cooperation between processes.

The work[2] based on the dynamic taint analysis

considers the cooperation of applications, and tracks

all the information flow for each instruction at runtime,

including the communications among processes. But it

only prevents confidential contents from being trans-

mitted between the applications. It does not prevent

the leak shown in Fig.1, where the message contains

only a non-confidential constant value. Dynamic check-

ing also introduces high runtime overhead, especially if

we have to track even non-confidential IPC messages to

prevent this kind of leak.

We propose a hybrid approach that combines static

analysis and dynamic checking to achieve less false posi-

tives (than the overly restrictive static approaches) and

lower runtime overhead (than the purely dynamic ap-

proaches). To analyze communications more precisely,

we check each communication at runtime and detect in-

formation leak through collusion of multiple processes.

To reduce the runtime overhead, the individual process

is checked statically, where privacy leak caused by the

process directly is prevented. The communications are

the only program points checked dynamically.

The overall architecture of our approach is shown in

Fig.3. The application developer provides the Android

package (APK) and the security policy consisting of

the access permissions (gap) and the send permissions

(gsp). The application package (APK) and the security

policy are sent to the static checker to detect informa-

tion leak and to generate the security labels for the

outgoing IPC messages. The generated labels record

the privacy contained in the messages, and they are fed

to the translation phase to rewrite the message sending

primitives for dynamic checking. The runtime checking

codes are instrumented in the rewritten primitives and

determine whether the communications cause the pri-

vacy leak based on the message labels and the policies

of both sides.

To prove that our approach prevents the privacy

leak effectively, especially the collusive information

leak, we formally study the correctness of our hybrid

mechanism based on a simplified programming lan-

guage, and give a sound proof. The previous non-

interference properties for concurrent programs[10−15]

cannot be used as the security property for Android
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Fig.3. Overall architecture of proposed approach.

applications. Consider the example in Fig.1. Assume

that process t0 is not permitted to send any privacy

out. The traditional non-interference properties clas-

sify t0 as a secure program, because it does not out-

put any privacy. But process t0 is insecure, leaking

privacy with the help of process t1. We propose the

leak-freedom property as the security property to pre-

vent the privacy leak caused by communications among

applications.

Our work makes the following contributions.

• We propose a novel method to prevent collusive

information leak caused by IPCs between multiple pro-

cesses. A new class of permissions (i.e., the send per-

missions) is introduced into the traditional permission-

based access control mechanism for effectively prevent-

ing collusive information leak. It also combines static

information flow control and dynamic checking; there-

fore it may potentially reduce the number of false

alarms in purely static approaches, and reduce the run-

time overhead of purely dynamic approaches.

• We propose an abstract core language for the pro-

gramming model with IPC mechanisms, which can be

applied in modelling Android and other systems using

IPCs. The small-step operational semantics given to

the language serves as the basis to formally study the

soundness of our approach.

• We introduce a new security property, leak-

freedom, a non-interference-like property[16,17] that

guarantees that no information is leaked through appli-

cation collusion. The soundness is formally defined and

proved in Coq 1○, and we have written around 15 500

lines of Coq script for the soundness proof in Coq 8.7.0,

which are available online 2○. The correctness of the

proof can be checked by the Coq proof checker, and it

guarantees that no error is introduced.

The rest of this paper is organized as follows. We

first analyse the possible information leak under the

current access control mechanism in Android in Sec-

tion 2. In Section 3, we present a simplified core lan-

guage as an abstract programming model for Android

applications. In Section 4 and Section 5 we show the

static analysis, the program translation, and the dy-

namic checking to enforce the policy. We give an input

method application 3○ as an example in Section 6 to

illustrate how our mechanism works. In Section 7, we

give the definition of the leak-freedom property. In Sec-

tion 8, we formalize the soundness of our approach. In

Section 9, we give some details about the implementa-

tion. Finally, we compare our method with related work

in Section 10 and conclude the paper in Section 11.

2 Possible Information Leak in Android

There are two types of information leak in Android

systems, the direct leak and the cooperation leak. The

direct leak means that an application reads the private

information and then sends it out by itself, and the

cooperation leak means that an application sends the

private data out through another application.

Fig.4(a) shows the direct leak. The application App

requests the permissions to access both the contact

book and the Internet. It can read the contact book

from the contact book provider and then forwards it to

1○The Coq Proof Assistant. https://coq.inria.fr, May 2019.
2○https://formal-android-security.github.io, May 2019.
3○Input Method Wiki. https://en.wikipedia.org/wiki/Input method, May 2019.
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Fig.4. Possible information leak. (a) Individual leak. (b) Collusive leak by IPC. (c) Collusive leak by files. (d) Collusive leak by content
provider. (d) Collusive by invocation.

the Internet. The following program shows this case.

x := get(CB);

out(x);

Here we use the get and put primitives to model the

system calls to read and update the shared resources,

respectively. The out primitive is used to model the sys-

tem calls to send the information outside of the device,

such as the Internet access. As a concrete example for

this case, an input method application may need the

contact book to generate hints for name inputs. It may

also access the Internet to update its word database

to add the latest popular terms. Therefore it requires

permissions to access both resources, which then could

enable it to send the contact book to the Internet.

Figs.4(b)–4(e) demonstrate the cooperation leak. In

Fig.4(b), App1 requests the permission to access the

contact book. App2 requests the permission to access

the Internet. Each application alone cannot leak any-

thing about the contact book, but App1 and App2 can

work together to send the contact book out. For exam-

ple, App1 reads the contact book first and then sends

it to App2. App2 receives the message containing the

contact book, and then sends it to the Internet. The

following program shows this case.

t0. x := get(CB);

send(t1,x);

t1. recv(t,x);

out(x);

Here the send and recv primitives are used to model the

systems calls, which performs the inter-process commu-

nication. “t0 ‖ t1” means that processes t0 and t1 run

in parallel.

Similar to Fig.4(b), in Fig.4(c) and Fig.4(d), App1

reads the contact book first and then stores it into a file

in the storage (in Fig.4(c)) or into a content provider

(in Fig.4(d)), where a content provider in Android can

be viewed as a database owned by some applications

and can be shared with others. App2 reads the file or

the content provider, and then sends it to the Internet.

The following program shows this case.

t0. x := get(CB);

put(s,x);

t1. y := get(s);

out(y);

Here s is a shared variable which can be accessed by

all the processes and it is used to model the file in the
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storage or the content provider. Process t1 sends out

whatever it reads from s.

In Fig.4(e), App2 is a trusted application and it can

send the contact book to the Internet freely. App1 is

untrusted and it has no permissions to access the con-

tact book or the Internet. However, App1 can leak the

contact book out by invoking the service of App2, if

App2 exposes an interface for such a service. The ex-

ample program has already been shown in Fig.1.

3 Core Language

In this section, we define a core language as a simpli-

fied abstract programming model for Android. The lan-

guage serves as the basis to formally study the sound-

ness of our approach.

3.1 Permissions

The permissions of our model extend those for An-

droid. In addition to permissions to access the confi-

dential resources, a new class of permissions called send

permissions is introduced. It is used to specify the set

of private information which can be sent outside. Com-

pared with Android, we only care about permissions to

access private information, such as the contact book,

text messages and location coordinates. The permis-

sions to perform other critical actions, such as accessing

the Internet, modifying the system setting and perform-

ing I/O operations over NFC, are beyond the scope of

the discussion.

The confidential information in Android can be ac-

cessed by any applications with permissions. Therefore

we use the shared variables to model the privacy, each

representing a kind of privacy. The permissions are rep-

resented as a set of shared variables that an application

can access or send out. The permissions are specified by

the programmers in the form of security labels. A label

L, shown in Fig.5, is a set of shared variables. Here

P(S) represents the powerset of the set S. The set of

labels forms a security lattice, with the top element ⊤

being the whole set of Vars and the partial order ⊑.

L1 ⊑ L2 means that the label L1 is lower than L2.

L1 ⊔ L2 is the least upper bound of L1 and L2. Two

labels are equal, i.e., L1 = L2, if and only if L1 is less

than L2 and L2 is less than L1.

Every process is associated with a security policy

θ, which is specified by the programmer and consists

of two labels, gap and gsp. The access permission gap

specifies the set of shared variables that can be accessed

by the process. It is similar to the permissions granted

to Android applications. The access permission gap is

checked for get and put primitives.

The gap permission alone, however, is too coarse-

grained to use in practice. As shown in Fig.4(a) in

Section 2, if an input method application requires per-

missions to access both the contact book and the Inter-

net, then gap alone cannot prevent the application from

sending the contact book out. The send permission gsp

is introduced to address this problem. It specifies the

set of shared variables that can be sent out using the out

primitive. For the input method application in Fig.4(a),

we can prevent the leak of the contact book by setting

gsp to empty (i.e., {}).

For each process, its send permission gsp is usu-

ally less than or equal to its access permission gap, i.e.,

gsp ⊑ gap, that is, a process needs to first have the

permission to access a variable if it wants to send it

out.

3.2 Programming Language

The syntax of the language is given in Fig.6. A pro-

gram p consists of multiple processes, each with a policy

θ declared by the programmer. Here we assume that all

variables are local, except those accessed by get(x) and

put(x, e) primitives, which read and update the shared

variable x respectively. Note that the variables in e in

the put(x, e) primitive need to be local.

Inter-process communication is done using the send

and receive primitives. The send primitive lsend(e1, e2)

sends a message e2 to the process identified by e1.

Primitive lrecv(x, y) receives a message from another

process, and stores the identifier of the sender and the

message into variables x and y respectively. Here the

(Labels) L, gap, gsp ∈ P(Vars) (Policy) θ ::= (gap, gsp)

L1 ⊑ L2 iff L1 ⊆ L2 ∨ L2 = ⊤, L1 6⊑ L2 iff L1 6⊆ L2 ∧ L2 6= ⊤,

L1 ⊔ L2 =

{

⊤, if L1 = ⊤ or L2 = ⊤,

L1 ∪ L2, otherwise.
L1 = L2 iff L1 ⊑ L2 ∧ L2 ⊑ L1.

Fig.5. Label and permission.
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(Expr) e ::= x | n | e+ e | . . .

(Bexp) b ::= true | false | e = e | e < e | not b | . . .

(Prims) o ::= x := e | lsend(e, e) | lrecv(x, y) | out(e) | hrecv(x, y) | x := get(y) | put(x, e)
| skip

(Cmd) c ::= o | hsend(e, e) | c1; c2 | while b do c | if b then c1 else c2

(Prog) p ::= θ1; c1 ‖ . . . ‖ θn; cn

(AnnoCmd) C ::= o | end | hsend(e, e, L) | C1; C2 | while b do C | if b then C1 else C2

(AnnoProg) P ::= C1 ‖ . . . ‖ Cn

Fig.6. Abstract language for the application.

messages cannot contain any confidential information;

otherwise they need to be sent using a different pair of

primitives called hsend and hrecv. Note that the hsend

primitive is defined separately from all the other primi-

tives o in Fig.6. This is because we may first rewrite the

hsend(e1, e2) primitive into the form of hsend(e1, e2, L)

before executing the code, where L is the security la-

bel inferred for the send operation in the static analysis

phase. The code rewriting will be explained later in

Subsection 4.4.2. The annotated commands and pro-

grams are represented as C and P respectively. Note

that the send/receive primitives are asynchronous (i.e.,

non-blocking).

The out(x) primitive sends the value of x to the ex-

ternal world (e.g., the Internet). It is different from the

send and receive primitives for IPC.

The end command is an auxiliary command to help

the proof of the soundness, which marks the finish

boundaries of conditional blocks, such as the blocks of

if and while (explained in Subsection 4.4.2). The se-

mantics of end is explained in Section 8 in detail.

How Is the Language Related to Android Program-

ming Model? We use the core language as a simplified

model for Android programming. Each Android appli-

cation can be represented as a process in the program.

Shared resources, such as the contact book, can be mod-

eled as shared variables, and the get and put primitives

can be viewed as the system calls to access the shared

resources.

The primary mechanism for Android component

interaction is an intent, which is simply a message ob-

ject containing a destination component address and

data. Intent can be used to transfer data to another ap-

plication, and to invoke a service provided by another

application, etc. We use the send/receive message pass-

ing primitives to model the intent-based interaction. As

we explain above, we provide two sets of primitives for

non-confidential and confidential messages respectively.

The hsend and hrecv primitives are checked more con-

servatively. In our implementation for Android, inter-

process communication is modeled as hsend/hrecv by

default, but the programmers can provide annotations

in programs to indicate that only non-confidential mes-

sages are sent and the lsend/lrecv primitives should be

used instead.

The out primitive models all kinds of output system

calls and services in Android, such as Internet access or

sending of text messages. It is the only way to leak

information outside of the mobile devices.

How Is the Language Related to the Architecture in

Fig.3? We use the command c to model the Android ap-

plication and θ to represent the policy. The whole pro-

gram p contains both APK and the policy. The anno-

tated command C represents the instrumented APK. In

the implementation, the dynamic checking is performed

by instrumented codes. But for the sake of convenience

of discussion, we integrate the dynamic checking into

the operational semantic of the annotated command C

in our model.

3.3 Operational Semantics

We now present a small-step operational semantics

for our language. The state model is shown in Fig.7.

The program state Σ consists of the set δ of the private

store s and a shared state σ. Each store si can be ac-

cessed exclusively by the corresponding thread ti, and

we model the private store s as a mapping from pri-

vate variables to their values. The shared state σ can

be accessed by any process, and it contains a shared

store s, two message queues, Q and Q, for confidential

and non-confidential message respectively, and an out-

put state o. The shared store s maps shared variables

to their values. The output state o is a sequence of

integers sent by the out primitive.

We give some key operational semantics rules in

Fig.8. The execution of the program follows the stan-

dard interleaving semantics, as shown by the parallel

rule. The relation Θ ⊢ (C1, (s1, σ1)) ;t (C2, (s2, σ2))
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(PId) t ∈ Nat (Store) s, s ∈ Vars → Nat

(PrivStateSet) δ ::= {t1 ; s1, . . . , tn ; sn} (MsgQueue) q,q ::= nil | (t, n) :: q

(MsgQueueSet) Q,Q ::= {t1 ; q1, . . . , tn ; qn} (OutState) o ::= nil | n :: o

(SharedState) σ ::= (s, Q,Q, o) (State) Σ ::= (δ, σ)

(PolicySet) Θ ::= {t1 ; θ1, . . . , tn ; θn}

Fig.7. State model.

δ(i) = s Θ ⊢ (Ci, (s, σ)) ;i (C
′

i, (s
′, σ′))

Θ ⊢ (C1 ‖ · · · ‖ Ci ‖ · · · ‖ Cn, (δ, σ)) → (C1 ‖ · · · ‖ C′

i ‖ · · · ‖ Cn, (δ{i ; s′}, σ′))
(PARALLEL)

[[e1]]s = i [[e2]]s = n σ = (s, Q,Q, o)
qi = Q(i) q′i = qi++[(t, n)] Q′ = Q{i ; q′i} σ′ = (s, Q′,Q, o)

L ⊑ Θ(i).gap Θ(i).gsp ⊑ Θ(t).gsp

Θ ⊢ (hsend(e1, e2, L), (s, σ)) ;t (skip, (s, σ′))
(HSEND-SUCC)

[[e1]]s = i σ = (s, Q,Q, o) i /∈ dom(Q)

Θ ⊢ (hsend(e1, e2, L), (s, σ)) ;t (skip, (s, σ))
(HSEND-FAIL)

[[e1]]s = i [[e2]]s = n σ = (s, Q,Q, o)qi = Q(i) q′

i = qi++[(t, n)] Q′ = Q{i ; q′} σ′ = (s, Q,Q′, o)
Θ(i).gsp ⊑ Θ(t).gsp

Θ ⊢ (lsend(e1, e2), (s, σ)) ;t (skip, (s, σ′))
(LSEND-SUCC)

[[e1]]s = i σ = (s, Q,Q, o) i /∈ dom(Q)

Θ ⊢ (lsend(e1, e2), (s, σ)) ;t (skip, (s, σ))
(LSEND-FAIL)

σ = (s, Q,Q, o) Q(t) = (i, n) :: q′

s′ = s{x ; i, y ; n} Q′ = Q{t ; q′} σ′ = (s, Q′,Q, o)

Θ ⊢ (hrecv(x, y), (s, σ)) ;t (skip, (s′, σ′))
(HRECV-SUCC)

σ = (s, Q,Q, o) Q(t) = nil s′ = s{x ; 0}{y ; 0}

Θ ⊢ (hrecv(x, y), (s, σ)) ;t (skip, (s′, σ))
(HRECV-FAIL)

σ = (s, Q,Q, o) s(y) = n s′ = s{x ; n}

Θ ⊢ (x := get(y), (s, σ)) ;t (skip, (s′, σ))
(GET)

σ = (s, Q,Q, o) [[e]]s = n s′ = s{x ; n} σ′ = (s′, Q,Q, o)

Θ ⊢ (put(x, e), (s, σ)) ;t (skip, (s, σ′))
(PUT)

σ = (s, Q,Q, o) [[e]]s = n o′ = n ::o σ′ = (s, Q,Q, o′)

Θ ⊢ (out(e), (s, σ)) ;t (skip, (s, σ′))
(OUT)

Fig.8. Selected rules for operational semantics.

denotes a small step in the sequential operational se-

mantics where the annotated command C1 with iden-

tifier t steps to C2 under the security policy Θ. Note

that the code of each process has been translated into

C, where each hsend(e1, e2) command is converted to

the form of hsend(e1, e2, L), with an annotation of the

security label of the command. The security policy set

Θ is unchanged during the execution and is used only

in the dynamic checking of hsend and lsend. [[e]]s and

[[b]]s return the values of the expression e and boolean

expression b respectively under the given private store

s. As shown by the hsend-succ rule, hsend(e1, e2, L)

appends the message directly to the confidential mes-

sage queue qi of the target thread identified by e1, if it

exists. The confidential message queue q is represented

as a list, and the operation “++” denotes list concatena-

tion. The premises of the third line show the runtime

checking with respect to the policy set Θ and the se-

curity label L, which we will explain in Section 5. If

there is no thread identified by e1, it does nothing (the
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hsend-fail rule).

The lsend-succ rule and the lsend-fail rule are

similar, except that the non-confidential message queueq instead of q is used. The lsend-succ rule also per-

forms the dynamic checking, though much simpler than

the checking for hsend. Again, we postpone the expla-

nation of the runtime checking to Section 5.

The hsend and lsend commands are the only com-

mands that require the runtime checking.

The hrecv(x, y) command dequeues the message

from the confidential message queue q if it is not empty,

and assigns the identifier of the sender and the message

content to x and y respectively, as shown by the hrecv-

succ rule. If q is empty, it simply returns and sets x

and y to be 0 (the hrecv-fail rule). lrecv(x, y) is simi-

lar, except that the non-confidential message queue q
is used. Its rules are omitted here.

Rules for get, put and out commands are mostly

straightforward. Primitive x := get(y) reads the shared

variable y into the local variable x. Primitive put(x, e)

updates the shared variable x with the value of e.

Primitive out(e) appends the value of e to the output

trace. Note that the variables in e of command put(x, e)

and out(e) are local variables.

4 Static Checking and Program Translation

In this section we propose a type system for static

information flow control. It checks the possible infor-

mation leak inside a process. It also generates the

security label L for each hsend command, which is

used in the program translation phase to generate the

hsend(e1, e2, L) command for dynamic checking. The

security label L represents the privacy contained in

message e2, and it is recorded in the code by program

translation.

4.1 Type System

The typing judgment for commands has the form of

Ψ, θ,Γs ⊢ {Γp} c {Γ′

p} .

The program counter (pc) label Ψ represents the secu-

rity label of the program counter, which is used to check

the implicit information channel dependent on control

flows. θ is the security policy of the current process,

as explained in Subsection 3.3.1. Γ is the type environ-

ment that maps variable names to the corresponding

labels:

Γ ∈ Vars → Labels .

Similar to Label, we define the order relation be-

tween two type environments

Γ1 ⊑ Γ2 iff ∀x.Γ1(x) ⊑ Γ2(x) ,

and the least upper bound of two type environments

Γ1 ⊔ Γ2 = {x ; (Γ1(x) ⊔ Γ2(x)) | for all x ∈ Vars} .

Γs assigns labels to “shared” variables, which is usu-

ally in the form of

{x ; {x} | for all shared variable x} .

Γs is never changed during the analysis. Γp assigns

labels to the process-local variables, which can be diffe-

rent at different program points. Therefore our type

system is flow-sensitive.

The judgment Γp ⊢ e : L means that the expression

e has the label L under the type environment Γp. The

label of an expression e is defined simply by taking the

least upper bound of labels of its variables.

Γp ⊢ e : L iff L =
⊔

x∈vars(e)

Γp(x),

where vars(e) represents the set of variables in e. The

judgment Γp ⊢ b : L for the boolean expression b is

defined similarly.

Typing of the Send/Receive Primitives. The typing

rules are shown in Fig.9. The HRecv rule says that

the identifier x of the sender and the message content

y returned by the hrecv command are assigned to the

label gap ⊔Ψ. Since it is difficult to track precisely the

label of the message (which requires the knowledge at

the sending point in a different process, challenging for

compositional analysis), we first set the security labels

of x and y to be the receiver’s gap permission. Because

in the dynamic checking we require at the sending point

that the security label associated with the send ope-

ration should be lower than or equal to the receiver’s

gap, gap is a safe but conservative estimation at the re-

ceiver side for x and y. The label gap also needs to be

joined with the pc label Ψ, to record implicit informa-

tion channel depending on the control flow.

However, this conservative approach sometimes may

lead to too many false positives. Consider the following

example.

t0. {}

{}

hsend(t1,1);

t1. {CB}

{}

hrecv(t,x);

out(x);
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Ψ ⊑ gap

Ψ, (gap, gsp),Γs ⊢ {Γp} hrecv(x, y) {Γp[y 7→ gap ⊔Ψ][x 7→ gap ⊔Ψ]}
(HRecv)

Ψ = {}

Ψ, θ,Γs ⊢ {Γp} lrecv(x, y) {Γp[y 7→ Ψ][x 7→ Ψ]}
(LRecv)

Ψ, θ,Γs ⊢ {Γp} hsend(e1, e2) {Γp}
(HSend)

Γp ⊢ e1 : {} Γp ⊢ e2 : {} Ψ = {}

Ψ, θ,Γs ⊢ {Γp} lsend(e1, e2) {Γp}
(LSend)

Γp ⊢ e : Le Ψ ⊔ Le ⊑ gsp

Ψ, (gap, gsp),Γs ⊢ {Γp} out(e) {Γp}
(Out)

Γs ⊢ y : Ly Ly ⊑ gap

Ψ, (gap, gsp),Γs ⊢ {Γp} x := get(y) {Γp[x 7→ Ψ⊔Ly]}
(Get)

Γp ⊢ e :Le Γs ⊢ x :Lx Le ⊔Ψ ⊑ Lx Lx ⊑ gap

Ψ, (gap, gsp),Γs ⊢ {Γp} put(x, e) {Γp}
(Put)

Γp ⊢ e : Le

Ψ, θ,Γs ⊢ {Γp} x := e {Γp[x 7→ Ψ⊔Le]}
(Assign)

Ψ, θ,Γs ⊢ {Γp} c1 {Γ′

p} Ψ, θ,Γs ⊢ {Γ′

p} c2 {Γ′′

p}

Ψ, θ,Γs ⊢ {Γp} c1; c2 {Γ′′

p}
(Seq)

Γp ⊢ b :Lb Ψ ⊔ Lb, θ,Γs ⊢ {Γp} c {Γp}

Ψ, θ,Γs ⊢ {Γp} while b do c {Γp}
(While)

Γp ⊢ b : Lb Ψ ⊔ Lb, θ,Γs ⊢ {Γp} {ci} {Γ′

p} i = 1, 2

Ψ, θ,Γs ⊢ {Γp} if b then c1 else c2 {Γ′

p}
(If)

Γp ⊑ Γ′′

p Ψ, θ,Γs ⊢ {Γ′′

p} c {Γ′′′

p } Γ′′′

p ⊑ Γ′

p

Ψ, θ,Γs ⊢ {Γp} c {Γ′

p}
(Conseq)

Fig.9. Flow-sensitive typing rules.

Process t0 sends a constant 1 to t1, and then process

t1 sends out the message it receives directly. The first

two lines of each process show the gap and gsp of the

process.

While in this particular example, the information

that the gap of t0 is {}, could be used to conclude

that x has label {}. The type system cannot in general

determine at compile time the process identifier of the

sender; hence it conservatively sets it to the gap of the

current process. The program does not leak any pri-

vacy. However, the HRecv rule will assign the label

{CB} to x in this case (note that gap of t1 is {CB}).

Since the following out command sends the value of x

out, the output will be forbidden by the static check-

ing for the out primitive (see the Out rule explained

below).

To address this problem, we introduce another pair

of primitives, lsend/lrecv, for sending and receiving non-

confidential messages. In the LRecv rule in Fig.9, the

labels for x and y are simply Ψ, knowing the message

does not contain any confidential information. As a re-

sult, the above example will pass the type checking if

we replace hrecv with lrecv. Note that Ψ is required to

be {}, because the value of the program counter can

be inferred by observing the value of the low message

queue, i.e., testing whether the low message queue is

empty. The following program is an example.

h = get(CB)

if h == 0

then lrecv(x, y)

else skip

lrecv(x1, y1)

if x1 == 0 // test whether the low

then out(0) // message queue is empty

else out(1)

Assume that the low message queue contains only one

message before the execution of the program. If the

output is 0, then we know that CB is equal to 0. Oth-

erwise, CB is not equal to 0. Due to the similar reason,

the HRecv rules require that Ψ should be less than the

access permission gap. gap can be viewed as the label

of the high message queue.

Correspondingly, at the side of the sender, we need

to ensure that lsend indeed does not send any con-

fidential information. Therefore the LSend rule for

lsend(e1, e2) requires that the labels for e1, e2 and pc

label are all {}.

The HSend rule does not do any checking. Instead,

the checking is done at runtime, which we will explain

in Section 5.

Output Primitive. The Out rule says that the la-

bel of e and the Ψ label should be less than gsp, i.e.,

Le ⊔Ψ ⊑ gsp. The process can only send out the value

whose label Le is less than gsp.
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Access to Shared Variables. The Get rule requires

that the process has the permission to access the shared

variable y. At the end of the command, the label of the

local variable x becomes the union of Ly and the Ψ

label.

The Put rule also requires that the process has the

permission to access the shared variable x. Also the

label of the expression e and the Ψ label should be

lower than that of Lx. The security label of the shared

variable x is specified by Γs and never changed. This

requirement prevents the flow from the higher privacy

to x. The command does not update local variables;

therefore Γp does not change at the end.

Note that the data which can be accessed by multi-

ple processes are modeled as the shared variables, such

as files, databases. Each of this kind of data has a fixed

label (i.e., L) and can only store some known privacy.

No privacy that is not described in L can be stored

in the shared variables. For example, the labels of the

files are set as empty by default; therefore no privacy

should be stored in the files. Since we adopt the conser-

vative approach, even when the privacy is encrypted, it

is still regarded as privacy. Therefore, the information

leak caused by the intermediate forms of data can be

prevented.

Other Rules. The rest of the rules are mostly stan-

dard. The Assign, Seq, If and While rules simply

track the information flow, as in normal information

flow control. In the If and While rules, the Ψ la-

bels for the conditional branches (of the if commands)

or the loop body (of the while commands) are joined

with the label of the condition b, following the standard

approach to track the implicit information channel de-

pendent on the control flow.

The Conseq rule says that, to derive Ψ, θ,Γs ⊢

{Γp} c {Γ′

p}, one can use a higher initial environment

Γ′′

p at the beginning of c, as long as the resulting envi-

ronment Γ′′′

p is no higher than Γ′

p. It is similar to the

standard consequence rule in Hoare logic.

4.2 Translation of the Program

Based on the static checking, we can infer the se-

curity label L at each hsend(e1, e2) command. Then

we rewrite the send command into the form of

hsend(e1, e2, L), so that L can be used in the dynamic

checking at runtime. In Fig.10, we present the transla-

tion from the program p and the command c to their

annotated versions P and C.

The translation of the program is denoted as

“TP(p,Ψ,Γs,∆) _ (P ,Θ)”. In addition to the original

program p, it also takes the set of pc (program counter)

labels Ψ and the environments for shared and local vari-

ables, i.e., Γs and ∆, as inputs. The outputs are the

resulted annotated program P and the security policy

Θ extracted from p. Here Ψ maps process identifiers to

their pc labels, i.e., Ψ ::= {t1 ; Ψ1, . . . , tn ; Ψn} and

∆ maps process identifiers to their environments, i.e.,

∆ ::= {t1 ; Γ1, . . . , tn ; Γn}. The TProg rule in

Fig.10 translates the original program “θ1; c1 ‖ · · · ‖

θn; cn” into the policy set “{1 ; θ1, . . . , n ; θn}”

TC(ci,Ψ(i), θi,Γs,∆(i)) ; (Ci, ) for all 1 6 i 6 n

TP(θ1; c1 ‖ · · · ‖ θn; cn,Ψ,Γs,∆) _ (C1 ‖ · · · ‖ Cn, {1 ; θ1, . . . , n ; θn})
(TProg)

Γp ⊢ e1 : L1 Γp ⊢ e2 : L2

TC(hsend(e1, e2),Ψ, θ,Γs,Γp) ; (hsend(e1, e2, L1 ⊔ L2 ⊔Ψ),Γp)
(Thsend)

TC(c1,Ψ, θ,Γs,Γp) ; (C1,Γ′

p) TC(c2,Ψ, θ,Γs,Γ′

p) ; (C2,Γ′′

p)

TC(c1; c2,Ψ, θ,Γs,Γp) ; (C1; C2,Γ′′

p )
(Tseq)

Ψ, θ,Γs ⊢ {Γp} o {Γ′

p}

TC(o,Ψ, θ,Γs,Γp) ; (o,Γ′

p)
(Tprim)

Γp ⊢ b : L TC(c1,Ψ ⊔ L, θ,Γs,Γp) ; (C1,Γ1
p) TC(c2,Ψ ⊔ L, θ,Γs,Γp) ; (C2,Γ2

p)

TC(if b then c1 else c2,Ψ, θ,Γs,Γp) ; (if b then (C1; end) else (C2; end),Γ1
p ⊔ Γ2

p)
(Tif)

Γp ⊢ b : L TC(c,Ψ ⊔ L, θ,Γs,Γp) ; (C,Γ′

p) Γp = Γ′

p

TC(while b do c,Ψ, θ,Γs,Γp) ; (while b do (C; end),Γ′

p)
(Twhile1)

Γp ⊢ b : L TC(c,Ψ ⊔ L, θ,Γs,Γp) ; ( ,Γ′′

p ) Γp 6= Γ′′

p

TC(while b do c,Ψ, θ,Γs,Γp ⊔ Γ′′

p) ; (C,Γ′

p)

TC(while b do c,Ψ, θ,Γs,Γp) ; (C,Γ′

p)
(Twhile2)

Fig.10. Translation rules.
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and the annotated program “C1 ‖ · · · ‖ Cn” by trans-

lating the command of each process with the command

translation rules. Note that “ ” is a placeholder which

means that there exists an element such that the cur-

rent proposition holds.

The judgement for command translation is denoted

as “TC(c,Ψ, θ,Γs,Γp) ; (C,Γ′

p)”, which takes the orig-

inal command c, the Ψ label, the security policy θ, and

the environments for shared and local variables as in-

puts. The output is the resulted annotated command C

together with a new local environment Γ′

p, which can be

used for translation of the subsequent commands. The

only primitive command that needs to be translated is

hsend(e1, e2). As the Thsend rule in Fig.10 shows, the

resulting command is hsend(e1, e2, L) where L is the

union of the Ψ label and the security labels of e1 and

e2. For other primitive commands o, the command is

unchanged and the resulting local environment Γ′

p is

the same with the one generated in the static analysis,

as shown by the Tprim rule. For the branch command

“if b then c1 else c2”, the transformed branches are the

translation of the branches, terminated with an explicit

end command, as shown by the Tif rule. Similarly,

for the loop command “while b do c”, as shown by the

Twhile1 and Twhile2 rules, the transformed body

is the translation of the body, appending with an end

command. The end command marks the end of nearest

enclosing if and while commands.

Fig.10 also shows the algorithm to calculate the re-

sulting local environment Γp of the sequential, condi-

tional and loop commands. For the branch command

“if b then c1 else c2”, the resulting local variable en-

vironment is the union of the resulting local variable

environments for c1 and c2. For the loop command

“while b do c”, the environment should be the loop in-

variant. We start from an initial Γp and calculate Γ′

p at

the end of the loop body. If Γ′

p is not equal to Γp, we

use Γp ⊔ Γ′

p as the initial environment and repeat this

process, until the resulting environment never changes.

It is easy to see that the process will eventually ter-

minate because the resulting environment Γ′

p is always

higher than or equal to the initial one Γp (recall the

definition of Γ ⊑ Γ′ in Subsection 4.4.1). Since we only

have a finite number of shared variables, Γ′

p cannot keep

increasing. Eventually we will have Γ′

p = Γp.

For the translation of each process, we set the ini-

tial local environment with the empty set, i.e., Γinitp =

{x ; {} | for all local x}. The shared environment is

initialized as Γinits = {x ; {x} | for all shared x}, and

the initial pc label Ψ0 is set to be {}.

5 Dynamic Checking

In the type system we do not do any static checking

for hsend and do only limited checking for lsend. This

is because the checking involves the permissions of both

the sender and the receiver. However, it is very diffi-

cult to determine statically the identifier of the receiver,

because applications (modeled as processes in our lan-

guage) can be dynamically installed or removed, and

the argument for the receiver’s identifier in the send

primitives may be given as a general expression instead

of a constant. To address these problems, we rewrite

hsend(e1, e2) into hsend(e1, e2, L) in the phase of pro-

gram translation, as explained in Subsection 4.4.2, and

do runtime checking for the annotated version of the

program. The dynamic checking takes the security la-

bel of the message L and the policies of both the sender

and the receiver as inputs, and checks whether the com-

munication causes privacy leak.

Firstly, we explain the runtime checking for the

primitive hsend(e1, e2, L) based on the two cases shown

in Fig.11. Recall that L is the union of the Ψ label

and the labels for e1 and e2, as shown in Fig.10. Let

(gapa, gspa) and (gapb, gspb) be the permissions of the

processes A and B respectively.

Sending the contact book from A to B in Fig.11(a)

should be forbidden, because B does not have the per-

mission to access the contact book. Therefore the first

constraint for hsend(e1, e2, L) is

L ⊑ gapb .

In the static type system, we take the access permission

gap of the current process as a conservative estimation

for the labels of the incoming messages. This require-

ment enforces it.

Fig.11(b) should be forbidden because A does not

have the permission to send contact book out while B

does. The message passing may allow A to send the

contact book out through the help of B. To prevent

this case, the second constraint is

gspb ⊑ gspa .

It means that if A does not have the permission to send

a confidential data, then it cannot be permitted to com-

municate with B which does have the permission.

In summary, the constraints for hsend(e1, e2, L) are

L ⊑ gapb ∧ gspb ⊑ gspa .

This is what we need to check at runtime, as the op-

erational semantics rule hsend-succ shown in Fig.8.



912 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

A B

{ContactBook}
{ContactBook}

ContactBook

{}
{}

A B

{}
{}

Any 
Message

{ContactBook}
{ContactBook}

(b)(a)

Fig.11. Cases of forbidden send. (a) Private data is forbidden to send to the application without the access permission. (b) An
application without the send permission is forbidden to send any message to an application it has.

For the lsend(e1, e2) primitive for non-confidential

messages, since the static checking (the LSend rule)

already requires that Le1 ⊔ Le2 ⊔ Ψ = {}, the above

condition downgrades to gspb ⊑ gspa, as shown by the

lsend-succ operational semantics rule in Fig.8.

6 One More Example

Now we show a simplified input method application

as a case study. We only consider two functionalities: 1)

generating candidate words based on the (incomplete)

user inputs, and 2) updating the word database.

The input method needs to access the contact book

to enlarge its word database to help generate hints for

names, but it is not supposed to send the contact book

out. The security policy ({CB},{}) allows the input

method to access the contact book, but prevents the

input method from sending it over the Internet. The

program shown in Fig.12 is used to model the input

method.

To explain the security mechanism more clearly, the

input method’s functionality is split into two processes,

InputDaemon and UpdateDaemon. The InputDaemon

reads the contact book, searches the word database

for potential matches, and sends the candidates to the

requesting process. The UpdateDaemon updates the

word database. It should never access any confidential

data. It only needs to send some non-confidential infor-

mation about the current database, such as the version

number, to the Internet, through the updatedb func-

tion. We also show the code of the Requester, which

sends the user inputs v to InputDaemon and gets the

candidates from it.

InputDaemon cannot send the contact book, i.e., CB,

outside directly by itself, because its send permission

is {}. InputDaemon cannot send CB outside via Up-

dateDaemon, because UpdateDaemon’s access permis-

sion is {}, which will break the dynamic checking for

hsend (see Section 5). InputDaemon cannot send CB

outside via InputRequester either. Although InputRe-

quester can access CB, its send permission is {}, thereby

it cannot send CB out.

Note that InputRequester must have the access per-

mission for the contact book CB; otherwise the hsend

primitive in InputDaemon cannot pass the dynamic

checking. The function addIntoDB adds CB into the

database wordsdb (line 3 in Fig.12). Therefore the

value returned by function candidates will contain the

value of CB. Therefore the message z will be sent to Inpu-

tRequester (line 7 in Fig.12). If InputRequester does not

have the permission to access CB, it cannot receive the

message containing CB. Therefore the message-passing

will fail.

7 Leak-Freedom

An apparent way to specify the leak-freedom pro-

perty is to require that each output generated by each

process imust be permitted by its send permission gspi.

However, this requirement is too weak because it can-

InputDaemon:

1. {CB} {}

2. y := get(CB);

3. addIntoDB(y,wordsdb);

4. while (true) do {

5. lrecv(t1,x);

6. z := candidates(x,wordsdb);

7. hsend(t1,z);

8. }

UpdateDaemon:

9. {} {}

10. while(true) do {

11. updatedb(wordsdb);

12. }

InputRequester:

13. {CB} {}

14. lsend(InputDaemon,v);

15. hrecv(t2,w);

Fig.12. Input method example.
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not prevent the information leak caused by process col-

lusion. For instance, for Figs.4(b)–4(e), App1 trivially

satisfies this requirement because it does not generate

any output at all. However, it may cause the leak of

the contact book with the help of App2.

The program shown in Fig.1 is such a concrete ex-

ample. Assume that process t0 is untrusted and pro-

cess t1 is trusted, e.g., the policies of processes t0 and

t1 are ({}, {}) and ({CB}, {CB}) respectively. Process

t0 does not output any privacy by itself, but it con-

trols whether process t1 outputs the privacy through

the interaction with process t1. This may potentially

lead to the privacy leak, e.g., privacy is sent to an ad-

dress controlled by the developer of process t0 who is

untrusted. The previous non-interference properties for

concurrent programs[10−15] do not prevent this kind of

leak. For process t0, the send permission is {}; there-

fore the non-interference property requires that outputs

of process t0 should not contain any privacy. This re-

quirement is satisfied by this program, because process

t0 outputs nothing. For process t1, the send permis-

sion is {CB}; therefore the non-interference property re-

quires that outputs of process t1 should not contain

any privacy other than CB. This requirement is satis-

fied by this program too, because the only information

output by t1 is CB.

To address this problem, we propose a new non-

interference-like property, leak-freedom property, which

requires that for any output generated by any process,

as long as the output is influenced by the process i,

it does not contain any information unpermitted by

gspi. In Figs.4(b) and Fig.4(e), the outputs of the con-

tact book by App2 are all influenced by App1. Then

we have to define what we mean by saying an out-

put is influenced by a process i. Below we first give

an instrumented operational semantics to the core lan-

guage. Then we formally define the leak-freedom pro-

perty. Note that the instrumented semantics is used

to define leak-freedom property (Definition 5) only. It

does not have to be implemented at runtime and does

not introduce any extra runtime behaviors.

7.1 Instrumented Operational Semantics

Fig.4(b) and Fig.4(e) show the collusive leak caused

by IPC. The following program is an example of

Fig.4(b).

t0. {CB}

{}

x := get(CB);

hsend(t1,x);

t1. {CB}

{CB}

hrecv(t,x);

out(x);

Process t0 does not have the permission to send CB out,

but it sends CB to process t1 directly and t1 sends it

out for t0. To forbid this kind of leak, we need to know

whether the output is influenced by messages from pro-

cesses that do not have permissions. Therefore each

value in the output is instrumented with a process iden-

tifier set, which records the processes influencing the

value.

It is not enough to just record the processes affect-

ing the value sent out, i.e., the processes affecting e in

the out(e) primitive. Consider the following example of

Fig.4(e).

t0. {}

{}

x := 1;

lsend(t1,x);

t1. {CB}

{CB}

lrecv(t,x);

if (x==1)

then y := get(CB);

out(y);

else skip;

Process t0 does not have the permission to send CB out,

but its execution leads to CB sent. Therefore processes

influencing the program counter should be recorded in

the output as well.

In our language, a process A may influence an out-

put if

1) A generates the output itself;

2) A interacts with another process B through IPC,

which causes B to influence the output.

It is obvious that each output is influenced by at least

one or possibly multiple processes.

There are two kinds of process sets to influence the

output recorded in the outstate o as the out(e) primitive

command executes:

1) the process set influencing the value of e;

2) the process set influencing the program counter.

To trace the set of processes that may influence an

output, in the instrumented semantics we record for

each variable the set of processes T that may affect

its value. When a message is received by primitive

lrecv(x, y) or hrecv(x, y), the process identifier of the

sender is stored in the values of variables x and y in

the private store s. The process identifiers influenc-

ing the value of the message should be stored in the

value of x and y too. Therefore each element in the

message queues q and q is instrumented with a process

set. When the program continues to execute, the set

of processes that influences each variable is traced. For

example, the assignment x := e assigns the union of
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the sets of processes that influence the variables in e to

the process set influencing x. To distinguish the out-

puts affected by different processes, each element in the

output history o is instrumented with a process set.

The new state model is shown in Fig.13. Compared

with the state model in Fig.7, a process set T is in-

troduced for each variable in private store s, for each

message in the message queues q and q, and for each

output in the output state o. We also add the process

stack Ω that may affect the program counter into the

private state of each process, so that the influence of the

control flow can be caught. The pc process stack Ω is

a stack of the process set. Each time when the process

enters a conditional or a loop, a process set that influ-

ences the control flow is pushed on the pc process stack.

When a conditional or a loop is exited, the top element

of each stack is popped. Since the exit points of con-

ditionals and loops are unknown during the execution,

we insert the end command at the end of conditionals

and loops to mark the exit points by program trans-

lation (shown in Fig.10). When the end command is

executed, the top of pc process stack is popped.

(PIdSet) T ∈ P(PId)

(Stores) s, s ∈ Vars → PIdSet ×Nat

(Private State Set) δ ::= {t1 ; ρ1, . . . , tn ; ρn}

(Msg Queue Set) Q,Q ::= {t1 ; q1, . . . , tn ; qn}

(Shared State) σ ::= (s, Q,Q, o)

(Policy Set) Θ ::= {t1 ; θ1, . . . , tn ; θn}

(PC PIdSet) Ω ::= nil | T :: Ω

(Private State) ρ ::= (Ω, s)

(Msg Queue) q,q ::= nil | (t, T, n) :: q

(OutState) o ::= nil | (T, n) :: o

(State) Σ ::= (δ, σ)

Fig.13. Instrumented state model.

Selected rules of the instrumented semantics are

shown in Fig.14. Note that Ω is a stack of the pro-

cess set and Ω̂ flattens the stack Ω into a single set, i.e.,

Ω̂ =
⋃

T∈Ω

T . The parallel rule follows the standard

interleaving semantics. The lsend primitive appends

the message, along with the union of process identifiers

influencing the message T , process identifiers influenc-

ing the program counter Ω̂ and the process identifier

of the sender t, to the non-confidential message queue,

if the target exists (the lsend-succ rule). Note that

[[e]]s returns a pair (T, i), where T represents the pro-

cess set influencing the value of e (i.e., the union of the

process sets influencing the variables in e) and i is the

value of e under the private store s. As shown in the

example below, the message queue cannot record only

the identifier of the sender, or the following leak cannot

be captured.
t0. {}

{}

x := 1;

lsend(t1,x);

‖ t1. {CB}

{CB}

lrecv(t,x);

lsend(t2,x);

‖ t2. {CB}

{CB}

lrecv(t,x);

if (x==1)

then y := get(CB);

out(y);

else skip;

Here process t0 does not have the permission to

send CB out. But since t1 sends to t2 whatever it re-

ceives from t0, t0 leads to the output of CB indirectly.

The process identifiers influencing the program counter

Ω̂ are recorded to prevent the implicit information chan-

nel depending on the control flow.

If the target of lsend primitive does not exist, it

simply returns (see the lsend-fail rule). Correspond-

ingly, the lrecv(x, y) command sets the process iden-

tifiers influencing y to be the union of process identi-

fiers influencing the non-confidential message T , process

identifiers influencing the program counter Ω and the

current process identifier t, if the non-confidential mes-

sage queue is not empty (see the lrecv-succ rule). If

the non-confidential message queue is empty, the pro-

cess identifiers influencing y are set to be the union

of process identifiers influencing the program counter

Ω and the current process identifier t (the lrecv-fail

rule). No matter whether the non-confidential message

is empty, the process identifiers influencing x are set

to be the union of process identifiers influencing the

program counter Ω and the current process identifier t.

The rules for hsend/hrecv primitives are similar, except

that the confidential message queue is used.

The put primitive does not record the process identi-

fiers influencing the value of the shared variables. Com-

pared with the inter-process communication, the pro-

cesses which have written the shared variables are not

of concern (e.g., the writers of the shared variables are

not recorded in the shared variables in Android), but

the sender of the received message should be consi-

dered (e.g., the sender of the message is recorded along
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ρ = δ(i) Θ ⊢ (Ci, (ρ, σ)) →֒i (C
′

i, (ρ
′, σ′))

Θ ⊢ (C1 ‖ · · · ‖ Ci ‖ · · · ‖ Cn, (δ, σ)) −→ (C1 ‖ · · · ‖ C′

i ‖ · · · ‖ Cn, (δ{i ; ρ′}, σ′))
(parallel)

ρ = (Ω, s) [[e1]]s = (Ti, i) [[e2]]s = (T, n) σ = (s, Q,Q, o)qi = Q(i) q′

i = qi++[(t, T ∪ Ω̂ ∪ {t}, n)] Q′ = Q{i ; q′

i} σ′ = (s,Q,Q′, o)
Θ(i).gsp ⊑ Θ(t).gsp

Θ ⊢ (lsend(e1, e2), (ρ, σ)) →֒t (skip, (ρ, σ
′))

(lsend-succ)

ρ = (Ω, s) [[e1]]s = (Ti, i) σ = (s,Q,Q, o) Q(i) = undefined

Θ ⊢ (lsend(e1, e2), (ρ, σ)) →֒t (skip, (ρ, σ))
(lsend-fail)

ρ = (Ω, s) σ = (s,Q,Q, o) Q(t) = (i, (T, n)) :: q′

s′ = s{x ; (Ω̂ ∪ {t}, i), y ; (T ∪ Ω̂ ∪ {t}, n)} ρ′ = (Ω, s′)Q′ = Q{t ; q′} σ′ = (s, Q,Q′, o)

Θ ⊢ (lrecv(x, y), (ρ, σ)) →֒t (skip, (ρ
′, σ′))

(lrecv-succ)

ρ = (Ω, s) σ = (s, Q,Q, o) Q(t) = undefined

s′ = s{x ; (Ω̂ ∪ {t}, 0), y ; (Ω̂ ∪ {t}, 0)} ρ′ = (Ω, s′)

Θ ⊢ (lrecv(x, y), (ρ, σ)) →֒t (skip, (ρ
′, σ))

(lrecv-fail)

ρ = (Ω, s) [[e]]s = (T, n) σ = (s, Q,Q, o) s′ = s{x ; ({}, n)} σ′ = (s′, Q,Q, o)

Θ ⊢ (put(x, e), (ρ, σ)) →֒t (skip, (ρ, σ
′))

(put)

ρ = (Ω, s) σ = (s, Q,Q, o) s(y) = (T, n) s′ = s{x ; Ω̂ ∪ {t}, n} ρ′ = (Ω, s′)

Θ ⊢ (x := get(y), (ρ, σ)) →֒t (skip, (ρ
′, σ))

(get)

ρ = (Ω, s) [[e]]s = (T, n) σ = (s, Q,Q, o) o′ = (Ω̂ ∪ {t} ∪ T, n) :: o σ′ = (s, Q,Q, o′)

Θ ⊢ (out(e), (ρ, σ)) →֒t (skip, (ρ, σ
′))

(out)

ρ = (Ω, s) [[b]]s = (T, true) ρ′ = (T :: Ω, s)

Θ ⊢ (if b then C1 else C2, (ρ, σ)) →֒t (C1, (ρ
′, σ))

(if-true)

ρ = (Ω, s) [[b]]s = (T, false) ρ′ = (T :: Ω, s)

Θ ⊢ (if b then C1 else C2, (ρ, σ)) →֒t (C2, (ρ
′, σ))

(if-false)

ρ = (Ω, s) [[b]]s = (T, true) ρ′ = (T :: Ω, s)

Θ ⊢ (while b do C, (ρ, σ)) →֒t (C; while b do C, (ρ′, σ))
(while-true)

ρ = (T :: Ω, s) ρ′ = (Ω, s)

Θ ⊢ (end, (ρ, σ)) →֒t (skip, (ρ
′, σ))

(end)

Fig.14. Selected rules of the instrumented semantics.

with the content of the message in Android) (see the

put rule). Correspondingly, x is not considered to

be affected by the process identifiers influencing y in

x := get(y) command. The process identifiers influenc-

ing x are set to be the union of process identifiers influ-

encing the program counter Ω and the current process

identifier t (see the get rule).

The out primitive sets the process identifiers influ-

encing the output to be the union of process identifiers

influencing the value sent out T , process identifiers in-

fluencing the program counter Ω and the current pro-

cess identifier t (see the out rule).

The process set of the condition expression b is

pushed into Ω when if b then C1 else C2 or while b do C

commands are executed (the if-true, if-false and

while-true rules), and the top of Ω is popped when

an end command is executed (see the end rule). There-

fore the influence of the control flow is restricted inside

the scope of the if and while commands.

Compared with the semantics shown in Section 3,

the instrumented semantics only does some extra book-

keeping during the execution, which would not affect
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the control flow and the original state of the program.

Therefore if a program that runs on the new semantics

does not leak privacy (i.e., violating its gsp permission),

then its execution on the original semantics does not

leak privacy either. Below we specify the leak-freedom

property based on the instrumented semantics.

7.2 Formalization of Leak-Freedom

A program P does not leak any confidential infor-

mation, if for each process i with the send permissions

gspi, the information in the shared variables which are

not declared in gspi should not flow to the output in-

fluenced by process i. Following the idea of the non-

interference, we define a similar leak-freedom property,

that is, for each process i, if the low-level parts of the

initial state, i.e., the parts whose labels are lower than

gspi, stay unchanged, then the outputs influenced by i

remain the same.

To formally define the leak-freedom property, we

first define the equivalence of two states with respect

to the given security label L (defined in Definition 1),

which says that two states are L-equal if they agree on

the low level parts. Then we give an invariant property

(defined in Definition 2) that needs to be satisfied by the

initial states and throughout the program execution. It

describes the relation between the permissions of the

process which the state belongs to and the permissions

of other processes which influence the value of the state.

Next we define the equivalence of two annotated pro-

grams in Definition 4. The non-interference property

can be viewed as the equivalence between a program

and itself running under equivalent states. Finally our

target security property leak-freedom is defined in Def-

inition 5 based on the program equivalence.

Definition 1 (L-Equal States). The program states

Σ1 and Σ2 are L-equal on process i over Θ, Γs, Ψ and

∆, denoted as Σ1 ≈Θ,Γs,Ψ,∆,i
L Σ2, iff for all δ1, σ1, δ2

and σ2, if Σ1 = (δ1, σ1) and Σ2 = (δ2, σ2), then we re-

quire that both private state sets and shared states are

L-equal.

1) L-Equal Private States. δ1 ≈Ψ,∆
L δ2, iff for all

t, Ω1, s1, Ω2, s2, Ψ and Γ, if Ψ(t) = Ψ, ∆(t) = Γ,

δ1(t) = (Ω1, s1) and δ2(t) = (Ω2, s2), then:

a) L-equal pc process sets: Ω1 ≈Ψ
L Ω2, iff if Ψ ⊑ L,

then Ω1 = Ω2;

b) L-equal private stores: s1 ≈Γ
L s2, iff for all x, if

Γ(x) ⊑ L, then s1(x) = s2(x).

2) L-Equal Shared States. σ1 ≈Θ,Γs,i
L σ2, iff for alls1, Q1,Q1, o1, s2, Q2,Q2, o2, if σ1 = (s1, Q1,Q1, o1),

σ2 = (s2, Q2,Q2, o2), then we require that four compo-

nents in the shared state are L-equal:

a) L-equal shared stores: s1 ≈Γs

L s2, iff for all x, if

Γs(x) ⊑ L, then s1(x) = s2(x);
b) L-equal high message queues: Q1 ≈Θ

L Q2, iff for

all j and gap, if Θ(j) = (gap, ) and gap ⊑ L, then

Q1(j) = Q2(j);

c) equal low message queues: Q1 = Q2;

d) equal outputs: o1 ≈i o2, iff o1|i = o2|i, where o|i
is inductively defined as below:

nil|i = nil,

((T, n) :: o)|i =

{

n :: o|i, if i ∈ T,

o|i, otherwise.

Informally, two states are L-equal, if their low-level

parts are the same, i.e., the parts whose labels are lower

than L. We define two L-equal states in Definition 1. It

says that two states Σ1 = (δ1, σ1) and Σ2 = (δ2, σ2) are

L-equal, i.e., Σ1 ≈Θ,Γs,Ψ,∆,i
L Σ2, if and only if both the

private and the shared parts are L-equal respectively,

i.e., δ1 ≈Ψ,∆
L δ2 and σ1 ≈Θ,Γs,i

L σ2. The L-equality

of two private states δ1 ≈Ψ,∆
L δ2 requires that both pc

and private stores are L-equal. The L-equality of two

shared states requires that shared stores and high mes-

sage queues are L-equal and they have the same low

message queues and output for each process. Here we

use o|i to generate the subsequence of the output influ-

enced by the process i.

Definition 2 (Invariant Property). INV(Σ,Θ) iff

for all δ and σ, if Σ = (δ, σ), then we require that all

private state sets and shared states satisfy some certain

properties respectively .

1) For all t ∈ dom(δ) such that INVP(δ(t), t,Θ)

which is defined below.

Private State Invariant: INVP(ρ, t,Θ), requires that

for all Ω and s, if ρ = (Ω, s), then the following holds:

a) for all i and T , if T ∈ Ω and i ∈ T , then

Θ(t).gsp ⊑ Θ(i).gsp;

b) for all i, x, T and n, if s(x) = (T, n) and i ∈ T ,

then Θ(t).gsp ⊑ Θ(i).gsp.

2) Shared State Invariant: INVS(σ,Θ), requires that

for all t, s, Q, Q, o, q and q, if σ = (s, Q,Q, o),

q = Q(t) and q = Q(t), then the following holds:

a) for all i, i′, T and n, if (i′, T, n) ∈ q and

i = i′ ∨ i ∈ T , then Θ(t).gsp ⊑ Θ(i).gsp ;

b) for all i, i′, T and n, if (i′, T, n) ∈ q and

i = i′ ∨ i ∈ T , then Θ(t).gsp ⊑ Θ(i).gsp.

The above invariant property states that for each

process t, the process i that influences the values of
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process t’s private state and shared state must have a

higher send permission than the process t, i.e., gspt ⊑

gspi. Since a process can be influenced by other pro-

cesses only through IPC, the shared state invariant only

considers the high and low message queue sets. The

property holds during the execution of the program;

therefore it is an invariant. This invariant catches the

fact that the behaviors of process t, including the out

command, can be only affected by processes which have

a higher send permission. Therefore processes cannot

send out the confidential information for others which

do not have sufficient permissions. Note that Ω is a

stack of the process identifier set (see Subsection 7.7.1),

and T ∈ Ω means that T is an element in the stack Ω.

We only consider the equivalence of two programs

under the assumption of the program termination,

which is defined in Definition 3.
Definition 3 (Program Termination). A pro-

gram P = (C1 ‖ · · · ‖ Cn) terminates
from the initial private state set δ under the pol-
icy set Θ, i.e., terminate(P , δ,Θ), iff each pro-
cess t terminates with an arbitrary shared state
σ, denoted as processterm(t, Ct, δ(t), σ,Θ), where
processterm(t, C, ρ, σ,Θ) is inductively defined as below:

processterm(t, skip, ρ, σ,Θ)

Θ ⊢ (C, (ρ, σ)) →֒t (C
′, (ρ′, σ′)) processterm(t, C′, ρ′, σ′′,Θ)

processterm(t, C, ρ, σ,Θ) .

When a command C executes, other processes may

modify the shared state. Therefore, a process t always

terminates from the configuration (C, (ρ, σ)) with the

policy set Θ, if it can execute to skip, regardless of the

changes of the shared state.

The requirement for the termination is reasonable.

Consider the program shown in Fig.15[10].

PIN, mask, trigger0, trigger1, maintrigger and

result are shared variables. Processes t0 and t1

are allowed to output the value of result. If ini-

tially maintrigger = 0, trigger0 = 0, trigger1 =

0, result = 0, mask is a power of 2 and PIN is an arbi-

trary natural number less than twice of mask, then the

value of result will be equal with PIN after the termi-

nation of the program. Although processes t0 and t1

are not permitted to access the privacy PIN, they leak

it indirectly.

Our requirement of termination will rule out this

program, because for process t0, if the value of the

shared variable trigger0 is changed to 0, then it will

never terminate. To reject this program, Smith and

Volpano required that loop conditions in the program

should not contain privacy[10]. This requirement rejects

some obviously secure programs, such as the following

program.
{s}

{ }

x := get(s);

while (x < 10) do {

x := x+1;

}

This program satisfies our termination requirement, be-

cause at each program point, the change of the shared

variable s will not lead this program to infinite loop.

Definition 4 (Program Equivalence).

P ≈Θ,Γs,Ψ,∆,i
L P ′ iff for all o1, Σ, Σ′, δ, δ′, σ and

σ′, if

1) Σ = (δ, σ), Σ′ = (δ′, σ′), INV(Σ,Θ), INV(Σ′,Θ)

and Σ ≈Θ,Γs,Ψ,∆,i
L Σ′;

2) terminate(P , δ,Θ) and terminate(P ′, δ′,Θ);

3) Θ ⊢ (P ,Σ) −→∗ (skip ‖ · · · ‖ skip, ( , ( , , , o1)));

then there exists o2, such that Θ ⊢ (P ′,Σ′) −→∗ (skip ‖

· · · ‖ skip, ( , ( , , , o2))) and o1 ≈i o2.

Informally, P ≈Θ,Γs,Ψ,∆,i
L P ′ says that the outputs

influenced by the process i of the program P and of

the program P ′ are indistinguishable, i.e., (o1 ≈i o2),

if the initial states of these two programs agree on all

variables whose labels are less than L. Note here we as-

sume the execution of the two program configurations

must terminate, which also implies that the dynamic

checking does not abort the execution. The initial state

should satisfy the invariant property. Since the exe-

cution of the program is non-deterministic due to the

interleaving process interaction, the equivalence of two

programs cannot be defined as the equivalence of the

final states in the arbitrary executions. We say that a

program P is equivalent with another program P ′, if for

any execution of P from the initial state Σ, there is an

execution path of P ′ from the equivalent state Σ′, such

that they generate the equivalent outputs. Note that

a state Σ = ( , ( , , , o)) means that there exists δ, s,
Q and Q such that Σ = (δ, (s, Q,Q, o)). Based on the

definition of the program equivalence, the leak-freedom

property can be defined as below.

Definition 5 (Leak-Freedom). A program P is

leak-freedom with respect to the policy set Θ, the type

environment of shared variables Γs, pc environments Ψ

and type environments ∆, i.e., LF(P ,Θ,Γs,Ψ,∆), iff

for all i and gsp, if Θ(i) = ( , gsp), then P ≈Θ,Γs,Ψ,∆,i
gsp

P.

A program P satisfies leak-freedom, if it is equiv-

alent with itself. That is, for each process i, it can
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generate the same output influenced by the process i,

regardless of the value of the high-level parts of the ini-

tial state whose labels are not lower than the process

i’s send permission.

t0. {mask, trigger0, maintrigger, result}

{result}

maskcopy := get(mask);

while (maskcopy != 0) do {

trigger0copy := get(trigger0);

while (trigger0copy = 0) do {}

resultcopy := get(result);

put(result, resultcopy | maskcopy);

put(trigger0, 0);

maintriggercopy := get(maintrigger);

maintriggercopy := maintriggercopy + 1;

put(maintrigger, maintriggercopy);

if (maintriggercopy = 1)

then put(trigger1, 1);

else skip;

}

out(result);

‖
t1. {mask, trigger1, maintrigger, result}

{result}

maskcopy := get(mask);

while (maskcopy != 0) do {

trigger1copy := get(trigger1);

while (trigger1copy = 0) do {}

resultcopy := get(result);

put(result, resultcopy & ~maskcopy);

put(trigger1, 0);

maintriggercopy := get(maintrigger);

maintriggercopy := maintriggercopy + 1;

put(maintrigger, maintriggercopy);

if (maintriggercopy = 1)

then put(trigger0, 1);

else skip;

}

out(result);

‖
t2. {PIN, mask, trigger0, trigger1, maintrigger}

{}

maskcopy := get(mask);

while (maskcopy != 0) do {

put(maintrigger, 0);

if ((PIN & maskcopy) = 0)

then put(trigger0, 1);

else put(trigger1, 1);

maintriggercopy := get(maintrigger);

while (maintriggercopy != 2) do {}

maskcopy := maskcopy/2;

put(mask, maskcopy);

}

put(trigger0,1);

put(trigger1,1);

Fig.15. Example of privacy leak caused by process cooperation.

8 Soundness

We give the soundness theorem in Theorem 1, which

ensures that our hybrid approach of combining the type

system and the dynamic checking is sufficient to pre-

vent collusive information leak. It says that for any

program p, if it can be translated to the instrumented

version P , then P satisfies the leak-freedom property.

Here “TP(p,Ψ,Γs,∆) _ (P ,Θ)” (defined in Fig.10)

performs the static checking and translates the program

p into the annotated program P .

Theorem 1 (Soundness). For any p, Ψ, Γs,

∆, Θ and P, if TP(p,Ψ,Γs,∆) _ (P ,Θ), then

LF(P ,Θ,Γs,Ψ,∆).

To prove the leak-freedom property which is de-

fined as the equivalence of two concurrent programs,

by following the proof techniques proposed in [18, 19],

we introduce a compositional process-local simulation

relation (see Definition 7) to accomplish the proof.

Firstly, by applying Lemma 1, the target goal of the

leak-freedom property can be converted into proving

that the program simulation relation holds between two

identical annotated programs. Secondly, by applying

Lemma 2 which shows the parallel compositionality of

the process-local simulation, we are able to decompose

the program simulation relation into the process-local

simulation relation of each process. Finally, by applying

Lemma 3, we are required to show that the annotated

process is obtained by doing the command translation,

which can be simply derived from the program trans-

formation rule TProg in Fig.10. We mechanize all

the definitions and proofs in Coq 8.7.0 which contains

around 15 500 lines of Coq scripts 4○. Coq offers a rich

capability to express the theorem and the correspond-

ing proof based on a strict mathematical theory, and

has been widely used to illustrate the correctness of the

proof. With the help of Coq, we provide the machine

checkable proof of the soundness theorem. The cor-

rectness of the proof can be checked by the Coq proof

checker whose size is small and its correctness can be

easily verified.

Definition 6 (Program Simulation). Ψ, ∆, ∆′, Θ,

Γs, i |= P �L P ′ if and only if for all δ and δ′, if

δ ≈Ψ,∆
L δ′, terminate(P , δ,Θ) and terminate(P ′, δ′,Θ),

then Ψ,∆′,Θ,Γs, i |= (P , δ) �L (P ′, δ′). Whenever

Ψ,∆′,Θ,Γs, i |= (P , δ) �L (P ′, δ′), the followings hold:

1) for all Σ, Σ′, Σ1, σ, σ
′, P1, δ1 and σ1, if

4○https://formal-android-security.github.io, May 2019.
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a) Σ = (δ, σ), Σ′ = (δ′, σ′), Σ1 = (δ1, σ1),

INV(Σ,Θ), INV(Σ′,Θ) and σ ≈Θ,Γs,i
L σ′;

b) Θ ⊢ (P ,Σ) −→ (P1,Σ1);

then there exist P ′

1, Σ
′

1, δ
′

1 and σ′

1, such that:

a) Σ′

1 = (δ′1, σ
′

1), INV(Σ1,Θ), INV(Σ′

1,Θ) and

σ1 ≈Θ,Γs,i
L σ′

1;

b) Θ ⊢ (P ′,Σ′) −→∗ (P ′

1,Σ
′

1);

c) Ψ,∆′,Θ,Γs, i |= (P1, δ1) �L (P ′

1, δ
′

1);

2) if P = (skip ‖ · · · ‖ skip), for all Σ, Σ′, σ

and σ′, if Σ = (δ, σ) and Σ′ = (δ′, σ′), INV(Σ′,Θ)

and σ ≈Θ,Γs,i
L σ′; then there exists Σ′

1 such that Θ ⊢

(P ′,Σ′) −→∗ (skip ‖ · · · ‖ skip,Σ′

1), INV(Σ′

1,Θ) and

Σ ≈Θ,Γs,Ψ,∆,i
L Σ′

1.

The above definition says that an annotated pro-

gram P is simulated by another annotated pro-

gram P ′, if (P , δ) can be simulated by (P ′, δ′), i.e.,

Ψ,∆′,Θ,Γs, i |= (P , δ) �L (P ′, δ′), assuming the equiv-

alence of δ and δ′, and the termination of P and P ′ run-

ning under the private state sets δ and δ′ respectively.

The program simulation relation Ψ,∆′,Θ,Γs, i |=

(P , δ) �L (P ′, δ′) relates two pairs of a program and

a private state set, instead of two execution configu-

rations. The shared states should always be L-equal

throughout establishing the simulation relation, and

the private states are only required to be L-equal when

the program terminates.

Definition 7 (Process-Local Simulation). Ψ, Γ, Γ′,

Θ, Γs, i |= C �t
L C′ if and only if for all ρ and ρ′, if

ρ ≈Ψ,Γ
L ρ′, for all σ0 such that processterm(t, C, ρ, σ0,Θ)

and for all σ′

0 such that processterm(t, C′, ρ′, σ′

0,Θ),

then Ψ,Γ′,Θ,Γs, i |= (C, ρ) �t
L (C′, ρ′). Whenever

Ψ,Γ′,Θ,Γs, i |= (C, ρ) �t
L (C′, ρ′), then the followings

are true:

1) for all σ, σ′, C1, ρ1 and σ1, if

a) INVP(ρ, t,Θ), INVS(σ,Θ), INVP(ρ′, t,Θ),

INVS(σ′,Θ) and σ ≈Θ,Γs,i
L σ′;

b) Θ ⊢ (C, (ρ, σ)) →֒t (C1, (ρ1, σ1));

then there exist C′

1, ρ
′

1 and σ′

1 such that

a) Θ ⊢ (C′, (ρ′, σ′)) →֒∗

t (C′

1, (ρ
′

1, σ
′

1));

b) Ψ,Γ′,Θ,Γs, i |= (C1, ρ1) �
t
L (C′

1, ρ
′

1);

c) INVP(ρ1, t,Θ), INVS(σ1,Θ), INVP(ρ′1, t,Θ),

INVS(σ′

1,Θ) and σ1 ≈Θ,Γs,i
L σ′

1;

2) if C = skip, for all σ and σ′, if INVP(ρ′, t,Θ),

INVS(σ′,Θ) and σ ≈Θ,Γs,i
L σ′, then there exist ρ′1 and

σ′

1 such that

a) Θ ⊢ (C′, (ρ′, σ′)) →֒∗

t (skip, (ρ′1, σ
′

1));

b) INVP(ρ′1, t,Θ), INVS(σ′

1,Θ), σ ≈Θ,Γs,i
L σ′

1 and

ρ ≈Ψ,Γ′

L ρ′1.

The process-local simulation “Ψ,Γ,Γ′,Θ,Γs, i |=

C �t
L C′” says that the annotated command C is simu-

lated by C′. The simulation relation requires that the

execution of C is related to the execution of C′ running

under the equivalent private states. Starting from the

L-equal shared states, each step of C corresponds to

zero or multiple steps of C′, and the resulting shared

states are still L-equal. If C terminates, then C′ termi-

nates as well, and the final states should be L-equal.

Here the invariant of L-equality over shared states can

be considered as the assumption from environments,

which allows us to prove the parallel compositionality

given in Lemma 2.

Lemma 1 (Program Simulation Implies Program

Equivalence). For all Ψ, ∆, ∆′, Θ, Γs, i, P and P ′, if

Ψ,∆,∆′,Θ,Γs, i |= P �Θ(i).gsp P ′, then P ≈Θ,Γs,Ψ,∆,i

Θ(i).gsp

P ′.

Proof. To prove P ≈Θ,Γs,Ψ,∆,i

Θ(i).gsp P ′, we need to prove

that for all k, o1, Σ, Σ
′, δ, δ′, σ and σ′, if

1) Ψ,∆,∆′,Θ,Γs, i |= P �Θ(i).gsp P ′;

2) Σ = (δ, σ) and Σ′ = (δ′, σ′);

3) terminate(P , δ,Θ) and terminate(P ′, δ′,Θ);

4) INV(Σ,Θ), INV(Σ′,Θ) and Σ ≈Θ,Γs,Ψ,∆,i
L Σ′;

5) Θ ⊢ (P ,Σ) −→k (skip ‖ · · · ‖ skip, ( , ( , , , o1)));

then there exists o2, such that Θ ⊢ (P ′,Σ′) −→∗ (skip ‖

· · · ‖ skip, ( , ( , , , o2))) and o1 ≈i o2. We first do in-

duction over k, and the base case is trivial. For the

induction case, we unfold the program simulation rela-

tion and apply it together with the induction hypothesis

to finish the proof. 2

Lemma 2 (Parallel Compositionality). For all

Ψ, ∆, ∆′, Θ, Γs, L, i, P = (C1 ‖ · · · ‖ Cn)

and P ′ = (C′

1 ‖ · · · ‖ C′

n), if for all 0 6 t 6 n

such that Ψ(t),∆(t),∆′(t),Θ,Γs, i |= Ct �t
L C′

t, then

Ψ,∆,∆′,Θ,Γs, i |= P �L P ′.

Proof. The above lemma can be proved by doing

co-induction. 2

Lemma 3 (Command Translation Implies Process-

Local Simulation). For all Ψ, Γ, Γ′, Θ, Γs, t, c and

C, if TC(c,Ψ,Θ(t),Γs,Γ) ; (C,Γ′), then for all i, we

have Ψ,Γ,Γ′,Θ,Γs, i |= C �t
Θ(i).gsp C.

Proof. We can prove the above lemma by doing in-

duction over the inference rules of the command trans-

lation. 2

9 Implementation

The checking rules of our approach can be easily

extended to analyze Android applications. For Android

applications, the operations to send a message (e.g., In-

tent) to another component or receive a message from

another component can be viewed as the send/recv
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primitives, and the rules for this pair of commands can

be applied to prevent the information leak caused by the

inter-component communication. The data that can

be accessed by various components, such as the files,

content providers and databases, can be viewed as the

shared variables. To prevent the privacy leakage caused

by the information transmission through the intermedi-

ate data, according to our rules, the intermediate data

can be only allowed to store some specific privacy, or

even no privacy. The operations to read/write the inter-

mediate data are viewed as the get/put primitives. The

functions that send the data outside the device (such

as writing to the network or Bluetooth) can be viewed

as the out primitives. And only the data satisfying the

send permission can be sent out. The rules for the if

and while commands can be used to track the implicit

information flow caused by the control flow.

Our approach has been implemented in Android

and the concrete implementation AndroidLeaker can

be found in [20]. The static checking is implemented

in the soot framework for Android application pack-

ages. The dynamic checking is achieved through code

instrumentation instead of changing the implementa-

tion of system calls. Some annotated instructions are

inserted before each message-sending operation to check

the validity of the communication. The implementation

requires programmers to provide gap and gsp together

with the APK package as inputs.

Other than the permissions, the implementation

does not require any changes or annotations of the code.

By default each send and receive are treated as the more

conservative hsend and hrecv primitives. Programmers

can force the use of lsend and lrecv by adding annota-

tions, but it is not obligatory.

AndroidLeaker[20] is tested on the DroidBench[1]

test cases, gets 82% precision for information leak

caused by individual applications, and can analyze the

information leak caused by inter-component communi-

cation more precisely. Unlike purely dynamic mecha-

nism (e.g., TaintDroid[2]) that adds overhead for each

command, AndroidLeaker only adds 5.6 ms for each

inter-component communication system call. By con-

trast, TaintDroid introduces 14% CPU overhead on

average for each application. AndroidLeaker will be

more efficient than the purely dynamic checking, if the

communication happens rarely.

10 Related Work

There have been many static analysis based tools

proposed[1,3,7−9,21−25] to address the security problems

of Android systems. CHEX[24] tries to detect the so-

called hijacking vulnerable applications, which may ex-

pose interfaces to perform privileged actions so that

other unauthorized applications can exploit them to ac-

cess the confidential data. Our method can also detect

this kind of vulnerable applications because an appli-

cation is forbidden to access or send confidential data

on behalf of another unauthorized application. On the

other hand, unlike our work, CHEX[24] is not a general

purpose tool to prevent different kinds of information

leak.

Leakminer[26] and FlowDroid[1] are both based on

the soot framework and implemented for the Android

system, but they do not consider the cooperation

among the applications and focus on the analysis of

one application.

Epicc[9] detects Android ICC (inter-component

communication) vulnerabilities, including sending an

Intent that may be intercepted by a malicious compo-

nent, or exposing components to be launched by a mali-

cious Intent. This is similar to our concern of the com-

munication among the applications. Since Epicc per-

forms static analysis and adopts a conservative strategy,

while we do dynamic checking when the communication

occurs, we can potentially achieve less false positives.

AppIntent[7] analyzes the sensitive data transmis-

sion in Android by using the configuration file (i.e., An-

droidManifest.xml) to infer the applications that this

application may communicate with, but the result is

just a very coarse estimation, which may lead to many

false positives.

ComDroid[27] detects the Intents possibly inter-

cepted by malicious applications and the exposed com-

ponents that may be utilized by the malicious applica-

tions to acquire confidential data or perform unautho-

rized actions. It does not concern whether the existence

of those intents or components indeed leaks private in-

formation or not, therefore is overly conservative and

may generate many false positives.

There are also some dynamic-checking based

approaches[2,5,28,29]. TaintDroid[2] and TaintART[5]

track the flow of privacy sensitive data between ap-

plications. They automatically taint the data from

privacy-sensitive sources and track the labels when the

sensitive data propagates. However, they do not pre-

vent the leaks via implicit flows. Aquifer[28] prevents

an application from exporting the data it gets from

another application and prevents the confidential data

from being exported without users’ consciousness. It

does not prevent an application from exporting the
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data by calling an authorized application. Felt et al.[29]

discussed the possible ways to perform permission re-

delegation attacks and proposed the IPC inspection to

detect permission re-delegation. The intuition is that

an application reduces its privilege after receiving mes-

sages from a less privileged application. Its aim is to

prevent the confidential data from being accessed by

a non-privileged application, rather than to prevent

the confidential data from being shared once it has

been accessed. AppAudit[6] performs dynamic analysis

through the simulation of the execution of the byte-

code, with the help of static analysis to narrow down

the analysis scope. The communications among appli-

cations are not considered.

On the other hand, unlike the aforementioned tools

that are all implemented for Android, we only discuss

the key ideas based on a simplified core language. we

formally define and prove the soundness of our ap-

proach. As far as we know, only Chaudhuri[30] stu-

died the Android security formally previously. He de-

signed a formal language to describe Android applica-

tions and proposed a type system to enforce secure flows

among content providers. But he did not model the

inter-process communication explicitly; thus the collu-

sive leak cannot be prevented.

There have been many formal studies about the

security for concurrent programs[10−15,31−34]. To our

knowledge, the first semantically sound security en-

forcement for concurrent programs is proposed by

Smith and Volpanno[11]. They developed a security

type system which is able to guarantee non-interference

for concurrent programs. In their type systems, loop

conditions should not contain any privacy, and loops

should not appear in the body of the conditionals

whose branch conditions contain privacy. Subsequently,

they extended the non-interference to the probabilis-

tic non-interference to rule out probabilistic timing

channels in the programs[10], and described how they

can be eliminated without making the type system

more restricted. But their solution depends on a

non-standard protect primitive which is difficult to

implement[12,31,34]. Sabelfeld and Sands eliminated the

need of protect primitive by padding the branches of

the conditionals[12]. They based the security condi-

tion on bisimulation, and got a scheduler-independent

and compositional non-interference property. But their

type systems still require that loop conditions should

not contain any privacy.

The requirement that some loop or branch condi-

tions should not contain any privacy[11,12] is introduced

to prevent the information leak caused by the influence

on termination among processes. As shown by the pro-

gram in Fig.15, another process may make the loop of

current process whose loop condition contains privacy

terminate only when some privacy (e.g., s) equals a

given value. Then the value of s is inferred after the

termination of current loop. Rejection of loops whose

loop conditions contain privacy prevents this kind of

leak, but it also limits the expressiveness of programs

(e.g., cannot search a given privacy among a group of

privacy). Our type system allows loop and branch con-

ditions to contain privacy.

The scheduler-independence of the security condi-

tion has been widely investigated[12−14,31]. Zdancewic

and Myers[13] extended non-interference with observa-

tional determinism. To achieve the observational de-

terminism, they required that the concurrent program

should be race-free. Their approach to preventing races

is to enforce that only one of the processes can write the

shared memory. This requirement is too strong for An-

droid applications, because every application with per-

missions may write the privacy, which is shared among

applications.

Russo and Sabelfeld introduced the interaction be-

tween processes and the scheduler to prevent privacy

leak caused by interleaving of concurrent programs[31].

They used a novel pair of primitives, hide and unhide, to

allow processes to affect the scheduling of the schedu-

ler. It is difficult to adapt this method in Android,

because to allow the interaction between processes and

the scheduler, the Android system should be deeply cus-

tomized.

Mantel and Sudbrock partitioned commands into

high commands that definitely do not modify the pub-

lic variables and into low commands that potentially

modify values of the public variables[14]. Although loop

and branch conditions in high commands are allowed to

contain privacy, those in low commands are not. Each

Android application may modify the public outputs,

thereby they will be classified as low commands, which

removes the benefits of this method.

None of the existing scheduler-independent

solutions[12−14,31] are proper for Android applications.

We do not aim to achieve the scheduler-independent

security. Instead we build our security condition on the

standard interleaving semantics, assuming that nothing

about the scheduler is known.

Another desirable property of security analysis

for concurrent programs is the compositionality

property[12,14,15,31−33]. The solutions based on the
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bisimulation[12,14,15] forbid all (or some) loop and

branch conditions to contain privacy. Additionally, al-

though Mantel et al. permitted the branch conditions

to be high, their type rules for conditionals depend on

command equivalence based on the semantics of the

command, which leads the type system to be not wholly

syntax-directed and not easily implemented[15]. Russo

and Sabelfeld based their approaches on a non-standard

hide and unhide primitives[31,32], which is difficult to

be implemented in Android applications. Askarov et

al. tracked the information flow dynamically and per-

formed the static analysis during the execution[33]. To

implement this hybrid mechanism, Android needs to

be greatly modified. Our type system is compositional

(shown by Theorem 1 in Section 8), and large numbers

of Android applications can be analyzed separately,

without knowing the applications which may run to-

gether with them.

Costanzo et al.[35] used a flexible observation func-

tion to specify the security policy and prove that

the non-interference can be preserved by security-

preserving simulation, and they used the methodology

to prove the memory separation among the individual

processes in a practical kernel, i.e., mCertiKos-secure,

but the IPC (inter-process communication) is disabled

in their kernel.

11 Conclusions

In this paper, we proposed a new mechanism to

prevent the information leak in Android. It combines

static information flow control with runtime checking

to effectively prevent the privacy leak caused by the

cooperation of the applications. This hybrid approach

may potentially have less false positive than the pure

static method, and may benefit from the static ana-

lysis to get lower runtime overhead than pure dynamic

checking. The soundness of this approach is formally

specified and proved in Coq.
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[25] Xu R, Säıdi H, Anderson R. Aurasium: Practical policy

enforcement for Android applications. In Proc. the 21st

USENIX Conference on Security Symposium, August 2012,

pp.539-552.

[26] Yang Z, Yang M. LeakMiner: Detect information leakage on

Android with static taint analysis. In Proc. the 3rd World

Congress on Software Engineering, November 2012, pp.101-

104.

[27] Chin E, Felt A P, Greenwood K, Wagner D. Analyzing

inter-application communication in Android. In Proc. the

9th International Conference on Mobile Systems, Applica-

tions, and Services, June 2011, pp. 239-252.

[28] Nadkarni A, Enck W. Preventing accidental data disclo-

sure in modern operating systems. In Proc. the 2013 ACM

Conference on Computer and Communications Security,

November 2013, pp.1029-1042.

[29] Felt A P, Wang H J, Moshchuk A, Hanna S, Chin E. Per-

mission re-delegation: Attacks and defenses. In Proc. the

20th USENIX Conference on Security, August 2011, Arti-

cle No. 22.

[30] Chaudhuri A. Language-based security on Android. In

Proc. the 2009 Workshop on Programming Languages and

Analysis for Security, June 2009, pp.1-7.

[31] Russo A, Sabelfeld A. Securing interaction between threads

and the scheduler. In Proc. the 19th IEEE Computer Secu-

rity Foundations Workshop, July 2006, pp.177-189.

[32] Russo A, Sabelfeld A. Securing interaction between threads

and the scheduler in the presence of synchronization. The

Journal of Logic and Algebraic Programming, 2009, 78(7):

593-618.

[33] Askarov A, Chong S, Mantel H. Hybrid monitors for con-

current noninterference. In Proc. the 28th IEEE Computer

Security Foundations Symposium, July 2015, pp.137-151.

[34] Russo A, Sabelfeld A. Security for multithreaded programs

under cooperative scheduling. In Proc. the 6th Interna-

tional Andrei Ershov Memorial Conference on Perspectives

of Systems Informatics, June 2006, pp.474-480.

[35] Costanzo D, Shao Z, Gu R. End-to-end verification of

information-flow security for C and assembly programs. In

Proc. the 37th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, June 2016,

pp.648-664.

Zi-Peng Zhang is a senior engineer

of Huawei Technologies Co., Ltd.,

Shanghai. He received his Bachelor’s

and Ph.D. degrees in computer sci-

ence from University of Science and

Technology of China, Hefei, in 2010

and 2018 respectively. His research

interests include program analysis,

formal verification, and information flow control.

Ming Fu is a technical expert of

Huawei Technologies Co., Ltd., Shang-

hai. He received his Bachelor’s and

Ph.D. degrees in computer science from

University of Science and Technology

of China, Hefei, in 2004 and 2010

respectively. His research interests

include OS kernel verification, real-time

embedded operating systems, concurrency verification,

formal methods, program logic, and interactive theorem

proving.

Xin-Yu Feng is a professor in the

State Key Laboratory for Novel Soft-

ware Technology and the Department

of Computer Science and Technology,

Nanjing University, Nanjing. He

received his Bachelor’s degree and Mas-

ter’s degree in computer science from

Nanjing University, Nanjing, in 1999

and 2002 respectively. He then received his Ph.D. degree

in computer science from Yale University, New Haven,

in 2007. His research interests are in the area of formal

methods and programming languages. In particular, he is

interested in developing theories, programming languages

and tools to build formally certified system software, with

rigorous guarantees of safety and correctness.


