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Abstract We extend the constraint data model to allow complex objects and study the expressive power of various

query languages over this sort of constraint databases. The tools we use come in the form of collapse results which are well

established in the context of first-order logic. We show that the natural-active collapse with a condition and the active-

generic collapse carry over to the second-order logic for structures with o-minimality property and any signature in the

complex value relations. The expressiveness results for more powerful logics including monadic second-order logic, monadic

second-order logic with fix-point operators, and fragments of second-order logic are investigated in the paper. We discuss

the data complexity for second-order logics over constraint databases. The main results are that the complexity upper

bounds for three theories, MSO + Lin, MSO + Poly, and Inflationary Datalog
cv,¬
act (SC,M) without powerset operator

are ∪i

∑NC1

i
, NCH =

⋃
i

∑NC

i
, and AC0/poly, respectively. We also consider the problem of query closure property in the

context of embedded finite models and constraint databases with complex objects and the issue of how to determine safe

constraint queries.

Keywords constraint database, monadic second-order logic, natural-active collapse, Ramsey property, o-minimality

structure

1 Introduction

Database systems are being widely used to support

emerging applications such as engineering design, image

or voice data management, spatial and spatial-temporal

information systems, and bioinformatics applications.

With the coming of the big data era, many advanced

applications involve voluminous data, which may some-

times be convenient to be considered “infinite” data.

The collected spatial and temporal data may be com-

plex and, in most case, contains much redundant in-

formation. It needs to be simplified for database rep-

resentation and the constraint data model is regarded

as an appropriate approach. Constraint databases were

designed to represent compact and well re-presentable

databases as it involves mathematical equations and

inequalities in a way that extend relational databases

while preserving the simplicity of main functions of

querying of stored infinite data[1]. To allow applications

to process possibly infinite data, constraint databases

have been proposed, which use a finite representation

of an infinite dataset and allow users to express queries

on such a representation as if the entire infinite set

was stored. In particular, spatial and/or temporal

databases often contain infinite datasets such as the set

of real numbers in an interval. These datasets can be

represented as a finite set of logical constraints, where

the actual dataset is the set of data points which sat-

isfy the set of constraints. For example, the constraint

x+2y = 0 represents the line which is a set of points

{(2a,−a) | a ∈ R} on the plane.

In many applications, spatial or temporal data is

often more intuitively described as sets of constraints,

and this may be the reason why constraint databases

are emerging as a unifying paradigm for the representa-

tion and manipulation of spatial or temporal data. The

constraint database model, introduced by Kanellakis et

al. in their seminal paper[2], is a powerful generali-

zation of the relational data model which uses logical

constraints as a finite representation of possibly infinite

sets of data points. The essential idea of the constraint
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data model is to generalize the notion of a tuple, based

on the observation that a tuple (a, b, c) in a relation

R with schema (x, y, z) can be represented as a logical

conjunction: (x = a) ∧ (y = b) ∧ (z = c). Similarly, if

R contains more than one tuple as shown in Table 1,

then R can be represented by the following formula in

first order logic.

(x = a1 ∧ y = b1 ∧ z = c1) ∨ (x = a2 ∧ y = b2 ∧ z = c2).

Table 1. Relation R

x y z

a1 b1 c1

a2 b2 c2

Applying the relational query ∃xR(x, y, z) to the

above instance, the result yields (y = b1∧z = c1)∨(y =

b2∧z = c2). The constraint data model then generalizes

the notion of a tuple by defining a generalized tuple in

n variables x1, ..., xn to be a conjunctive formula over

x1, ..., xn, where each literal in the formula can be an

arbitrary inequality. For example, x 6 y ∧ x 6 0 de-

fines a binary generalized tuple over variables x, y. A

generalized relation is then defined to be a finite set of

generalized tuples. For example, the constraint rela-

tion R(x, y) = (20 < x) ∨ (y < 7) ∨ (x = y) has three

generalized tuples (20 < x), (y < 7) and (x = y) and R

represents an infinite set of data points.

The formula of a generalized relation R can also be

viewed as the formula of its generalized tuples put in

disjunctive normal form (DNF), ψ1 ∨ψ2 ∨ · · · ∨ψn. We

may use ϕR to denote a quantified formula correspond-

ing to the relation R. A generalized database is a finite

set of generalized relations.

Constraint databases have been an active area of

database research for many years. One of the most

challenging questions in the theoretical development of

constraint databases is the expressive power of their

querying formalism: what are the limitations of query

languages for constraint databases[3]? In particular,

the classical techniques for analyzing the expressive

power of relational query languages no longer work in

the context of constraint databases. In the past two

decades, most questions on the expressive power based

on some characterization of structures and a relational

schema have been settled. These questions were re-

duced to those of the expressiveness of query languages

over ordinary finite relational databases, with addi-

tional condition that databases may store numbers, and

arithmetic operations (which form linear or polynomial

equations) may be used in queries[4]. To evaluate a

query in this constraint setting, each occurrence of a

database symbol D will be replaced by its finite rep-

resentation as a set of constraints, and then one can

apply the quantifier-elimination procedure to the above

obtained resulting formula, and get a quantifier-free for-

mula which is in a form of finite representation of the

query output[2].

In this paper we first introduce a new type of data

model called the constraint complex value model which

is based on generalizing the underlying database to al-

low complex values, rather than atomic values alone as

in previous research into constraint databases, and then

we investigate the expressive power of query languages

defined over this new model. We also observe that the

utility of allowing complex values is supported by the

fact that all the major commercial database systems,

such as IBM’s DB2 and Oracle Server, permit the use

of complex values.

Our study extends research into constraint

databases in two main areas (to be detailed soon):

1) we allow constraint complex values and 2) we con-

sider second-order query languages for complex values.

Many features of standard constraint databases could

be extended in an well organized way and several new

properties can be developed for this extended model.

Regarding the expressive power for logics for con-

straint databases, there are well-established results.

Many results on expressive power use the notion of

generic queries, which comes from the classical rela-

tional database setting. Therefore, to begin our inves-

tigation, we first review the concept of generic queries

in our new problem setting.

A generic query is the one whose result is unchanged

by a permutation on the underlying domain of data val-

ues.

For example, the answer to the parity query is the

same for the input {1, 2, 3, 4, 5} and for another in-

put {a, b, c, d, e}, which is obtained by the permutation

1 7→ a, 2 7→ b, 3 7→ c, 4 7→ d, 5 7→ e. The notion of

generic is also sometimes referred to as data indepen-

dence.

Next, we will briefly review the concept of collapse

results which is the main tool adopted in exploring ex-

pressive power of queries in constraint databases.

A collapse result means that query class A has no

more expressive power with respect to some characte-

ristics (e.g., generic queries) than query class B, where

query class A may appear to be much larger than

query class B[3−5]. For example, given the real or-

der field (R,+, ∗, 0, 1, <) and a relational signature SC,
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the classes of generic queries in first-order (FO) logic

over the real order field and SC, under active domain

interpretation, and in FO logic over the universal do-

main are the same, i.e., FO(SC) = FOact(SC)
[5], where

FOact denotes first-order queries under active domain

interpretation. It is worth remarking that many re-

searches have focused on database generic queries with

embedded finite model theory, where finite structures

are embedded in an infinite structure.

In many advanced database applications, the data

has a natural hierarchical structure, and this feature is

more naturally modeled by allowing complex values in

the data model rather than atomic values alone. Intui-

tively, complex value relations are relations in which

their entries themselves may be tuples or (nested) re-

lations. In other words, the complex value model al-

lows using the tuple and set constructors recursively. It

should be remarked that this model provides the core

structure of object-relational databases and comprises

an important component of many semantic models.

In this article we extend previous research on con-

straint databases by allowing the database to store com-

plex values. This extended model allows us to repre-

sent nested finitely re-presentable relations and sets.

Thus, applications involving natural spatial-temporal

objects can be easily modeled, without converting the

objects into flat relations. For example, many spa-

tial databases involve hierarchical data. In particular,

populations of cities, rainfall of regions, areas of river,

etc., are properties associated with sets of possibly infi-

nite points. Multi-layered geographic information sys-

tems (GIS) may represent many regions and channels

which in turn are represented by several atomic spatial

objects, like lines and triangles. These properties occur

naturally in many advanced GIS and applications of the

constraint data model and are more easily modeled by

allowing the use of complex values.

We illustrate two motivating examples as follows.

Example 1. Given a set of geometry objects which

are stored in an object-relational constraint database

as shown in Table 2, we represent it as a complex value

constraint database.

In Table 2, the third attribute is a complex value

which is a tuple value. We store three objects insight

in the third attribute: the first and the second com-

ponents describe figures like the “eyes”, and the third

describes a figure like the “mouth”. This constitutes

the objects in a nested relation form in the constraint

setting.

Example 2. Let us show another example. It rep-

resents a simple patient’s clinical data in a temporal

constraint database in Table 3. The third attribute is a

complex value which is a set of tuple values expressed

in constraints.

In addition to the above practical considerations,

we consider constraint query languages in the contexts

of the embedded finite model and constraint databases,

motivated primarily by their expressive power. It is

well-known from the literature that there are a number

of limitations of first-order logic. For example, queries

such as parity, majority, connectivity, transitive closure

and acyclicity property are not definable in FO logic,

with linear or polynomial constraints. It is natural to

turn one’s attention to a more expressive query lan-

guage to bypass these limitations. Second-order con-

straint query languages for complex values appear to

be a promising approach. Our goal is to study a frag-

ment of second-order logic, called monadic second-order

Table 2. Relation Geometry R

Area Scope Objects

A1 (x2/36+y2/25 = 1) <(x2+4x+y2 − 2y 6 4), (x2 − 4x+y2 − 2y 6 −4), (x2+y2 − 2y = 8 ∧ y < −1)>

A2 (x2/72+y2/36 = 1) <(x2+4x+y2 − 2y 6 4), · · ·>

...
...

...

Table 3. Relation Health Records

Name Symptom Diagnosis Medication Treatment (hour) Note

John {temperature, vomit} Infection Antibiotics {<(2 < stay < 5)>} · · ·

{temperature, dizzy} Unknown Antibiotics + drug A {<(ward, 5 < stay < 20), (21 < surgery < 22)>, · · ·

(22 < treatB < 24), (treatC, 22 < treatC < 23)}

.

..
.
..

.

..
.
..

.

..
.
..

Peter · · · · · · · · · · · · · · ·

Maria · · · · · · · · · · · · · · ·
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(MSO), for constraint databases with complex objects.

We follow a popular technique in the research of the

embedded finite model and constraint databases, which

adopts the tool of collapse results to analyze the expres-

sive power of query languages.

Relational database queries are required to have a

certain closure property: they return finite outputs on

finite inputs. This requirement is well known in the

database theory under the name of query safety: we

identify those formulas which return finite results. In

this paper, we consider this safety issue in the context

of embedded finite complex value model.

We summarize our main results of this paper as fol-

lows.

• We extend the constraint data model to allow con-

straint complex values and propose the most important

constraint query languages for embedded finite complex

value model and constraint complex value databases.

• Unlike in standard first-order constraint query lan-

guages, we show that three paradigms of query lan-

guages: Calculus, Algebra, and Datalog, are equivalent

for constraint databases with complex objects.

• We study second-order logic over the embedded

finite complex value model and the constraint complex

value databases settings. We show that the natural-

active collapse with a condition and the active-generic

collapse carry over to second-order logic for structures

with o-minimality property and any signature in the

complex value relations.

• The expressiveness results and complexity bounds

of more powerful logics including monadic second-order

logic with fix-points, and second-order, and various im-

portant constraint query languages for the complex ob-

ject model are investigated in the paper.

• We discuss the data complexity for second-order

logics over constraint databases. The main results

are that the complexity upper bounds for three the-

ories, MSO + Lin, MSO + Poly, and Inflationary

Datalog
cv,¬
act (SC,M) without powerset operator are

∪i

∑NC1

i , NCH =
⋃

i

∑NC
i , and AC0/poly, respec-

tively.

• We show that the complex value Datalog language

with stratified negation over polynomial constraints is

closed. Some topological properties, for example, con-

nectivity, can be defined in second-order logic.

• We develop an algorithm for detecting query

safety. The issue of safe query translation is compre-

hensively investigated in the paper.

We introduce notations in Section 2. In Section 3,

we review the concept of complex values and extend

the constraint data model to constraint complex values.

Then we first give a formal definition of the embedded

finite complex value setting and define the second-order

logic over this setting. We also propose the most im-

portant constraint query languages for this extended

constraint data model. We analyze expressive power of

logics in the context of constraint complex value data

model in Section 4. The techniques that we use nor-

mally come in the form of collapse results. These tech-

niques reduce many questions over constraint databases

or embedded finite models to the classical finite model

theory setting. In Section 5, we explore the comple-

xity of various constraint queries. In Section 6, we con-

sider the problem of safety in both embedded complex

value model and constraint settings. The related work

is briefly stated in Section 7. Finally, we give a conclu-

sion in Section 8.

2 Preliminaries

We briefly review basic concepts from standard con-

straint databases and then extend these concepts to

a more powerful extended constraint data model with

complex objects and corresponding query languages be-

yond the first-order logic in the next section. Most no-

tations are standard and adopted from the literature on

constraint databases.

2.1 Databases over Underlying Infinite

Structures

Vocabulary and Structures. Let Ω be a vocabulary

(or called signature) which consists of a set of inter-

preted function symbols F , a set of predicate symbols

P, and a set of constant symbols C . Each function

and predicate symbol has an associated arity. For ex-

ample, Ω = (+, <, 0, 1) is a signature with one func-

tion symbol + of arity two, one predicate symbol <

of arity two, and two constant symbols, 0 and 1. Let

M = 〈U ,Ω〉 be an infinite structure, where U is

an underlying infinite set (we normally call the uni-

verse or domain of the structure). For example, real

field R(R,Ω) = R(R,+, ·, 0, 1, <) and real linear order

group Rlin(R,Ω) = R(R,+, <, 0, 1) are two common

used structures in the context of constraint databases,

where R is the set of real numbers and +, ·, < are the

usual addition the multiplication and the ordering on

R. 0, 1 ∈ R.

A database schema SC is a finite nonempty set of

relational names {R1, ..., Rk}, each with a given arity

pi, 1 6 i 6 k, pi > 0. An instance of SC over a given
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structure M = (U ,Ω) with X ⊆ U is a family of finite

sets, {r1, ..., rk}, where ri ⊆ Xpi . It means that each

schema symbol Ri of arity pi is interpreted as a finite

pi-ary relation ri over X . We denote Inst(SC,M) as

the set of all instances defined on schema SC over M.

2.2 Logic

In order to introduce the necessary logics adopted

in the development of this paper, we briefly review, for

the sake of self-completeness, well known logics which

are used in standard constraint databases as follows.

First-Order Logic. We first define a first-order logic

over a structure M = 〈U ,Ω〉. We assume there exists

a countably infinitely set of variables V corresponding

to the structure M. In logics, terms are inductively

defined as follows:

• each variable is a term,

• each constant symbol c is a term, and

• if t1, ..., tk are terms and f is a k-ary function

symbol, then f(t1, ..., tk) is a term.

There are only two atomic formula forms: t = t′ and

p(t1, ..., tn), where t, t′, t1, ..., tn are terms, and p is a

predicate symbol in P. A first-order logic formula

is then built up from atomic formulas by using the

Boolean connectives (∨,∧,¬) and two quantifiers, ∀ and

∃. We denote by FO(SC,M) the first-order logic over

the structure M and a database D with schema SC.

We interchangeably denote FO(SC,M) or FO(D,M).

For example, ∀x(R(x, y)∧x = z) is a first-order for-

mula, where R is a predicate symbol in SC, x is a quan-

tified variables and y, z are free variables. A formula

which has no free variables is called a sentence. We

normally write ϕ(x1, ..., xn) to denote a formula with

free variables x1, ..., xn. It is a standard manner for

defining a formula ϕ which holds over a given structure

M and a database D by (M, D) |= ϕ(a), where a is

a vector of variables over the domain U . It is simply

written as D |= ϕ(a) when the underlying structure M

is understood.

In standard constraint databases, we normally

consider relational calculus, or, FO logic, over the

underlying structure M and the database D with

schema SC, as a basic query language formalism. A

FO(SC,M) formula ϕ(x1, ..., xn) applied to D is de-

fined as ϕ(M, D)
def
= {a ∈ U n | (M, D) |= ϕ(a)}.

Fixed-Point Logic. Next, we review fix-point logics

which are often used in database queries. Let A be a

set and k is a positive integer. A k-ary operator on

A is an injective mapping Φ: P(Ak) → P(Ak), where

P(Ak) is the power set of Ak. A k-ary relation R is a

fixed-point of the operator Φ if R = Φ(R). Thus, each

element a of a fixed-point R of Φ satisfies the recursive

specification

(a) ∈ R ⇔ (a) ∈ Φ(R).

A least fixed-point of Φ is a fixed-point X of Φ such

that X ⊆ Y for each fixed-point Y of Φ. We denote it

as Lfp(Φ).

A predicate symbol p occurs positively in a formula

ϕ if it occurs under the scope of an even number of nega-

tions. The syntactic expression for the least fixed-point

extensions of the first-order logic is stated as follows.

Definition 1. If R is an n-ary relation symbol not

in the database schema SC, and R occurs positively in

a first-order formula ϕ(x1, ..., xk,y, R), and t is a k-

vector of variables or terms, then

[Lfpx,R ϕ(x,y, R)](t)

is a fixed-point formula. The semantics is as follows:

given an instance D of Inst(SC,M) and a of the same

length with y, there exists a sequence Ra
i such that Ra

0

= ∅, and

Ra
i+1 = {(b1, ..., bk) ∈ U k | (M, D) |= ϕ(b,a, Ra

i )}.

This sequence is known to be monotonic, i.e., Ra
i ⊆

Ra
i+1.

Based on this monotonic property, the sequence

will eventually reach a fixed point (fixpoint), denoted

by Ra
∞

[6,7]. We denote (FO+Lfp)(M, D) as the set

of first-order least fix-point logical language over the

structure M and the database D 1○. We show how tran-

sitive closure can be expressed as a fixpoint operator.

Example 3. Given a graph G(x, y), consider the

transitive closure of this graph with distance at most

n. It can be defined inductively using the following

formula;

Lfp(T ) = G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧G(z, y))

as follows:

R0 = ∅,

Rn = Lfp(Rn−1), n > 0.

Here Lfp(Rn−1) denotes the result of evaluating

Lfp(T ) when the value of T is Rn−1. The sequence

of {Rn} converges and there exists some k such that

Rk = Rj for each j > k. Therefore Rk is a fixpoint of

Lfp(T ).

1○We just write FO+Lfp when D,M are well-known.
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There are two other semantics for the fixpoint ope-

rator. We briefly state them as follows (detailed ex-

planations will be provided in the subsequent sections

when we adopt them in the context). The first one infla-

tionary fixpoint logic, denoted as FO + Ifp, is defined

as

[Ifpx,Rϕ(x,y, R)](t).

Note that there is no imposing restriction on the occur-

rences of R. The semantics is the same as Lfp but the

formula construction is as follows:

Ra

i+1=Ra

i ∪ {(b1, ..., bk) ∈ U
k|(M, D) |= ϕ(b,a, Ra

i )}.

The other one is partial fixpoint logic, FO+Pfp, which

is defined as Lfp, and the fixpoint is Ra
∞ if it exists,

and ∅ otherwise.

2.3 Standard Constraint Database Model

We now give a formal definition of “constraint” be-

fore we define what a constraint database is. Given a

structure M = 〈U ,Ω〉, a constraint over Ω on U , writ-

ten as Ω-constraint, is an atomic first-order formula

or the negation of an atomic formula. For example,

x1+x2 < y and x2 − y < 0 are two constraints over the

structure M = 〈R,+, <, 0, 1〉.

We now review the standard constraint database

model[2,8]. Given a vocabulary Ω,

• a constraint k-tuple over Ω with variables

x1, ..., xk, is a finite conjunction formula ϕ1 ∧ · · · ∧ ϕl,

where each ϕi, 1 6 i 6 l, is an Ω-constraint, and the

variables in each ϕi are among x1, ..., xk;

• a constraint relation R of arity k over Ω is a finite

set r(R) = {γ1, · · · , γm}, where each γi, 1 6 i 6 m, is a

constraint k-tuple with same variables, and we denote

this constraint relation as a quantifier free disjunctive

formula ϕr = γ1 ∨ · · · ∨ γm;

• a constraint database D is a finite collection of n

constraint relations ϕr, i.e., D = ϕr1 ∪ · · · ∪ ϕrn .

Let us give a simple example using polynomial in-

equality constraints.

Example 4. The constraint relation r consists of the

two constraint tuples (x2+y2 = 1) and (y = 2×x2∧y <

4). The disjunctive normal form formula (abbreviated

as DNF) corresponding to this relation r is

ϕr(x, y) = (x2+y2 = 1) ∨ (y = 2× x2 ∧ y < 4).

This formula describes an infinite set of points which

include a circle and a part of parabola with y less than

4.

The set of points occurred in the constraint rela-

tions of a database D is called the active domain of D,

and is denoted by adom(D). For example, given a for-

mula ∀x, yS(x, y), the active domain of this formula is

all points (x, y) belonging to S.

2.4 Constraint Queries

As stated before, the first-order queries over M and

SC, are denoted as FO(SC,M). There are two diffe-

rent interpretations of quantification in first-order logic.

One quantification, called natural semantics, is quanti-

fied over the universal domain U of the infinite struc-

ture M, and the other quantification ranges over the

active domain atom(D). It is called active domain se-

mantics.

Given a structure M = 〈U ,Ω〉, a set X ⊆ U n is

called M-definable if there exists a formula ϕ(x1, ..., xn)

in the language of Ω such that X = {a ∈ U n | M |=

ϕ(a)}[8].

Below is a formal definition for constraint queries.

Let M = 〈U ,Ω〉 be a structure. Let D be a constraint

database and k a natural number. A k-ary constraint

query Q on (M, D) is a function which maps a con-

straint databaseD overM to a k-ary constraint relation

Q(D) such that it is closed, i.e., it is defined in terms

of Ω. Note that here Q could be a language L(Ω, SC)

which is beyond FO. In constraint databases, we nor-

mally consider relational calculus, or, FO logic, as a

basic query language.

As in classical relational databases, a query is re-

garded as a mapping from the underlying database to

an answer relation. However, in the constraint setting

we should also consider the consistency issue, i.e., a

query on constraint representation level should corre-

spond to a query on the unrestricted conceptual level.

The term unrestricted relation refers to arbitrary fi-

nite or infinite sets of points in a k-dimensional space.

In contrast, by constraint relation we mean that it is

finitely definable on a structure with some class of con-

straints.

The following closure property plays an important

role in constraint databases. Given a structure M =

〈U ,Ω〉, for each input constraint database D which is

definable on M , if an unrestricted query Q on D, Q(D)

is also definable using Ω-constraints, then we say query

Q is closed on M.

Example 5. Given a database D over a structure

M = (U ,Ω), Ω = {+,×, <, 0, 1}, let Q be a constraint

query which maps D to the set of integers. This is not
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a closed query as the answer (a subset of Z) cannot be

expressed as a formula in terms of signature Ω.

There are two key properties, quantifier elimination

and o-minimality, over a nice structure, where by a nice

structure we mean it possesses good behaviors such as

a collapse result which is a well-known concept in stan-

dard constraint databases[9]. The first one, quantifier

elimination, is a very important property of structures

for which constraint databases can behave well and ad-

mit collapse results. Given a structure M, if for every

formula ϕ(x) there exists a quantifier free formula ψ(x)

such that

M |= ∀x.ϕ(x) ↔ ψ(x),

we say that the structure M admits quantifier

elimination[10,11]. The second notion is o-minimality.

It is defined as follows. A structure M is o-minimal, if

the points of every formula definable over M consist of

a set of finite points and open intervals {x | a < x < b},

{x | a < x}, and {x | x < b}[12].

Genericity. Many results on expressive power use

the notion of genericity. We now review the generi-

city of Boolean queries and non-Boolean queries[3].

Given a function π : U → U , we extend it to a fi-

nite SC-structure D by replacing each occurrence of

a ∈ adom(D) with π(a).

• A Boolean query Q is totally generic (order-

generic) if for every partial injection function (par-

tial monotone injection function, resp.) π defined on

adom(D), Q(D) = Q(π(D)).

• A non-Boolean query q is totally generic (order-

generic) if for every partial injection function (par-

tial monotone injection function, resp.) π defined on

adom(D) ∪ adom(Q(D)), π(Q(D)) = Q(π(D)).

Ramsey Property[13,14]. Ramsey property plays an

important role in investigating expressive power of

query languages in the constraint setting. In particu-

lar, it applies to active semantics queries. Let L be a

logic. We say it has a Ramsey property if, given an

ordered structure M = < U ,Ω > and for any database

D, the following holds: let ϕ(x) be a L-formula in a

form of language L(D,M) with free variables x, and

X an infinite subset of U . Then there exists an in-

finite set Y ⊆ X and an equivalent formula ψ(x) in

a form of L(D,<) such that for any database D with

adom(D) ⊂ Y , and for any a over Y , the implication

(M, D) |= ϕ(a) ↔ ψ(a) holds. It is well known that the

first-order logic has the Ramsey property over any or-

dered structure[9,15]. In this paper, we will investigate

whether Ramsey property still holds for higher-order

logics.

Classical model theory provides us with many exam-

ples of well-behaved structures which have been consi-

dered in the field of constraint databases. A few are

listed below:

• dense order constraints (R, <), (Q, <);

• linear constraints Rlin = (R,+, 0, 1, <);

• polynomial constraints R = (R,+, ∗, 0, 1, <);

• exponential constraints Rexp = (R,+, ∗, ex, <).

The above structures admit quantifier-elimination and

are o-minimal structures. They all have the complete

theory, i.e., the set of all true first-order sentences is

effectively decidable.

3 Constraint Complex Object Model

We now start to present our constraint complex ob-

ject model and its corresponding query languages. We

first review the concept of complex values (CV) and ex-

tend the constraint relational data model to constraint

complex object data model.

Complex values are formed by using two construc-

tors: tuple and set, and associated with sorts. We de-

fine syntax and semantics for complex values as follows.

We denote all constants appeared in databases as dom.

The sort τ of an attribute or a relation is the type of

that specific attribute or structure of that relation. The

set of (complex) values of sort τ (i.e., the interpretation

of τ) is defined as follows[16].

Definition 2. 1) The abstract syntax of sorts is

given by τ = dom| <A1 : τ1, · · · , Ak : τk> |{τ}, where

k > 0 and A1, · · · , Ak are distinct attributes. 2) The

interpretation of sort τ (i.e., the set of values of τ),

denoted as [[τ ]], is defined recursively as follows.

• [[dom]] = dom,

• [[{τ}]] = Powerset([[τ ]]) = {X |X ⊆ [[τ ]] and

Xfinite}, and

• [[A1 : τ1, · · · , Ak : τk]] = [[τ1]]× · · · × [[τk]].

A complex value database schema SC is a finite

set of relation names {R1, ..., Rl} with associated sorts

τ1, ..., τl.

Example 6. Assume that a database contains a sin-

gle relation R with the associated sort {<X : dom, Y :

{<A : dom, B : {dom}>}>}. One complex value of

this R is

{<X : x1, Y : {<A : a1, B : {b1, b2, b3}>

<A : a2, B : {}>}>}.

Most questions about the expressive power of query

languages over constraint databases are easily reduced
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to questions about the expressiveness of query lan-

guages over the embedded finite model, which are

databases stored with numbers and arithmetic ope-

rations may be applied to numbers[17].

We first present this embedded finite model in the

complex value case.

3.1 Embedded Finite CV Model

We define the embedded finite CV setting which is

an extension of the embedded finite model. Then we

define monadic second-order logic (MSO) over this set-

ting.

Definition 3. Let M = 〈U ,Ω〉 be an infinite struc-

ture on a set U , where Ω is a signature. Let SC be

a complex value relational signature {R1, ..., Rl} where

each relation symbol Ri has sort τi. Then an embedded

finite complex value model is a structure

D = (A,R1, ..., Rl),

where each Ri is a finite subset of U τi(U τi denotes the

set of complex value constants with sort τi), and the set

A is the adom(D).

Due to the hierarchical structure in the embedded

finite complex value setting, we use a higher order logic.

We first consider MSO which is a fragment of second-

order logic. It has been widely adopted in several re-

search areas such as database theory, computational

complexity, and artificial intelligence.

We review the definition of monadic second-order

logic as follows. It will be the main logic that we adopt

for the foundation for query languages for constraint

CV-databases.

Definition 4. Given a structure M = 〈U ,Ω〉 and

a complex value relational signature SC, the monadic

second-order logic MSO over M and SC, denoted by

MSO(SC,M), is defined as follows.

• Any atomic FO formula in the language of M is

an atomic formula of MSO(SC,M).

• If R ∈ SC is a k-ary relation variable and t1, ..., tk

are first-order terms, then the expression R(t1, ..., tk) is

an atomic formula.

• If S is a unary set variable that ranges over sets

of elements of domain and t is a term in the language

of Ω, then the expression t ∈ S (also written as S(t))

is an atomic MSO(SC,M).

• Formulas of MSO(SC,M) are closed under the

Boolean connectives (∧,∨, and ¬).

• If ϕ is a first-order formula that contains a unary

set variable S, then the following: ∃Sϕ, ∀Sϕ are

MSO(SC,M) formulas.

Note thatMSO is a restriction of second-order logic

in which the quantification over unary relations (i.e.,

sets) is allowed. Quantification over functions is not

allowed. If R and S are set variables, then R ⊆ S can

be derived from the above definition.

The active-domain semantics of monadic second-

order logic, denoted by MSOact(SC,M), is those for-

mulas in which all first-order and second-order quanti-

fiers range over the active domain. We allow terms of

the form

{x | ψ(x, y1, ..., yk)},

where the free variables are x, y1, ..., yk. We denote it

as Q(x;y) which is called a parameterized query. Intui-

tively, the variables yi are provided by binding values

and we obtain an MSO query with a distinguished free

variable x.

We study monadic second-order logic,

MSO(SC,M), and investigate its applications to query

languages for the constraint CV-databases. As in the

first-order logic formalism, the expressive power and

query evaluation issues need to be solved by new tech-

niques and their solutions depend heavily on the model-

theoretic properties of the underlying structureM. The

fundamental complex value structure and the second-

order logic also greatly impact on these solutions.

3.2 Constraint Complex Object Model

In this subsection, we extend the constraint rela-

tional data model to the constraint complex object data

model. The constraint complex object data model has

been proposed in [18]. However, it received less atten-

tion in the literature. Therefore in this subsection, we

formally present its formalism and corresponding query

languages.

A complex value database schema SC is a finite

set of relation names {R1, ..., Rl} with associated sorts

τ1, ..., τl. We define the constraint complex value

database model which allows us to represent finitely

re-presentable infinite objects in a nested setting, i.e.,

an attribute of the schema can contain many finitely

re-presentable objects in a tuple form or a set format.

Therefore, constraint complex values are built using tu-

ple and set constructors recursively from generalized

constraint tuples and finite re-presentable sets.

Many properties of natural spatial/temporal objects

can be easily modeled as constraint complex values.

Definition 5. In the context of the constraint com-

plex value model, for each sort τ , the domain of τ de-

noted as dom(τ) is defined recursively as follows.
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• If τ is an n-ary flat tuple type, i.e., the attributes

are ranged over universal domain, then dom(τ) is the

set of all generalized constraint n-ary tuples.

• If τ = {τ ′} is a set type, then dom(τ)
def
=

{
∨k

i=1 ψi|k > 1, ∀i ∈ {1, · · · , k}, ψi ∈ dom(τ ′)}.

• If τ = <τ1, · · · , τk> is a tuple type, then

dom(τ)
def
= {

∧k
i=1 ψi|ψi ∈ dom(τi),

if τi is not a set tuple;

ψi ≡ xi = {φi},

where φi ∈ dom(τi
′)

if τi is a set tuple {τi′}}.

Example 7. Let τ = <x : {<x1 : Q, x2 : Q>}, y :

Q> be a tuple type. Q stands for rational numbers. A

constraint complex value of type τ is

ψ(x, y)
def
= (x = {<x1, x2> |φ} ∧ y = 10),

where φ = (0 < x1 < 5) ∧ (x1+x2
2 < 10).

3.3 Query Languages for Constraint

CV-Databases

We briefly describe three paradigms for query lan-

guages that can be used for querying constraint CV-

databases.

3.3.1 Calculus Queries

In the logic paradigm, we denote CALCcv(SC ,M)

as some sort of SO formulas in the language that con-

tains symbols of schema SC and the language of M.

That is, CALCcv(SC ,M), (M = 〈U ,Ω〉) formulas are

built up from the atomic positive literal

R(t), t = t′, t ∈ t′, or t ⊆ t′,

and Ω formulas by using Boolean connectives ∨, ∧, ¬,

and quantifiers ∀, ∃.

We refer to the above syntactic query languages as

complex value calculus with Ω constraints. For a struc-

ture M and an SC-database instance D, the notion of

(D,M) |= ϕ is defined in a standard way. If M is un-

derstood, we write D |= ϕ.

Example 8. Let M = (R,+,−, 0, 1, <). The follow-

ing calculus query applies to schema SC = {R,S} with

sort τR = τS = <R, {R}>.

ϕ ≡ ∃u, v.R(x, u) ∧ S(y, v) ∧ x ∈ u ∧ y ∈ v ∧ x+y < 10.

It defines a join operation with the condition that for

each pair of joining tuples, (x, u) and (y, v), x and y

must be a member of the second component u and v

respectively, and x plus y is less than 10.

3.3.2 Algebra Queries

The algebra paradigm adopts the classical complex

value relational algebra approach which provides some

algebraic operators for manipulating constraint CV-

databases. We denote this algebra as ALGcv. In this

subsection, we give a general definition of the constraint

algebra operators.

The complex value algebraic expressions over a

structure M = < U ,Ω > and a database schema SC

are inductively defined as follows. Let r be a relation

of sort τ . ϕr = ψ1 ∨ · · · ∨ ψn is the constraint formula

which corresponds to r.

• Constant values: each a ∈ U is an algebraic query.

• Each relation R ∈ SC is an algebraic query.

• Set operators ∩, ∪, and − are defined in the ob-

vious manner.

We illustrate “−” as follows. Suppose that q =

q1 − q2, λ, α, and β are algebraic expressions of q, q1
and q2 respectively.

λ ≡ (
∨

ϕ∈α ϕ) ∧ ¬(
∨

ψ∈β ψ).

Then put λ in a disjunctive normal form.

• Selection operator: the output of the selection

operator is the conjunction of the constraint tuples and

the selection condition. That is,

σθϕr =
∨

16i6n(ψi ∧ θ).

The selection condition θ is of the form xi = d, xi = xj ,

xi ∈ xj or xi = xj .C.

• When applying projection operator, we use

the existential quantifier to eliminate required vari-

ables from each constraint tuple. For example, let

X = {x1, ..., xk} be the set of variables in ϕr, Y =

{yj1 , ..., yjp}. After renaming the variables x1, ..., xp to

yj1 , ..., yjp ,

πY ϕr=χ(xp+1, ..., xk)≡∃yj1 , ..., ∃yjpϕr

∧p
i=1 xi=yji .

• The join operator pairs each constraint tuple from

two relations[19].

• Other constructive operations:

Powerset: powerset(r) is a relation of sort {τ}

where powerset(r) = {ν | ν ⊆ r};

Tuple Creation: if A1, ..., An are distinct attributes,

tup createA1,...,An
(r1, ..., rn) is of sort <A1 : τ1, ..., An :

τn>, and tup createA1,...,An
(r1, ..., rn) = {<A1 : ν1, ...,

An : νn>| ∀i(νi ∈ ri)};

Set Creation: set create(r) is of sort {τ}, and

set create(r) = {r};

Tuple Destroy: if r is of sort < A : τ ′ >, tup des-

troy(r) is a relation of sort τ ′ and tup destroy (r) =

{ν |<A : ν>∈ r};
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Set Destroy: if τ = {τ ′}, then set destroy(r) is a

relation of sort τ ′ and set destroy(r) = ∪r = {w | ∃ν ∈

r, w ∈ ν}.

The detailed description of these complex value al-

gebraic operations can be found in [1].

Example 9. Given a graph with natural numbers

representing its nodes, we wish to retrieve the pairs

(x, y) of the graph paths E(x, z) and E(z, y) in which

x, y, z satisfy the condition, z = x2 + y2. According

to the above algebra definition, it is straightforward to

write the query as the following algebraic expression:

πx,y(σE1·z=E2·z∧(z=x2+y2)(E1(x, z)× E2(z, y)),

where E1 and E2 are two copies of the graph paths.

3.3.3 Datalog Queries

It is natural to consider a deductive paradigm for

use as a constraint query language. This paradigm pro-

vides a logic programming style for reasoning query re-

sults. Indeed the constraint databases are originally

inspired by deductive databases and constraint logic

programming. In the following we briefly give formal

definition for Datalogcv for CV-databases with con-

straints, unrestricted query expressed by Datalogcv

program, andDatalogcv programwith stratified nega-

tion.

Definition 6. Let SC2 be an intentional schema

disjoint from a given schema SC1. A Datalogcv pro-

gram over a given structure M = 〈U ,Ω〉 with schema

SC1 is a set of rules in the form of

H(...) ← L1, · · · , Ln,

where the head H(...) is a derived predicate which is

a relation name in SC2, and each Li of the body is a

literal which is an atomic formula over the combined

vocabulary (Ω, SC1, SC2).

A Datalogcv query is a pair (P, α) where P is a

finite set of rules, and α is a derived answer relation.

Example 10. Let τp = τt = R, τr = τs = (R, {R})

and τq = (R,R). The following is a constraint Data-

log query.

s(x, z) ← r(x, y) ∧ z ⊆ y ∧ 5 6∈ z,

q(x, v) ← s(x, z) ∧ v = count(z),

t(x) ← p(x) ∨ (q(x, c) ∧ x+ c < 100).

Now we define the semantics of the unrestricted

query (P, α) expressed by a Datalog program as fol-

lows.

Definition 7. Let (P, α) be a Datalog
cv query

program over a structure M with intentional schema

SC2, and let D be an unrestricted complex object

database over M with schema SC1. In the following

we define an operator, denoted by TP . Let D′ be a CV-

database. Let H be a relation name in SC2. Then

TP (D
′) |H generates all tuples (a1, ..., ak) over M such

that there exists a rule

α : H(x1, ..., xk) ← L1, · · · , Ln

in P , and a valuation v of α in D′ such that

(a1, ..., ak) = (v(x1), ..., v(xk)).

This valuation makes all Li true in (M, D,D′).

TP plays the role of evaluation mechanism.

Definition 8 (Semi-Positive Datalogcv). Recall-

ing Definition 6, we allow each Li in the body to be also

a negated atomic formula in the form of ¬S, where S

is a relation name of the input schema SC1. We call

this extended Datalog as semi-positive Datalogcv.

Definition 9 (Datalog with Stratified Negation).

Suppose that P1, ..., Pk are semi-positive programs. For

each i < j 6 k, the right hand side literal L and the

intentional schema of Pi become a part of the input

schema for Pj. Such a sequence of semi-positive pro-

grams is called a Datalogcv,¬ with stratified negation.

Note that by Definition 9 we can infer that a strati-

fication of a program P is a partition P1, · · · , Pn of the

program such that no relation symbol R that is negated

in a Pi is a derived relation in any Pj with j > i.

A program is stratified, if there is a stratification for

it. The output of a stratified Datalog program query

is called the perfect model.

4 Expressive Power

As in standard CV relational databases, a constraint

calculus formula and a corresponding constraint rela-

tional algebra are regarded as equivalent. It means

that they define the same unrestricted query. We first

explore whether both calculus and algebra paradigms

defined in the previous section indeed possess this fun-

damental property. Our main motivation is to under-

stand deeply the expressive power of higher-order logic

applied in the realm of topology and geometry areas.

With constraint setting, we observe that it does not

give different insight results. Recall that the complete

theory means the set of all first-order sentences true in

the underlying structure is effectively decidable.

We state our findings as follows.

Theorem 1. Let M =<U ,Ω> be an infinite struc-

ture with the complete theory. For each complex value
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calculus formula over (SC,M), there is an effective al-

gorithm to convert it into an equivalent constraint com-

plex value algebra over (SC,M), and vice versa.

Proof. In standard (CV) relational databases, the

safe-range (defined in Section 6) calculus and algebra

expression coincide. Adding atomic constraints or com-

bination of constraint terms would not generate a new

problem in terms of conversion and will not affect coin-

ciding the property of both paradigms. It means that

for each calculus formula

ϕ = (

n∧

i=1

Ri) ∧ (

n∧

i=1

βi)

is equivalent to

α ∧ (
n∧

i=1

βi),

where α is an algebraic expression and βi are constraint

terms.

Without considering the safety issue, every termi-

nated constraint calculus formula and its corresponding

CV constraint algebra do have same expressive power.

It is well-known that there is an effective translation al-

gorithm to convert standard (CV) calculus formula into

equivalent algebraic expression[16]. Accordingly, there

is also an effective algorithm to transform every termi-

nated constraint calculus formula into algebra without

violation by adding constraint setting. �

Theorem 2. Let M be the theory of dense or-

der constraints over the rationals. Then the fol-

lowing two language classes are equivalent: stratified

Datalogcv,¬(SC,M) ≡ CALCcv(SC,M).

Proof. In complex value databases without con-

straints, we know that CALCcv is equivalent to

Datalogcv,¬ with stratified negation[20]. As the un-

derlying structure M is dense order constraints over

the rationals, the Datalogcv program will terminate

and is closed[3]. Under this circumstance, the embed-

ded constraints will hold for two paradigms without

changing equivalence property. �

From Theorem 1 and Theorem 2, we easily obtain

the following results.

Corollary 1. For any structure M, stratified

Datalogcv,¬(M) ≡ closed CALCcv + Lfp(M) ≡

CALCcv(M).

Proof. We know that closed CALCcv + Lfp

and CALCcv are equivalent[16,20]. Adding con-

straint setting, it does not affect equivalence rela-

tionship. By Theorem 1 and Theorem 2, stratified

Datalog
cv,¬(M) ≡ closed CALCcv + Lfp(M) ≡

CALCcv(M) for any structure M. �

In database theory, we often tackle the issue of

expressive power of some logic (or query language).

The expressive power of a logic deals with a spe-

cific problem: what can or what cannot be expressed

on the logic. In the literature, the methods used

for analyzing expressive power of constraint databases

normally adopt techniques in the form of collapse

results[4,15,21], complexity-theoretic techniques[22,23] or

topological methods[24,25]. The purpose of the first and

the second methods is to reduce several important prob-

lems over constraint databases or the embedded finite

model to the classical finite model theory setting[3].

The topological method is to investigate its fundamen-

tal geometry property and applications. Most work fo-

cuses on the expressive power of generic queries. How-

ever, beyond generic queries, in the constraint setting

we obviously gain extra expressive power beyond the

FO or MSO capability.

We first provide a general definition of the various

collapse phenomena occurred in logics from the litera-

ture as follows. The main goal of this section is to ex-

plore whether the SO logic and its fragments still pos-

sess the collapse results which have been investigated

in depth in the FO logic. We then investigate the issue

of what properties of the underlying structure will im-

pact these collapse results. We will also investigate how

the power-set operator affects the extensional aspect of

expressive power of queries in the constraint setting[26].

Definition 10. Given a structure M = 〈U ,Ω〉 and

SC standing for any (CV-) relation schema, we say that

a logic L has:

• a natural-active collapse over the structure M if

L(SC,Ω) = Lact(SC,Ω), that is, for every schema SC,

and for every formula ϕ(x) in the language L(SC,Ω),

there exists an equivalent formula ϕact(x) in the same

language under active-semantics;

• an active-generic collapse over the structure M if

the classes of order-generic queries in Lact(SC,Ω) and

Lact(SC,<) are the same, that is, for every schema

SC, every Lact(SC,Ω)-definable generic query is al-

ready Lact(SC,<)-definable;

• natural-generic collapse if the classes of order-

generic queries in L(SC,Ω) and L(SC,<) are the

same, that is, for every schema SC, every L(SC,Ω)-

definable generic query is already L(SC,<)-definable.

Intuitively, the basic concepts of the above defini-

tion are that 1) natural-active collapse: adding a more

powerful form of quantification (e.g., from quantifica-

tion over the active domain to the universal domain)

does not add any expressive power to the language; 2)
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generic collapse: adding additional operations to the

signature gains no power to express any generic (pure)

queries.

4.1 Embedded Finite CV Model

It is known that the Ramsey property is appli-

cable beyond the first-order logic case[8]. Therefore,

FO+Lfp and SO have locally generic collapse pro-

perty and the proof for FO+Lfp has been shown in

[8]. Next we provide a detailed proof of active-generic

collapse for the MSO language which is omitted in the

literature.

Before we proceed to do it, two needed lemmas are

presented first.

Lemma 1[8]. Let ϕ(x) be an atomic FO(Ω) for-

mula. Then ϕ has the Ramsey property.

Then we state the fundamental results of collapse

as facts which we will adopt them in the proofs of our

new findings.

Fact 1 (Active-Generic Collapse)[9,27]. Every or-

dered structure admits active-generic collapse.

Lemma 2. Let ϕ(x) be an MSO(SC,Ω) formula.

Then there exists an equivalent formula ψ(x) such that

every subformula of ψ is either an MSO(SC) formula

which comprises R(t), t ∈ R, S = R, where S, R are

set variables or one predicate in SC, or an MSO(Ω)

formula.

Proof. For any atomic formula of the form R(ti(y)),

t ∈ R(ti(y)), S(ti(y)) = R(si(y)), we replace it as the

following forms:

1) ∃z1 ∈ adom, ..., ∃zk ∈ adom

∧

i

(zi = ti(y)) ∧R(z1, ..., zk),

2) ∃z1 ∈ adom, ..., ∃zk ∈ adom

∧

i

(zi = ti(y)) ∧ t ∈ R(z1, ..., zk),

3) ∃z1 ∈ adom, ..., ∃zk ∈ adom, ∃x1 ∈

adom, ..., ∃xl ∈ adom ∧

i

(zi = ti(y)) ∧ (xi = si(y)) ∧ R(z1, ..., zk) = S(x1, ...,

xl). �

We then present the following result.

Proposition 1. MSO has the Ramsey property

over any ordered structure M = 〈U,Ω〉.

Proof. The main ideas of the proof follow the proof

for first-order logic case. The proof is by induction on

the formula. By Lemma 2, we can trivially transform

MSO to that every atomic formula is an MSO(SC)

formula or an MSO(Ω) formula.

The proof is by induction on the total number of

occurrences of basic atomic formulas, the Boolean con-

nectives, quantifiers for first-order individual elements,

and quantifiers for unary set variables.

The base cases for the induction are those of an

MSO(SC), where there is no need to rearrange the

formula.

By Lemma 1, any atomic FO(Ω) formula has the

Ramsey property.

The only issues we should consider are those of

monadic second-order quantifiers over unary set vari-

ables. For the existential case, let ϕ(x) = ∃S ⊆

adom(D)ϕ1(S,x). By the hypothesis, we find Y ⊆ X

and ψ1(S,x) such that for any database D and a over

Y and some T ⊂ Y we have D |= ϕ1(T,a) ↔ ψ1(T,a).

Let ψ(x) = ∃S ⊆ adom(D)ψ1(S,x). Then for any

D and a over Y , D |= ψ(a) iff D |= ψ1(T,a), for

some T ⊆ adom(D) iff D |= ϕ1(T,a), and for some

T ⊆ adom(D) iff D |= ϕ1(a). �

Corollary 2. The active-generic collapse holds over

every structure M and complex value relational signa-

ture SC for monadic second-order logic. That is, ev-

ery order-generic query definable in MSOact(SC,M)

is definable in MSOact(SC,<).

Proof. By Proposition 1, MSO has the Ram-

sey property over any ordered structure M =

〈U,Ω〉. Let Q be any order-generic query definable in

MSOact(SC,M). We can find an infinite X ⊆ U and

an MSOact(SC,<)-definable Q1. Now we prove that

Q and Q1 coincide everywhere in any set Y ⊆ X . LetD

be an SC-structure. Because Y is infinite, we can find

a partial monotone injective map π from adom(D) into

Y . Since Q1 is MSOact(SC,<)-definable and order-

generic, and thus co-domains of Q and Q1 are within

adom(D). Hence, π(Q(D)) = Q(π(D)) = Q1(π(D)) =

π(Q1(D)), from which Q(D) = Q1(D) follows. By the

Ramsey property, there exists an infinite subsetX ⊆ U ,

where U is a universe domain, and an MSOact(SC,<)-

definable Q1 that coincides with Q on X . �

We now turn to consider natural semantics queries

which are the main realms of constraint databases in

the context of geometric setting. Unfortunately, the

natural-active collapse fails for the second-order logic

over the real field[8]. To overcome this problem, we

investigate a fragment of MSO(SC,M) in which all

second-order variables are produced by FO formulas

by induction. We denote this fragment as ˜MSO.
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We will show that natural-active collapse holds for

some fragment of MSO. We first recall that the first-

order logic admits natural-active collapse as follows.

Definition 11. A structure is called complete if

the set of first-order true sentences in the structure is

effectively decidable.

Fact 2 (Natural-Active Collapse)[5,15,28]. Let M

be an o-minimal structure with dense order that ad-

mits quantifier elimination. Let ϕ be an arbitrary

FO(SC,Ω) query, and then there exists an equivalent

FOact(SC,Ω) active-semantics query ϕsafe. Moreover,

if the first-order theory of M is complete and quanti-

fier elimination procedure is effective, then ϕ → ϕsafe

is effective. The above states the fact: FO(SC,M) =

FOact(SC,M) for any relational schema SC.

We then present the following natural-active col-

lapse theorem for the ˜MSO language.

Theorem 3. Let M = (U ,Ω) be an o-minimal

structure with dense order that admits quantifier elim-

ination. Then it admits a weaker form of the natural-

active collapse in the setting of embedded finite CV

model, i.e., ˜MSO(SC,M) = MSOact(SC,M) for any

CV-schema SC.

Proof. Suppose the input formula is ϕ. In the

monadic second-order logic, we need to consider an sub-

formula ∃Sα(x) case in addition to all cases in the first-

order logic, where S is a set-value variable not in SC,

and it can be produced by FO formulas by induction.

Given ϕ(X) = ∃S ᾱ(X,S), where X is a complex-

value variable and S is a set-value variable. Let α(X,S)

be a formula equivalent to ᾱact, which is of the form

ΦY1 ∈ adom, ...,ΦYn ∈ adomγ(X,Y, Z),

where Φ is a quantifier symbol ∃ or ∀, Y is an atomic or

set-value variables in MSO, and γ is a quantifier-free

formula with the following key properties: every atomic

sub-formula of γ is an L(M) formula or an L(SC) for-

mula, and SC is a CV-schema.

Those FO formulas can be expressed by

FOact(SC,M) formulas based on o-minimal struc-

ture property and Fact 1. Therefore there is an

MSOact(SC,M) formula which is equivalent to ϕ. �

4.2 Constraint CV Databases

We now study the expressive power of constraint

CV query languages such as CALCcv and MSO.

Theorem 4. The active-generic collapse holds over

every structure M for complex value logic including

CALCcv and MSO. That is, every order-generic query

definable in SOact(SC,M) is definable in SOact(SC).

Proof. CALCcv is a many-sorted calculus which is

formed from a standard first-order logic. However, it

facilitates set variables and has a second-order flavor.

The key features, second-order quantification and exis-

tential and subset predicates are needed to be reviewed

carefully in regards to the active generic collapse pro-

perty. Let ϕ(x,X) be a formula in SOact(SC,M) with

free first-order variables x and second order variables

X. Given an infinite X ⊆ U , by Ramsey theorem, we

can find an infinite Y ⊆ X and a SOact(SC,<) formula

χ(x,X) such that for any database D ∈ Inst(SC,X)

it is the case that D |= ϕ(a, Bi) ↔ χ(a, Bi) for all a is

a tuple of elements of adom(D) and Bi ⊆ adom(D)k,

where Bi is a k-ary relation that belongs to one of X .

By induction, we can conclude that for every active-

generic query definable in SOact(SC,M) is definable in

SOact(SC). �

In the standard constraint databases, we sometimes

want to write queries against a linear constraint in-

put database in FO + Poly. It is known that FO

+ Poly has more expressive power than FO + Lin

although FO+ Poly has more costly evaluation pro-

cedures. One sometimes may want to use FO + Poly

to write queries against semi-linear sets. Similarly, we

may want to write queries against a linear constraint

input database or a polynomial constraint database in

a more expressive higher order query language.

The fundamental topological connectivity property

is important in many applications of spatial databases.

As standard query languages for constraint databases

lack the power to express connectivity properties[9],

researchers attempted to enrich query languages by

adding some extra functions, like transitive closure or

fixpoint operators. However, this extension may cause

closure property to fail for the extended languages. In

[29], authors added topological connectivity property

to the first-order constraint query languages and ob-

tained new languages which are closed. However, this

extension may cause query evaluation at high cost. The

alternative approach is to adopt a higher-order query

language to overcome this deficiency.

Definition 12. Given a structureM = 〈U,Ω〉, a set

of complex values O ⊆ U τ with complex value sort τ is

called M-definable if there exists a formula ϕ(x) in the

language of M such that O = {o ∈ U τ | SO(SC,M) |=

ϕ(o)}.

We show that connectivity is definable in

MSO(SC,M) where the input database SC contains

just an M-definable set S ⊆ Rk.
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Proposition 2. Some fundamental topological

queries such as majority, connectivity, transitive clo-

sure, acyclicity, having exactly one hole and hav-

ing exactly k connected components, are definable in

SO(SC,M).

Proof. It is well known that every computable query

over Inst(SC,N ) is definable in FO(SC,N ). Accord-

ingly, it is also definable in FO(SC,R) and SO(SC,R).

As transitive closure can be expressed by SO[20], by

combining the above two properties we can imply that

topological queries such as majority, connectivity, tran-

sitive closure, acyclicity, having exactly one hole and

having exactly k connected components, can be defin-

able in SO(SC,M) for any ordered structure M. �

Theorem 5. Datalogcv,¬ + Poly is closed,

that is, on an M-definable complex value constraint

databases, an Datalogcv + Poly query produces an M-

definable complex value set.

Proof. A query is expressible in Datalogcv with

stratified negation if and only if it is expressible in

MSO[16]. We know that SO(SC,M) is closed under

Boolean connectives. As MSO ⊂ SO, MSO(SC,M)

is also closed under Boolean connectives. Therefore

MSO(SC,M) is closed for any input M-definable

complex value constraint databases. Accordingly,

Datalogcv,¬ + Poly is closed on anM-definable com-

plex value constraint databases. �

5 Complexity of MSO on Constraint

Databases

It is normal practice to investigate the complexity of

various constraint query languages when we explore the

expressive power of logics expressing these languages.

The goal of this section is to study the complexity of

queries expressible in SO logic and its fragments over

constraint CV-databases. We want to understand how

a logic formalism, for example, MSO is related to com-

putational complexity classes and conduct a compre-

hensive investigation in order to get insight of know-

ledge about complexity theory in the context of con-

straint queries.

Computational complexity theory is concerned with

issues of computational efficiency — determining the

amount of computational resources such as time, space,

or hardware resources that are required to carry out

a given task. We first briefly review a computational

model called the Boolean circuit and some complexity

classes which are adopted in this section. The detailed

description can be found in textbooks[20,30].

Definition 13. A single Boolean circuit C is a di-

rected acyclic graph with k inputs and one output, where

k ∈ N. All internal vertices are labeled with one of ∨, ∧

or ¬. Then for any Boolean formula ϕ in the language

L ⊆ {0, 1}∗, the output of C is defined by normal logical

inference. We say a circuit C accepts an input string

l ∈ L iff C outputs 1. We denote the size of each circuit

C as | C | which is the number of vertices in the graph.

Definition 14. Let f be a function from N to N.

A family of circuits Cn is said to be f(n)-size if each

circuit of Cn has n inputs and a single output, and its

size is at most f(n), i.e., | Cn |6 f(n) for every n.

Then we give definitions for P/poly, NC and AC

classes as follows. These definitions are adopted from

the literature and books[2,30].

Definition 15. The class of languages that are de-

cidable by a family of polynomial-sized circuits is de-

noted as P/poly.

The depth of a circuit is the longest length from an

input node to the root of the circuit graph. We now

give the formal definitions of two important complexity

classes which play an important role in the computa-

tional complexity theory related to parallel computa-

tion.

Definition 16. For every d, we classify a language

L in a specific class if L ∈ P/poly with depth O(logdn).

P/poly = UcSIZE(nc), where n and c are natural num-

bers. We denote this class as NCd, where n is the

number of inputs of a sequence of {Cn}n∈N of Boolean

circuits. The class NC is
⋃

i>1 NCi.

Definition 17. The class ACi is defined similar

to NCi except a difference of internal vertices that can

be allowed to have unbounded fan-in.

In the context of standard constraint databases, it

has been shown that the complexity upper bounds for

FO(<), FO + Lin, and FO + Poly are AC0, NC1,

and NC respectively[2,31,32].

We now review the polynomial hierarchy complexity

class as follows.

Definition 18. Given a language L and a polyno-

mial function q, if there exists a polynomial-time Turn-

ing machine T such that

l ∈ L iff Q1Q2...QiT (l, x1, ...xi) = 1,

where Qi denotes ∃xi ∈ {0, 1}|p| or ∀xi ∈ {0, 1}|q|, de-

pending on whether i is even or odd, respectively, then

we classify this class as a polynomial hierarchy, denoted

as PH =
⋃

i Σ
p
i .

We now investigate data complexity of higher-order

logics in the context of constraint CV-databases. We
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start with the general definition of the size of a con-

straint CV-database with semi-algebraic sets as its com-

ponents.

The main results are that the complexity upper

bounds for MSO(<), MSO + Lin and MSO + Poly

are ∪i

∑AC
0

i , ∪i

∑NC
1

i , and ∪i

∑NC

i , respectively.

We first define the size of a semi-linear set.

Definition 19. An MSO + Lin relation R of arity

k is said to be of bound n, if R can be represented as
∨

i∈I

∧

j∈J

(akijxk + · · ·+ a1ijx)Θcij ,

where

• each Θij is one of = and <;

• the number of disjuncts is at most n;

• each disjunct has at most |Ji| 6 n conjuncts;

• the coefficients alij and ci,j are integers with abso-

lute value less than 2n.

It is well known thatMSO logic is closely connected

to PH. In the following we show that MSO + Lin over

constraint CV-databases has ∪i

∑NC

i data complexity.

Theorem 6. Let M = <U ,Ω> be an o-minimal

structure. MSO + Lin has ∪i

∑NC
1

i data complexity

over M.

Proof. We know that FO + Lin in NC1 and

MSO can express each level of Σp
i or Πp

i . Let Q be

an MSO Boolean query whose input consists of a sin-

gle CV-database. For each n, we construct a Boolean

circuit C\ of depth d and a polynomial amount of size.

To simulate Q, we express it in a constraint algebra

form. Recall that constraint algebra has been clearly

described in Section 3 which consists of tuple and set

constructor, destroy, and power-set operators in addi-

tion to the basic first-order algebra operators. The ope-

rator with the highest complexity is powerset only. It

is well known that the data complexity of powerset is

EXP . EXP = Uc>1DTIME(2n
c

), which is the expo-

nential time analogy of P [30]. EXP ∈ ΣNC
2 . There-

fore, Q can be implemented by constructing a Boolean

circuit and obtain data complexity of ΣNC
i , where i

depends on the number of quantifiers. �

Note that the data complexity of FO with linear

constraints is in PTIME (polynomial time) and the

quantifier elimination procedure is much less expensive

than the case of semi-algebraic one. It has been shown

that the full formalism of computational complexity of

linear constraints over the integers in temporal reason-

ing systems is NP-hard[33].

Theorem 7. Under both the arithmetic and the

bit model, MSO + POLY has NCH =
⋃

i

∑NC

i data

complexity.

Proof. FO + POLY has complexityNC [2]. Similar

to Theorem 6, a query in MSO + Poly can be imple-

mented by constructing a Boolean circuit. Therefore

MSO + POLY has NCH =
⋃

i

∑NC

i data comple-

xity. �

We present the following observation.

Theorem 8. Every generic query in Inflation-

ary Datalogcv,¬act (SC,M) without the powerset operator

can be evaluated in polynomial hierarchy time given

that every generic sentence in M can be evaluated in

AC0/poly.

Proof. All operations in MSO and accordingly in

Datalogcv,¬act can be computed in polynomial-time in the

size of their arguments except for power-set which takes

exponential time. �

6 Query Safety with Constraints

In Sections 4 and 5, we proposed several paradigms

for querying constraint databases with complex ob-

jects. As in the classical notion of standard relational

databases, we normally require that queries return fi-

nite outputs on finite inputs. This class of queries is

called safe queries[16,34−37].

We investigate whether or not the classical safety

notion for FO formulas with underlying interpreted

functions structure carries over smoothly to second-

order formulas in the constraint setting.

We first investigate the embedded finite complex

value model and then try to reduce most of the re-

sults to the infinite case. For the finite case, we con-

sider whether or not there are any new well-behaved un-

derlying structures, and/or new assumptions required,

for the formula on which safe queries can be syntacti-

cally characterized. We develop a procedure that takes

as input an CALCcv(SC,M) formula and determines

if it is safe or not. Recall that CALCcv is a subset

of SO. When we talk about finite CV-databases with

constraints we adopt the logic language — CALCcv. On

the other hand, we investigate SO over general infinite

CV-databases in constraint settings. Then we apply

rang-restriction concept for CALCcv queries and show

that for any o-minimal structure with dense order, the

class of range-restricted queries is the same as the class

of safe active-semantics complex value queries, CALCcv.

In Subsection 6.1.3, we will discuss the Dichotomy theo-

rem for SO.

For the second part of problem of query safety

over infinite objects, we investigate whether S̃O posses

“tame” behavior in the complex object model. Infor-

mally, the notion of tame behavior of queries is that
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their output is of the same sort as the input. It can

also be defined as whether or not a query preserves some

geometric property[8]. It is also called closure property.

A more detailed involved definition of tame behavior

will be presented later.

6.1 Safe Constraint CALCcv Queries: Finite

Case

We first consider safe queries in the embedded fi-

nite model. In (monadic) second-order logic, some set

variables are quantified over subsets of the universal do-

main as noted in Section 3. A query is an expression

{x | ϕ(x)}, where the formula ϕ has exactly one free

variable x with sort τx. Suppose that we have a CALCcv

query ϕ(x) over some underlying structureM = 〈U ,Ω〉

and a CV SC-database D. The result of ϕ on D is

ϕM(D)
def
= {a ∈ U τ | D |= ϕ(a)}, where U τ denotes the

set of complex value constants with the corresponding

sort τ .

We formally define safe queries as follows.

Definition 20. A CALCcv(SC,M) formula ϕ(x) is

safe for a finite complex value SC-structure D over an

underlying structure M if ϕM(D) is finite. A query is

safe if it is safe for every finite complex value database.

6.1.1 Safe Decidability Algorithm

It is well known that the safety problem is unde-

cidable even for a simple structure M = 〈U , ∅〉, and a

simple formula, ϕ, an FOact(SC) formula. However, as

in the first-order logic, we can find a procedure to iden-

tify a recursive subset of safe formulas that capture the

query class that returns finite outputs with appropriate

sort structures.

We now turn to the development of a syntactic con-

dition that ensures CALCcv formulas with constraints

to be evaluable in a closed-form. Our general approach

to checking the safety property is to check whether

each input constraint sub-formula contains not-allowed

negative constraints. For example, a negative con-

straint in ∃yR(y) ∧ ¬(x2 = y) will cause the formula

output an infinite set of x values.

Intuitively, if a query is in a variable-bounded form,

then we can find an algebraic formula(s) which plays

the role of providing an upper bound for the output

of the query[34]. That means each FO variable is an

individual value that belongs to a bounded range, i.e.,

x ∈ S, where S is an upper bound of the range of x

values, and each set variable of SO contains a finite set

of values which are from some bounded set.

As in [20], we develop an algorithm, Algorithm 1,

which can identify such a set of bounded variables of

a formula. In the algorithm, we need to consider three

key points: 1) (t ∈ S) ∧ φ, 2) (R ⊆ S) ∧ φ, and 3) ¬C,

where C is a constraint. In order to make the formula

safe, the variables in the above three key points should

be bounded.

Algorithm 1. Bounded-Variables (bd)

Input: a constraint CALCcv(SC,Ω) formula ϕ(x)
Output: a subset of the free variables of sub-formulas in ϕ or ⊥

begin

(pred is a predicate in {SC,=,∈,⊆};
f is a function of Ω;
R(t) is an atomic formula)
if for some parameterized query {z | ψ} occurring as a term in
ϕ, z 6∈ bd(ψ) then return ⊥

case ϕ of

R(t) : bd(ϕ) = free(t)
(t pred t′) ∧ ψ : if ψ is safe and free(t′) ⊆ free(ψ)

then bd(ϕ) = free(t) ∪ free(ψ)
t pred t′ : if free(t′) = bd(t′)

then bd(ϕ) = free(t′) ∪ free(t)
else bd(ϕ) = ∅

ψ1 ∧ ψ2 : bd(ϕ) = bd(ψ1) ∪ bd(ψ2)
¬ψ1 : then bd(ϕ) = ∅
¬ψ1 : if ψ1 ≡ x ⊆ y or ψ1 ≡ x ⊆ C

then ⊥
∃xψ1 : if x ∈ bd(ψ1)

then bd(ϕ) = bd(ψ1)− {x}
else return ⊥

y = f(x) if x ∈ bd(ϕ) then bd(ϕ) ∪ {y}
¬(y = f(x)) if y /∈ bd(ϕ) then return ⊥
end

Note: We replace the dis-junction of the two formulas ϕ1∨ϕ2 by
the equivalent ¬ϕ1 ∧ ¬ϕ2 before we apply the above algorithm.

Intuitively if every variable is bounded, in the sense

that it is restricted by the formula to lie in the ac-

tive domain, we call the formula is a safe range. We

identify the set of bounded variables of a formula using

the following algorithm which returns such safe range

variables or returns the symbol ⊥, which indicates that

some quantified variable is not bounded or some con-

straint sub-formula does not lie in the active domain.

We say that a formula is in safe range form if

bd(ϕ) = free(ϕ). We consider a query in the form

of Q ≡ {y | ψ(y)} as a legal term which can occur in

CALCcv formulas like any other term.

Example 11. Let τp = τq = ({R}, R).

p(x, y)
def
= (x = {x1 | φ} ∧ y = 10),

where φ = (0 6 x1 6 10).

Consider the formula

ψ = p(x, y) ∧ ∃t(u = x ∧ ¬q(u, t) ∧ t ∈ u).

Then bd(ψ) = free(ψ) = {x, y, u}. Therefore ψ is a

safe formula.
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Example 12. Let τp = ({R}, R); τs = ({R}, {R}).

Consider the formula

ϕ = ∃y(¬p(x, y) ∧ s(y, z)),

where

p(x, y)
def
= (x = {x1 | φ} ∧ y = 10), φ = (0 6 x1 6 10);

s(y, z)
def
= y ⊂ z ∧ z = {1, 2, 3}.

By Algorithm 1, ¬p(x, y) is not a safe formula as it

contains negation. bd(¬p(x, y)) = ∅. s contains y ⊂ z

and z = {1, 2, 3} which is a safe formula. By Algo-

rithm 1, bd(ϕ) = {z} 6= free(ϕ) = (x, z). Therefore ϕ

is not a safe formula.

Example 13. Let τp = τq = ({R}, R). p(x, y)
def
=

(x = {x1 | φ}∧y = 10), where φ ≡ (0 6 x1 6 10)∧x2
1 =

y. Consider the formula

ψ = p(x, y) ∧ ∃t(u = x ∧ ¬q(u, t) ∧ t ∈ u).

free(ψ) = {x, y, u} and all variables are bounded.

Therefore ψ is a safe formula.

6.2 Safe Translation

Following the line of classical well-developed theory

for standard FO queries with interpreted functions on

finite case, we first start to investigate the SO query

safety in the finite case. We try to find under what as-

sumption on the underlying structure, SO queries have

the property of providing effective safe translation from

arbitrary queries into safe ones. At first glance, there

seem no insight findings from the extension from FO

logic. However, we proceed to investigate for what kind

of well-behaved structures, safety property can be de-

cidable and how we can find a syntactically defined class

which captures such a property and is complete in this

respect. We define a general idea about safe translation

which can convert an arbitrary SO query into a safe one

and produce the same finite results if the output of this

query is finite.

Definition 21. If there is a translation of active-

semantics SO (including FO) query ϕ over some given

structure M and input finite database D into a formula

φ, i.e., a function ϕ → φ, such that the following con-

ditions hold:

• the output of φ is finite,

• if ϕ(D) is finite, then ϕ(D) = φ(D),

then we say that there is a safe translation for con-

straint query. A translation is canonical if φ(D) = ∅

whenever ϕ cannot halt to generate a finite output.

It is well-known that there exists no such safe trans-

lation of arbitrary active-semantics queries over a well-

behaved structure, for example, a Turing machine with

appropriate coding which consists of disjoint inputs and

trace[3]. It does not exist even over natural number do-

main, for example, M = 〈N,Ω〉[8].

However, we find that not only o-minimality and

quantifier elimination properties, like standard con-

straint databases, but also the restriction of second-

order set variables, play a crucial role for the safety

issue relevant to most applications of constraint CV-

databases. This role makes safe translation do exist

for S̃O queries. Recall that the set variables of S̃O

range over a restricted domain which is generated from

all first-order variables in the formula and the active

domain adom.

Proposition 3. Let M be an o-minimal structure

with a dense order and it admits effective quantifier

elimination. M also has a decidable theory. Then there

exists a recursive canonical safe translation of the ext-

ended active-domain S̃O formulas over M.

Proof. Let ϕ(x) be a S̃O formula over M and a

given database D. The output is a single variable x

with complex value sort τx. We denote the active do-

main of the output of ϕ as adom(ϕ(D)). We assume

α(y) be a FO formula defining the active domain of the

output of the fragment of ϕ, which consists of first-order

variables and constants only. Applying natural-active

collapse theorem from the FO theory, we can provide

the following active-semantics sentence Θ equivalent to

∀y1, y2.((y1 < y2) ∧ ¬y(∀y, y1 < y < y2 → α(y))). (1)

The above formula guarantees that α(y) cannot be

infinite points. It is the same concept with “non-

continuous” in the real field of mathematics. And we let

χ be the fragment of ϕ which consists of second-order

variables, i.e., variables of the subset of individual ele-

ments of universal domain, and quantifiers over such set

variables. β(z) defines the active domain of the output

of χ. As these set variables are produced from some

FO formula, we can find the following active-semantics

sentence Υ equivalent to

¬z1, z2((z1<z2) ∧ ∀z, Z, (z ∈ Z, z1<z<z2 → β(z))),

(2)

where Z is a set variable in ϕ.

Then translated safe formula φ can be defined as

ϕ ∧ Θ ∧ Υ. It can be easily verified that ϕ ∧ Θ ∧ Υ

produces finite output since D |= Θ ∧ Υ iff ϕ(D) is

finite.

We now prove that ϕ(D) is finite. Assume that ei-

ther D |= ¬Θ or D |= ¬Υ. In both cases, ϕ(D) is

infinite because of the dense property of the structure.
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We then look at all occurrences of SC predicates

in α and β and replace each of them with a disjunc-

tive norm form. The results generate α′(y) and β′(z)

in the language of Ω and constants from the extended

active domain. Further D |= α(a) iff M |= α′(y);

D |= β(z) iff M |= β′(z). Let Θ′ and Υ′ be obtained

from Θ and Υ respectively by substituting α′ for α

and β′ for β. We then have M |= Θ′; M |= Υ′, since

α′(M) = {a | M |= α′(a)} is a union of finite intervals

and finite points.

Similarly, β′(M) = {b | M |= β′(b)} contains a

union of finite intervals, finite points and finite sets.

(1) and (2) guarantee that there is no “continuous” in-

terval in the field R. Thus, from o-minimality property,

we get α′ and β′ which contain a finite union of points

or a union of finite sets. This concludes that ϕ(D) is

finite. �

Corollary 3. Let ϕ be a SO query over structureR

or RLin, and let D be a complex object database. Then

it is decidable if ϕ(D) is finite.

Proof. In the above proof, we demonstrate that the

active-semantics Θ ∧Υ tests whether ϕ(D) is finite. �

6.2.1 Range-Restriction Theorem

We now show a more involved notion, range-

restriction, which demonstrates concrete characteriza-

tion of safe queries. This notion plays an important role

for exploring the query safety issue. We first informally

describe the concept of range-restriction for finite CV-

databases over interpreted structures. Then we show

that the range-restriction theorem and the Dichotomy

theorem for standard FO constraint queries carry over

to CALCcv queries on finite CV-databases.

We illustrate a simple example to introduce the

range-restriction notion.

Example 14. Consider a CALCcv query ϕ(x) over a

relation R with sort (A : dom, B : dom) which pro-

duces results with sort (dom, {}).

ϕ(x) = {x | x = (z, {y | R(z, y)}) ∧ ∃y′(R(z, y′)) ∧

(10 < z + (y′)2 < 100)}.

This query defines the nesting of the second column

B into a set, and satisfies the condition that A column

value plus the square of one value from B column should

be greater than 10 and less than 100. The relation R

restricts the range of variables z and y. The paramete-

rized query x = (z, {y | R(z, y)}) can be used safely, i.e.,

its output within a finite scope of CV values. Similarly,

∃y′(R(z, y′)) is also range-restricted. Thus this query is

in a range-restriction form. Every element in the out-

put is a solution of R(z, y) and 10 < z + y2 < 100.

This is a classical notion of range-restriction and both

(∃y′(R(z, y′))) and (10 < z + (y′)2 < 100) provide an

upper bound on the output.

It is well known that the safety problem is unde-

cidable even for a simple structure M = (U, ∅), and a

simple formula, ϕ, an FOact(SC) formula[34,38].

However, as in the first-order logic, we can find a

procedure to identify a recursive subset of safe formulas

that capture the query class that returns finite complex

value outputs and every formula with this property be-

longs to this query class.

Intuitively, if a query is in range-restricted form,

then we can find algebraic formulas γ which play the

role of providing an upper bound for the output of

the query[34]. That means each set variable is range-

restricted, i.e., the values assigned to set variables are

finite.

We first define the notion of algebraic set.

Definition 22. Let γ(x;y) be a CALCcv formula

and y a vector of parameter variables with associated

sorts τyi
. We call the formula γ as CV-algebraic if for

each complex value bi ∈ U τbi , the set {a ∈ U τx | M |=

γ(a; b)} is finite.

Note that a is also a complex value.

Let a database D over a structure M = 〈U,Ω〉 and

a CALCcv formula γ(x;y) in the language of Ω and

schema SC of D.

γ(D) = {a ∈ U τx | ∃b ∈ adom(D)τbi ⇒ M |= γ(a; b)}.

If F is a collection of formulas with variables of x; y,

then

F(D) =
⋃

γ∈F

γ(D).

If F is finite and each formula in F is CV-algebraic,

then F(D) is finite.

Definition 23. Let D be a database with schema

SC over an interpreted structure M = 〈U ,Ω〉. A

range-restricted CALCcv query is a pair Q = (F , ϕ(x))

where F is a finite collection {γ1(x;y1), ..., γm(x;ym)}

of CV-algebraic formulas in the language of Ω, and ϕ(x)

is a CALCcv(SC,Ω) query. The semantics of Q is de-

fined as follows:

Q(D) = {a ∈ U τx , a ∈ F(D) | D |= ϕ(a)}.

The above collection of formulas F provides an up-

per bound on the output of query ϕ.
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Example 15. Consider a CALCcv query ϕ(x) over a

relation R with sort ((z : dom, S : {}) which produces

results with sort (dom, {}).

ϕ(x) = {x | x = (z, {y | R(z, y)}) ∧ ∃y′(R(z, y′)) ∧

y > 100}.

Clearly, it is not a safe formula as y > 100 will generate

infinite y values. Now if we set γ(z; y) ≡ (z2+y2 = 100)

and Q = ({γ}, ϕ), then for any database D, Q(D) is

the set of CV x values such that (z2 + y2 = 100) and

either y, z ∈ R or y > 100. It is clear that Q(D) is a

finite set.

Theorem 9. For any o-minimal structure M =

〈U ,Ω〉 based on a dense order, there is a function that

takes an active-domain formula ϕ as input, and out-

puts a range-restricted active query Q = (F , ϕ), where

F is a collection of formulas in x, y. If F is finite and

CV-algebraic, then F(D) is finite.

Proof. We consider the one-variable case here. The

extension to multi-variables case is similar by using the

natural-active collapse. We assume

ϕ(x) ≡ Q1y1 ∈ adom, ..., Qlyl ∈ adomΦ(x,y),

where each Qi is ∃ or ∀, and yi is an individual element

variable or a set variable. Φ(x,y) is quantifier-free and

all atomic sub-formulas R(.) of Φ are predicates from

the schema, containing only variables different from x.

We divide the proof into two parts. The first part

deals with the sub-formulas in pure FO form. Then we

investigate the sub-formulas containing set variables in

the second part.

Let χ1 = {ξi(x,y) | 1 6 i 6 k} be the collection

of all FO Ω-atomic sub-formulas of Φ. By applying

techniques from [3], we define

ξ(a, b, s) ≡
k∧

i=1

(ξi(a, s) ↔ ξi(b, s)),

where a, b are atomic values. Then we generate a for-

mula λ in the following form:

λ(x, s) ≡ ∀x1, x2(x1 < x < x2

→ ∃y(x1 6 y 6 x2 ∧ ¬ξ(x, y, s))).

We denote Λ consisting of λ(x, s).

Let χ2 = {ηi(x;y) | 1 6 i 6 l} be the collection

of all MSO Ω-atomic subformulae of Φ except χ1. We

define

ζ(a, b,D,E, t) ≡

j∧

i=1

(ζi(a,D, t) ↔ ζi(b, E, t)),

where a, b are atomic values, and D,E are set values.

Now we define

γ(z, t) = ¬z1, z2((z1 < z2) ∧ ∀z, Z, (z ∈ Z, z1 < z <

z2 ∧ ζ(a, b,D,E, t))).

We denote Γ consisting of γ(x, s). We then finally pro-

duce F = Λ ∪ Γ. Therefore it shows that there is a

function that takes as input an active-domain formula

ϕ , and outputs a range-restricted active domain query

Q = (F , ϕ), while F ∧ ϕ is safe.

We have to guarantee that {a | D |= ϕ(a)} = {a ∈

F(D) | D |= ϕ(a)}. It is trivial as F is CV-algebraic

and based on the finiteness of the active domain and

the density of order. �

6.2.2 Dichotomy Theorem

We now prove that dichotomy theorem holding for

FO queries carries over to SO queries. We denote

size(D) as the size of a CV-database, measured by the

cardinality of the total number of tuples of D.

Lemma 3. Let M = 〈U ,Ω〉 be o-minimal and based

on a dense order, and let ϕ(x;y) be CV-algebraic. Then

there exists a number K such that for any {bi ∈ U τbi},

the size of the set {a ∈ U τa | M |= ϕ(a; b)} is less than

K.

Proof. By the Uniform Bounds Theorem[39], there

is an integerKγ1
such that, for each tuple b from U , the

set {x | M |= γ1(b, x)} is composed of fewer than Kγ1

intervals, where γ1 is a first-order formula. We take

Kγ1
as an upper bound. As ϕ(x;y) is CV-algebraic

and M = 〈U ,Ω〉 is o-minimal, the elements of the

set {a ∈ U τa | M |= ϕ(a; b)} are less than Kγ1
. Let

Kγ1
6 K. �

Theorem 10. Let D be a finite CV-database over

an underlying structure M which is o-minimal based on

a dense order. Let ϕ be a SO query without inclusion

predicate. Then there exists a polynomial ρϕ : R → R

such that, for any CV-database, either ϕM (D) is infi-

nite or size(ϕM (D)) 6 ρϕ(size(D)).

Proof. ConsideringF derived in Theorem 9, because

every formula λ in Λ and every formula γ in Γ is CV-

algebraic, by Lemma 3, the cardinality of each formula

λ or γ is less than some fixed number K. Therefore if

adom(ϕ(D)) is finite, then its cardinality is at most

(
∑

f∈F

Kf × 2n
mλ

+
∑

g∈F

Kg × 2n
mγ

)× ‖ τx ‖,

where mλ is the number of y variables in λ, mγ is the

number of y variables in γ, ‖ τx ‖ is the depth of the

sort of x, and n is the size of the active domain of D. �
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6.3 Safe Constraint CV Queries: Infinite Case

In regards to the safety problem for constraint CV-

databases, we consider three issues. The first issue is

whether we still can express the output of our constraint

CV query in terms of the class of constraints used to

define the input database. For example, when the in-

put database is a polynomial constraint database ex-

pressed in FO + Poly (without complex object struc-

ture), then we intend to use SO language to query in-

put database. The output of a SO query may fail to

be expressed in FO + Poly. Although we gain extra

expressive power for our query languages, we encounter

the safety (closed) problem.

The second issue is whether the output of constraint

SO query preserves certain geometry properties of re-

gions in Rk. Is there effective syntax for the class of

constraint SO queries which preserve some geometry

property? Can this problem be reduced to finite query

safety for embedded finite CV models?

The third issue is whether the output of constraint

SO query preserves some certain hierarchy geometry

properties. This question is very complicate. We sim-

plify it to the question of whether the output of con-

straint SO query preserves certain geometry property

in a component of the output result.

We first provide a formal definition of “tame” beha-

vior of constraint database queries.

Definition 24. In the context of constraint setting,

we call a query ϕ capturing the tame behavior if 1) the

query is closed, i.e., the same sort for both input and

output data, 2) size(fr(ϕM (D))) 6 size(f(fr(D)))

holds for the output of the query, where fr(�) denotes

the finite representation, f is a polynomial function,

and size(�) stands for the size of the finite representa-

tion of a constraint database, and 3) ϕM (D) preserves

certain geometry property C if D belongs to some geo-

metry class C.

Note that we call a query ϕ in the above definition

admits “tame” behavior as long as it preserves one ge-

ometric property in condition 3.

Example 16. Assume that there are a finite set of

spatial objects stored in a constraint database. A sim-

ple query “return the convex hull with the vertexes at

most equal k is a safe query” returns convex polytopes

which are represented as FO+Poly.

Theorem 11. Given a database D(SC) with an

underlying o-minimality structure M = 〈U ,Ω〉 and a

dense order, there is an effective syntax characteriza-

tion for the class of queries definable in S̃O(SC,Ω)

which possess tame behavior for constraint databases

with the class of polynomial constraints.

Proof. 1) It is well known that FO + Poly is closed

for o-minimal structure. For the input database, it is

finitely represented by constraint S̃O(SC,Ω) formulas.

Applying the procedure described in Subsection 6.2.2

by slightly modification, we will get a finitely repre-

sentable constraint SO output. Therefore S̃O(SC,Ω)

is a closed language.

2) By the definition, each set variable in a

S̃O(SC,Ω) formula is produced by computing a finite

set of FO formulas. Therefore in query evaluation, the

size of the output finitely representable formulas will

grow up at most by a polynomial size.

3) By using appropriate coding for the input

database, it is well known that there is an effective syn-

tax for C-preserving FO queries. As S̃O has more ex-

pressive power than FO, the most C-preserving classes

including convex polytopes, convex polyhedral, com-

pact semi-linear sets and semi-linear sets will still hold

in the output of this powerful SO + Poly query lan-

guage. �

Corollary 4. Given a database D(SC) with the un-

derlying an o-minimality structure M = 〈U ,Ω〉 and a

dense order, there is no language L such that L+Lfp

possess tame behavior.

Proof. It is well known that FO + LIN and FO +

Poly are not closed under the fixpoint operator Lfp.

Therefore, for any logic language L, it is not closed un-

der Lfp. �

Corollary 5. Given a database D(SC) with an

underlying o-minimality structure M = 〈U ,Ω〉 and a

dense order, there is an effective syntax characteriza-

tion for the class of queries definable in S̃O(SC,Ω)

which possess tame behavior for a component of con-

straint CV-databases (for example, one element of the

relation, R.A., where R is a CV-relation and A is an

attribute).

Proof. By Theorem 11, there is an effective syn-

tax characterization for the class of queries definable in

S̃O(SC,Ω) which possess tame behavior for constraint

databases with the class of polynomial constraints. It

implies that there is an effective syntax characterization

for the class of queries definable in S̃O(SC,Ω) which

possess tame behavior for each component of the CV-

database if that component of the input CV-database

D belongs to some geometry class C. �
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7 Related Work

The finite model theory is the foundation of this

paper. This theory was generally introduced in [40-

42]. The seminal paper of constraint databases is from

Kanellakis et al.’s work[2]. A comprehensive treatment

of this topic was presented in [8].

Various forms of collapse results in the constraint

setting were introduced in [5, 9, 21, 43]. A collapse

result for constraint queries over structures of a small

degree was investigated by [21]. Libkin[21] gave an easy

proof of a powerful form of collapse for a large class

of constraints without a linear order, namely those in

which all basic relations are of a small degree. Ram-

sey property plays a crucial role in the active-generic

collapse results and was proposed in [14]. The active-

generic collapse was proved in [9, 27]. In this paper, we

prove that the active-generic collapse holds in monadic

second-order logic.

The notion of o-minimality was extensively studied

in the model-theoretic literature[44,45]. The nature-

active collapse based on o-minimality structure is from

[15]. A different proof of nature-active collapse for FO

+ Poly was presented in [10]. A general algorithm for

nature-active collapse which converts a FO + Poly

query in natural semantics into a formula in active se-

mantics was given in [42]. In this paper, we propose a

version of the algorithm for nature-active collapse based

on a specific underlying structure for CALCcv + Poly.

Topological properties of constraint databases were

studied in [46–49]. In [50], many examples of con-

straint queries that are expressible and inexpressible

in FO + Lin are proposed.

Query safety notion has been extensively investi-

gated in relational databases theory. Safety with scalar

functions was studied in [35, 37]. The concept of safe

translation and the decidability result for the safety of

conjunctive queries over o-minimal structures are from

[34]. Some results on the Dichotomy Theorem for em-

bedded finite models are from dichotomy[34].

8 Conclusions

The constraints provide a sound mathematical

framework to define both data models and query lan-

guages. We studied logics on classes of complex ob-

ject structures and their expressive power. In addi-

tion to first-order logic, various other logics includ-

ing monadic second-order logic, logics with fix-point

operators, logics with transitive closure and fragments

of second-order logic have been extensively investi-

gated. We also investigated the expressive power of

various query languages over constraint complex value

databases. A fragment of monadic second-order logic,
˜MSO, admits a weaker form of the natural-active col-

lapse in the setting of embedded finite CV model, i.e.,
˜MSO(SC,M) = MSOact(SC,M) for any CV-schema

SC. However, under what conditions natural-generic

collapse will hold needs to be further investigated.

We showed that the complexity upper bounds

for three theories of constraints in higher order log-

ics. Some of the classical topological queries, for

example, connectivity, which cannot be expressed in

FO(SC,M), can easily be expressed in SO(SC,M),

given that M is an o-minimal expansion of the real

field R. We considered a syntactic condition that en-

sures constraint complex value calculus queries to be

evaluable in closed-form in the embedded finite model.

The main results of this work not only give us

deeper understanding of various logics on complex value

databases with constraint settings, but also could be

helpful for providing guidelines for constraint queries

over advanced constraint database applications.
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