
Zhao P, Ding C, Liu L et al. Cacheap: Portable and collaborative I/O optimization for graph processing. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 34(3): 690–706 May 2019. DOI 10.1007/s11390-019-1936-6

Cacheap: Portable and Collaborative I/O Optimization for Graph
Processing

Peng Zhao1,2, Student Member, CCF, Chen Ding3, Member, ACM, IEEE, Lei Liu1,∗, Member, CCF, Jiping Yu4

Wentao Han4, Member, CCF, ACM, IEEE, and Xiao-Bing Feng1,2, Member, CCF, ACM, IEEE

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Computer Science, University of Rochester, Rochester 14623, U.S.A.
4Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

E-mail: zhaopeng@ict.ac.cn; cding@cs.rochester.edu; liulei@ict.ac.cn; yujp15@mails.tsinghua.edu.cn
E-mail: hanwentao@tsinghua.edu.cn; fxb@ict.ac.cn

Received May 9, 2018; revised March 19, 2019.

Abstract Increasingly there is a need to process graphs that are larger than the available memory on today’s machines.

Many systems have been developed with graph representations that are efficient and compact for out-of-core processing. A

necessary task in these systems is memory management. This paper presents a system called Cacheap which automatically

and efficiently manages the available memory to maximize the speed of graph processing, minimize the amount of disk

access, and maximize the utilization of memory for graph data. It has a simple interface that can be easily adopted by

existing graph engines. The paper describes the new system, uses it in recent graph engines, and demonstrates its integer

factor improvements in the speed of large-scale graph processing.

Keywords out-of-core graph processing system, I/O optimization, memory cache, graph analytics, locality

1 Introduction

There have been increasing interests to process

large-scale graphs efficiently in science, engineering

and commercial applications. Many real-world prob-

lems, such as online social networks, web graphs, user-

item matrices can be represented as graph computing

problems[1−4].

A real-world graph is often too large to fit in the

memory of a single machine. Out-of-core graph process-

ing is an area of technology that enables the processing

of such graphs on a single machine by using disks ef-

ficiently. Disk I/O becomes the bottleneck, and many

techniques have been developed to ameliorate the I/O

burden[5−12].

This paper presents a new system called Cacheap

for managing memory in out-of-core graph processing.

Cacheap is a generic memory layer between the disk and

a graph processing system or synonymously, a graph

engine. Using Cacheap, a graph processing system ac-

cesses data in memory and does not perform I/O di-

rectly.

Cacheap solves three problems of memory mana-

gement. The first is memory allocation, which sup-

ports variable size data and uses as much memory as

possible to maximize the rate of graph processing. The

second is memory caching, which uses as much memory

as possible for cache and maximizes data reuse in cache.

The third is memory utilization, which maximizes the

portion of memory that stores graph data. Naturally

graph processing and caching compete for memory, and

the total memory they could use depends on memory

utilization. Hence, all the three problems are tightly

Regular Paper

This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFB1003103, the
National Natural Science Foundation of China under Grant Nos. 61432018, 61432016, 61332009, and 61521092, the National Science
Foundation of USA under Contract Nos. CCF-1717877 and CCF-1629376, and an IBM CAS Faculty Fellowship.

∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China

Peng Zhao et al.: Cacheap: Portable and Collaborative I/O Optimization for Graph Processing 691

inter-related and require coordinated solutions.

Cacheap solves the three problems together. It di-

vides the memory between a heap and a cache. The

heap manages the data used in on-going graph process-

ing, and the cache manages the remaining data for later

reuse. Cacheap uses the heap and the cache together

and hence is named by the amalgamation of the two

words. It uses three techniques: collaborative graph

cache, variable granularity memory management, and

computation-I/O overlapping. By controlling the heap

and the cache together using these three techniques,

Cacheap jointly maximizes parallelism, reuse and uti-

lization.

Without a generic layer like Cacheap, existing graph

engines have to use custom designs. GraphChi[13]

and X-stream[9] do not use cache, TurboGraph[7] and

VENUS[5] use a custom LRU cache, and GridGraph[12],

NXGraph[6], and MOSAIC[8] use the page cache. Cus-

tom caches complicate system design and require care-

ful effort to optimize the system performance. Page

cache is simple to use but has a fixed granularity and

replacement policy that cannot be changed with the

application, even when there is algorithmic knowledge

about data access. In comparison, Cacheap is opti-

mized and portable. Please note that Cacheap only

manages memory; therefore it does not improve the

graph representation, and it does not change schedul-

ing.

The paper makes the following contributions:

• a new memory system called Cacheap to maxi-

mize parallelism, reuse and utilization for graph engines

(Subsection 3.1), based on a new design that combines

a heap and a cache (Subsection 3.2);

• three techniques, collaborative graph cache,

variable granularity memory management, and

computation-I/O overlapping, to manage memory to-

gether (Subsection 3.3–Subsection 3.5);

• an easy-to-use programming interface for use by

graph engines, and a demonstration system using Grid-

Graph (Section 4);

• an evaluation using three real-world graphs and

four algorithms to show integer factor speedups over

three state-of-the-art solutions (Section 5).

2 Motivation

In this section, we first analyze the memory mana-

gement of major out-of-core graph engines. Then, we

talk about the execution model of the engines, which

affects the memory usage pattern. Lastly, we moti-

vate Cacheap with an example out-of-core graph en-

gine, GridGraph[12], which is representative and adopts

many common designs in out-of-core graph engines.

2.1 Memory Management in Out-of-Core
Graph Engines

In general, out-of-core graph engines divide a graph

into a set of disjoint partitions and process them ite-

ratively. The partitioning schemes are different for

different engines. Graph engines such as GraphChi

and X-stream adopt vertical(horizontal) partitioning

while others like GridGraph and FlashGraph[14] use

2D partitioning. No matter which partitioning scheme

is adopted, the graph partitions share common pro-

perties which affect the memory management of graph

engines: the partitioning granularity is coarse-grained

considering the I/O efficiency and the partitions are

usually variable-sized due to the skewed real-world

graphs. Consequently, the size of the partitions ranges

from KBs to GBs, making it hard to achieve efficient

memory management.

The prototype of GraphChi uses STL (Standard

Template Library) vectors to store the edge lists in the

partitions and wastes time in resizing and reallocating.

GraphChi then chooses to use flat arrays to store the

partitions and allocate memory from OS dynamically.

However, the memory management is still not satisfac-

tory due to the allocation overhead. Many following

graph engines such as Galois[15] and FlashGraph pro-

pose to use hugepage to ameliorate the overhead. How-

ever, it incurs memory fragmentation.

Other graph engines like X-stream and GridGraph

use statically sized and statically allocated memory

buffers to store the partitions. The buffer size is usu-

ally in MBs and stays fixed. Since the size of a parti-

tion is variable, the buffered I/O also has the problem

of memory utilization. There are also other problems

such as single-partition computation-I/O overlapping

and double copy. More discussion of buffered I/O is in

Subsection 3.6.

2.2 Memory Usage Pattern

The programming models in graph engines usu-

ally fall into two categories — vertex-centric (e.g.,

GraphChi and FlashGraph) and edge-centric (e.g., X-

stream and GridGraph). No matter which program-

ming model is used, the execution of most of the graph

engines is the same. The partitions are periodically

computed among iterations. In each iteration, the

692 J. Comput. Sci. & Technol., May 2019, Vol.34, No.3

partitions are loaded and computed in a fixed order.

For some graph algorithms such as BFS (Breadth-First

Search) and Connected Components, not all the parti-

tions are needed in every iteration. Most of the graph

engines support selective scheduling to skip the unused

partitions. The rest partitions still follow the fixed or-

der.

Next, we introduce a graph engine, GridGraph,

in particular to better investigate the memory mana-

gement problem in out-of-core graph engines.

2.3 GridGraph[12]

GridGraph is a recent out-of-core graph processing

system. It is representative and adopts many com-

mon designs in out-of-core graph engines. In particular,

GridGraph uses a 2D grid graph representation simi-

lar to the representation used by a variety of existing

systems[8,9,13,16−20].

In the 2D grid representation, vertices are divided

into P chunks and the edges are grouped into P × P

partitions. Partition (i, j) contains all the edges whose

source vertex is in chunk i and destination vertex in

chunk j. Fig.1(a) shows an example graph with four

vertices, and Fig.1(b) shows its grid representation for

P = 2.

(b)(a)

1 2

43

Destination

S
o
u
rc

e

Partition (2, 1)

Chunk 1
{1, 2}

Chunk 1
{1, 2}

Chunk 2
{3, 4}

Chunk 2
{3, 4}

(1, 2)
(2, 1)

(1, 3)
(2, 3)
(2, 4)

(4, 1) (3, 4)

Fig.1. Graph representation in GridGraph. (a) Example graph.
(b) Grid representation.

For real-world graphs, the sizes of the partitions fol-

low a power-law distribution with a large range. For

example, a graph released by Twitter has 42 million

nodes and 1.5 billion edges[21]. When represented in

the 32× 32 grid, the smallest partition is 8.1 KB, while

the largest partition is 2.3 GB.

With the grid representation, GridGraph employs

an edge-centric programming model. The system ite-

rates over the partitions in the gird either row by row or

column by column. For each partition, it streams over

the edges in the partition and applies a user-defined

function which may make updates to the vertices in

the corresponding chunks.

For iterative graph applications, the edge stream-

ing process repeats in each iteration. GridGraph uses

selective scheduling to skip reading inactive partitions

which are not used in an iteration. The selective

scheduling is also adopted by a variety of existing

systems[8,9,13,17,19,22]. GridGraph implements selective

scheduling by maintaining a vertex bitmap. Only the

vertices that need to be updated in the next iteration

are set in the bitmap in the current iteration. We call

these vertices with the bits set active vertices. A parti-

tion is active if any of the vertices in its corresponding

source chunk is active; otherwise, it is inactive. With

the bitmap, GridGraph can skip loading and computing

the inactive partitions.

In out-of-core processing, most of the execution time

may be consumed by I/O, i.e., reading graph data from

disk and writing it back. As a demonstration, we have

tested GridGraph for two real-world graph datasets, for

a total of eight tests, on a machine with 8 GB memory.

The two graphs are 11 GB (Twitter)[21] and 28 GB

(UK, a real-world web graph)[23], respectively, which

are both larger than the memory size (8 GB).

Fig.2(a) shows the decomposition of the total exe-

cution into computation and I/O. Across the eight

tests, the percentage of execution time for disk I/O

ranges from 77.2% to 99.3%. The result is consistent

with previous findings in other out-of-core graph pro-

cessing systems[8,10]: I/O is the bottleneck in all tests.

The I/O bottleneck is caused by limited memory.

Fig.2(b) shows the amount of I/O as a factor of the

size of the input graphs, 11 GB for Twitter and 28 GB

for UK. Across the eight tests, the amount of I/O is 7.9

times–37 times of the graph size, demonstrating that

most of the disk accesses happen because the graph

data previously loaded into memory has been evicted

before the next access. There is a great potential that

most of the I/O may be made unnecessary by good

memory management.

There are two questions for I/O optimization: what

the minimal amount of the unavoidable I/O with lim-

ited memory is, and how much a practical system can

be implemented to achieve this lower bound in I/O. The

graph engines often have knowledge about the data ac-

cess. For example, because of the selective scheduling

in GridGraph, the partitions to be used in the next ite-

ration are known in the current iteration. This raises

Peng Zhao et al.: Cacheap: Portable and Collaborative I/O Optimization for Graph Processing 693

(b)

N
o
rm

a
li
z
e
d
 I

/
O

 A
m

o
u
n
t

(a)

P
e
rc

e
n
ta

g
e
 o

f
T

im
e

Twitter UK

WCC

PageRank

BFS

Radii

Computation

I/O

WCC

PageRank

BFS

Radii

100

80

60

40

20

0

Graph Datasets

Twitter

35

30

25

20

15

10

5

0

UK

Graph Datasets

Fig.2. Performance analysis of GridGraph running four algorithms on two graphs. (a) I/O takes most of the execution time. (b) Most
I/O is for loading graph data repeatedly.

the possibility of application-directed memory mana-

gement.

3 Cacheap Design

In this section, we first motivate the design of

Cacheap and then introduce its components and organi-

zation. Then we describe the three techniques adopted

— collaborative graph caching, variable granularity

memory management, and computation-I/O overlap-

ping — and their benefits.

3.1 Design Goals

Cacheap is a generic memory layer between a graph

engine and a file system. Using this memory layer, a

graph engine performs all graph processing by access-

ing data in the memory and does not perform I/O di-

rectly. On behalf of the graph engine, Cacheap handles

all data access at the file system by reading the graph

data from the disk into the main memory and writing

the modified data from the main memory back to the

disk.

Cacheap is so named because it consists of mainly

two components, a heap and a cache. The two compo-

nents are needed for different purposes.

• Heap. Based on the available memory and the

speed of I/O, the heap stores the maximal amount of

active data for graph processing.

• Cache. All additional memory not used by the

heap is used as a cache, which supports automatic and

application-directed cache management.

Cacheap is designed to provide the highest memory

performance for the host graph engine. In particular,

it is to achieve the following four goals.

• Maximal Parallelism in Graph Processing. The

heap enables the maximal number of threads allowed

by the limited memory size and the slow speed of disk

I/O.

•Minimal I/O. The cache enables the maximal data

reuse allowed by the limited memory, which minimizes

repeated data access in the disk.

• Maximal Memory Utilization. The heap and the

cache are managed together to provide near 100% mem-

ory utilization, i.e., the portion of physical memory that

stores graph data.

• Complete Computing and I/O Overlapping. The

heap and the cache operate together so that when I/O is

the bottleneck, I/O time is always overlapped with com-

puting, and when computing is the bottleneck, comput-

ing is always overlapped with I/O.

The four goals of Cacheap have conjunctive rela-

tions. The combination of the second and the third

goals means that Cacheap stores the most graph data

in the memory and makes the most reuse when the data

is in the memory. The combination of the first and the

last means that when computing is the bottleneck, the

computing time is never interrupted by I/O, and the

computing always runs forward at the greatest paral-

lelism. With the joint control, Cacheap supports the

highest memory performance.

Previous work manages memory separately and may

achieve the first goal but not the next three goals. We

694 J. Comput. Sci. & Technol., May 2019, Vol.34, No.3

will discuss the differences between the joint and the

separate memory control in Subsection 3.6.

3.2 System Architecture

The high-level organization of Cacheap is shown in

Fig.3. It is a memory layer between the graph engine

and the OS file system. It divides the memory into

the heap and the cache. The system interacts asyn-

chronously through a set of queues. Fig.3 shows two

queues, a request queue and a ready queue, which are

used to communicate between Cacheap and the graph

engine.

From the perspective of Cacheap, the graph engine

consists of a set of computing threads. Before process-

ing a graph partition, the graph engine inserts a request

for the partition into the request queue. Cacheap serves

the request from the request queue and loads the graph

partition into the heap. It then sends a ready signal to

the ready queue, which activates the processing by the

graph engine.

We use the term heap because it supports the allo-

cation and deallocation of variable-size graph data, and

it has a bounded capacity. We refer to the data in the

heap as active data. It includes all data currently be-

ing processed by the graph engine and the data being

loaded by the current request. The rest of the data in

memory is inactive. The limited memory bounds the

heap capacity, which bounds the maximal amount of

active data and in turn bounds the amount of paral-

lelism.

Effectively, the heap implements memory-bound

parallelism control. It is analogous to a task queue,

which is CPU-bound parallelism control. Just as a task

queue is used to run as many tasks as the number of

available cores, the heap in Cacheap is used to run as

many threads as the amount of memory permits.

The heap and the two queues maximize the para-

llelism in graph processing. With sufficient threads in

the graph engine, the ready queue is always empty, and

graph processing starts immediately after a graph par-

tition is loaded into the heap. When the memory is lim-

Graph Engine
Computing Threads

Request Queue Ready Queue

Heap

Cache

Cached Partition

Cacheap

Graph File(s)

Control Info.

Graph Data

OS File System

Active Partition

Task

...

Fig.3. High-level design of Cacheap: it is a generic memory layer between the graph engine and the file system, and it divides the
memory into a heap and a cache.

Peng Zhao et al.: Cacheap: Portable and Collaborative I/O Optimization for Graph Processing 695

ited and the disk is fast, the request is filled as quickly as

the data is computed, and all the available memory will

be given to the heap. When the disk is slow, however,

the request is filled slower than the data is computed,

and the amount of active data, i.e., the heap size, may

be smaller than the memory size.

Hence, if I/O is sufficiently slow, there will be mem-

ory not needed by the heap, and this remaining memory

is given to the cache.

The cache stores the inactive data which is cur-

rently unused but may be used again in the future.

As a generic system, the cache in Cacheap can sup-

port any type of cache replacement. We have imple-

mented LRU and MRU polices. More importantly,

we have developed collaborative graph caching (CGC),

which we describe in Subsection 3.3. Any graph engine

using Cacheap can choose any of its caching policies.

In evaluation, we will show that the new CGC policy

closely approximates optimal performance.

The heap and the cache work together to serve the

graph engine. When the next request in the request

queue is served, the graph partition or part of it may

be stored in the cache, and it will be moved directly

to the heap. The missed data will be loaded from the

disk. The process involves finding free memory and

scheduling the disk transfer, which we will describe in

Subsection 3.5.

Cacheap supports variable granularity data, as indi-

cated by different size blocks in Fig.3. Such support is

necessary, because the unit of data in graph processing

may vary, for example, by several orders of magnitude

in GridGraph as discussed in Section 2. Cacheap stores

each partition in consecutive blocks of a fixed size. It

manages the data in the heap and the cache together.

The joint management is necessary for memory utiliza-

tion and the other goals mentioned in Subsection 3.1.

In particular, the design enables fine-grained (block-

granularity) computation-I/O overlapping, which we

explain in Subsection 3.6, and near 100% utilization

of memory, which we will show in evaluation.

3.3 Collaborative Caching

We first describe the basic cache operations and

then a policy called collaborative graph cache (CGC).

3.3.1 Cache Operations

The cache is managed by a cache manager, which

maintains a hash table for cache lookup and a set of

cache replacement policies. When a graph partition is

finished, its meta data is inserted into a queue called

the release queue. The cache manager dequeues the re-

lease and moves the graph partition from the heap to

the cache. Note that the move is logical and entails

adding the meta data to the hash table. There is no

physical copying of the graph partition.

When memory is needed for loading a request, the

cache manager uses the cache policy to select the graph

partition to evict. If the requested data is in the cache,

i.e., a cache hit, the data is (logically) moved to the

heap. In both cases, evicting to the disk and moving

to the heap, the meta data is deleted in the hash table.

The eviction may have the extra operation of writing

back the data if it is modified.

3.3.2 CGC Policy

Most of the graph algorithms such as Breadth-First

Search (BFS) and Connected Components (CC) are ite-

rative. In each iteration, a subset of the graph needs to

be processed. The subsets in successive iterations may

differ. However, it is often the case that the subset used

in the next iteration is determined in the current itera-

tion. Based on this observation, we propose CGC as

a collaborative cache policy to exploit the application

knowledge for iterative graph processing.

Through the Cacheap programming interface (see

Subsection 4.1), a graph engine can signal Cacheap that

a graph partition will be needed in the future. We call

the signal a hint and the graph partition the hinted

data.

CGC records hints in a set. It favors eviction of

unhinted data in the cache. This is implemented by a

stack shown in Fig.4, where the hinted data is grouped

near the top and the unhinted near the bottom.

Top Watermark

Hinted Unhinted

Bottom

Fig.4. Joint management of hinted and unhinted data in CGC.

Logically, the stack of CGC consists of two stacks,

hinted and unhinted, with a dynamic boundary. The

replacement in each stack can use any policy. In CGC,

we use the most recently used (MRU) policy. When the

hinted data is added to the cache, or the unhinted data

becomes hinted, it is added to the bottom of the hinted

section. Eviction always happens at the bottom of the

combined stack.

696 J. Comput. Sci. & Technol., May 2019, Vol.34, No.3

MRU is used in CGC on the assumption that the

order a graph engine traverses graph partitions is the

same across iterations. For example, the order can be

row-by-row or Hilbert curve for a 2D grid representa-

tion (Section 2). MRU is the most effective because

the most recently used partition is likely accessed the

furthest in the next iteration, if it is used.

3.3.3 Comparison with MRU and OPT

Because it combines cache hints and MRU, CGC

outperforms MRU. In particular, CGC never evicts par-

titions to be used in the next iteration as long as the

cache can hold all the hinted partitions, while MRU

may evict these partitions. This is shown by the ex-

ample in Fig.5. Suppose the partitions are equal-sized,

and the cache size is 3. At time 3, a, b, c are in cache

and we need to evict one to make room for d. For CGC,

supposing c is hinted, CGC will choose to evict b be-

cause b is the most recently used in the unhinted set.

The two accesses in the second iteration will both be

hits. However, MRU would evict c and incur a miss at

time 4.

Partition Trace a b c d

0 1 2 3Logical Time

c d b d

4 5 6 7

Fig.5. Example sequence of eight accesses to four graph par-
titions. The accesses happen in three iterations, separated by
dotted lines.

Belady gave the optimal off-line policy, which evicts

the block that is accessed the furthest in the future

when a replacement happens[24]. Mattson et al. showed

how it can be implemented for all cache sizes and called

it the OPT algorithm[25]. CGC is not optimal. How-

ever, there are only two scenarios that CGC performs

worse than OPT.

• The victim is not used in the next iteration but

used in at least one of the iterations after the next ite-

ration (suppose the next iteration is i and the earliest

iteration in which the victim is used is j) and no prior

partition is used between the iterations i and j.

• The victim is used in the next iteration but has

not been hinted before the eviction.

For the example in Fig.5, the victim b at time 3 is

not used in the second iteration but used in the third

iteration. The eviction of b will lead to a miss at time

6. However, the miss can be avoided in OPT because

OPT will evict a instead of b because a is not used be-

tween the second and the third iteration. For CGC,

supposing c has not been hinted at time 3, CGC treats

a, c the same and may evict c, causing a miss at time

4.

However, in real-world graph algorithms, either of

the two scenarios seldom happens. The first scenario

has very strict constraint conditions. For the second,

a partition is usually immediately hinted if it is to be

used in the next iteration. Evaluation in Subsection 5.5

shows that the performance of CGC is very close to that

of OPT in real-world graph analytics.

3.4 Variable Granularity Memory

Management

As a memory layer, Cacheap manages data objects

of any size by allocating consecutive memory in the ad-

dress space. In a graph engine, although the size of

the graph partitions varies, it is usually much larger

than the size of a physical memory page. Based on

this observation, Cacheap manages them in blocks of a

constant size that is multiples of the page size.

Cacheap keeps track of its memory in blocks. The

size of maximal physical memory Cacheap can use is a

user-defined parameter and is set during Cacheap ini-

tialization. Physical memory is consumed by the graph

partitions stored in the memory, regardless of whether

they are in the heap or in the cache. In fact, both the

heap and the cache are mere logical constructs. There

is never data copying when a graph partition is moved

between the heap and the cache.

A graph partition may be partially resident in the

memory, that is, some but not all of its blocks are

stored in memory, and the remaining blocks have to

be loaded from the disk. Cacheap uses the system call

mmap to allocate memory to load a new graph parti-

tion, mremap to allocate memory to complete loading

of a partially resident partition, andmunmap to deallo-

cate the memory used by a graph partition. To observe

the memory bound, Cacheap calls the allocation mmap

only after sufficient deallocation by munmap.

Cacheap evicts cache data at the block granularity.

To satisfy a memory allocation, it may suffice to deal-

locate just a part of a graph partition in the cache. A

consequence is a partial cache hit, where some but not

all of the blocks of the requested graph partition are in

the cache. The cache returns the partially cached data

immediately to the heap and at the same time loads the

missing blocks from the disk. To enable graph process-

ing on partial partition, the cache evicts the last block

of a graph partition first, and its subsequent eviction

Peng Zhao et al.: Cacheap: Portable and Collaborative I/O Optimization for Graph Processing 697

moves backwards. Depending on the design, a graph

engine may start computing on the beginning blocks

of the partial graph partition, while the loading of the

missing later blocks happens in parallel.

In CGC, the hints are given dynamically. It is pos-

sible that a hint comes when a graph partition is in the

middle of eviction. Since the eviction happens block by

block, the not-yet-evicted blocks are rescued and moved

to the hinted section of the cache. This is another rea-

son for a partial cache hit.

3.5 Computation and I/O Overlapping

The request processing is asynchronous in Cacheap,

so is I/O processing. The two methods are shown

in Algorithm 1. When the request queue is not

empty, the next request is processed by the method

ProcessRequest. It first tries to serve the requested

data from the cache. If the data needs to be loaded from

the disk, the system will check whether there is enough

free memory available for the heap to store it. In most

cases, there is no free memory, and the cache will evict

the right amount of cached data to free just enough

memory to give to the heap. The eviction happens in

block granularity as discussed in Subsection 3.4. After

eviction, it schedules I/O by inserting a disk-loading

request to the I/O queue. Note that evicted data still

resides in memory after eviction and remains so until

the I/O request is served.

Algorithm 1 . Request & I/O Processing Methods

1: function ProcessRequest()

2: Key = Pop(ReqQueue)

3: P = CacheLookup(Key)

4: Mark P as active

5: if P in cache then

6: CacheDelete(Key)

7: Push(ReadyQueue, P)

8: else if part of P in cache then

9: CacheDelete(Key)

10: Push(ReadyQueue, P1) ⊲ cached P1

11: Push(IOQueue, P2) ⊲ uncached P2

12: else ⊲ P not in cache

13: Push(IOQueue, P)

14: end if

15: end function

16: function ProcessIO()

17: P = Pop(IOQueue)

18: if no enough free memory then

19: CacheEvict(P.size)

20: end if

21: Read(P) ⊲ Read from disk

22: Push(ReadyQueue, P)

23: end function

When the request queue is not empty, the next re-

quest is processed by the method ProcessIO shown

in Algorithm 1. It first deallocates the evicted data,

by unmap, and then allocates the memory for the re-

quested data, by mmap for a whole graph partition

or mremap for a partial partition. After I/O is com-

pleted, it pushes the meta-data to the ready queue.

Cacheap supports parallel I/O, where the I/O queue

can be served by multiple disks.

In Cacheap, the moving of data from the heap to

the cache uses one more queue, the release queue. Af-

ter finishing computing on a graph partition, the thread

will add the partition to the release queue. When the

release queue is not empty, the cache processes the next

release. If a partition is not used by any other thread,

it will be marked as inactive and moved to the cache.

Reference counting may be used for heap management.

We can now analyze the computation and I/O over-

lapping in three cases. First, when I/O is the bottle-

neck, we show that I/O is always overlapped with com-

puting. In this case, I/O queue is always filled. Hence,

I/O operation is continuous. The ready queue is always

emptied immediately when a graph partition is loaded,

because there are always computing threads waiting.

Since a graph partition is placed in Ready Queue im-

mediately after it is loaded, I/O is overlapped with the

maximal amount of processing possible. Second, when

computation is the bottleneck, e.g., when there is suf-

ficient memory to store all graph partitions, the ready

queue is always filled, and all threads are busy process-

ing, and they are completely asynchronous from I/O.

Third, when computation and I/O are balanced, the

I/O queue and the ready queue are both filled, and

both computation and I/O are continuous at the peak

speed.

3.6 Comparison with Buffer + Page Cache

Some graph engines such as X-stream and Grid-

Graph use application buffers for graph processing and

the system page cache for file caching (see Section 6).

In these systems, the heap and the cache are managed

separately. The joint management by Cacheap has the

following benefits.

Memory Utilization. A graph engine such as Grid-

Graph allocates a buffer of a fixed size for each thread.

If a graph partition is too large, it is broken into

“batches” of the buffer size. When a buffer is only

partially utilized, the unused memory is the internal

fragmentation, which can be large for big buffers, e.g.,

698 J. Comput. Sci. & Technol., May 2019, Vol.34, No.3

24 MB in GridGraph. Since Cacheap manages mem-

ory in blocks, and a block is always used, by either the

heap or the cache, Cacheap loses utilization only for in-

ternal fragmentation in its blocks (whose size is 4 KB

as explained in Subsection 5.6).

Partition-Aware Eviction. When buffers are used, a

thread cannot start computing, until it finishes loading

a graph partition (or a batch). The thread is blocked

for I/O even though there may be partition data cached

in the page cache. The joint control in Cacheap is

partition-aware in that it evicts one graph partition at a

time. In comparison, a page cache is partition-unaware

and may evict pages indiscriminately from potentially

a large number of partitions.

Singe-Partition Computation-I/O Overlapping.

Cacheap may evict only a part of a graph partition.

As explained in Subsection 3.4, it may have a partial

cache hit, and for that partition, the computation (on

the partially cached data) and the I/O (for the missed

data) happen in parallel. This is impossible without the

combined control. The benefit is highly prominent for

graph processing, because the power-law distribution

of graph edges means that there always are some parti-

tions that are exceedingly large, e.g., 2.3 GB mentioned

in Section 2.

Delayed Eviction. Another important benefit for

memory utilization comes from I/O Queue. As shown

in Algorithm 1, deallocation due to cache eviction is

delayed while the disk request is waiting in I/O Queue.

This delay maximizes the time that the evicted data

resides in the memory. A related benefit comes from

block granularity memory management. The combined

effect is that only the minimal amount of in-memory

data is evicted, and it is evicted at the latest possible

time.

Single Copy. Buffered I/O involves double copy, i.e.,

it needs to copy data to page cache and further to user

buffer. Since Cacheap operates the heap and the cache

together with memory blocks, it only needs to copy the

data once from disks to the memory blocks. There is

no data copy between the heap and the cache. It only

needs to change a bit indicating whether a partition is

in the heap or the cache.

4 Cacheap Usage

Cacheap may be used by any type of graph engines.

We first show its programming interface and then an

example integration with GridGraph.

4.1 Cacheap Programming Interface

Cacheap has two programming interfaces. The first

provides memory management, which is the heap inter-

face. The second provides cache management, which is

optional and may be used for either specific support of

a graph engine or generic extension of Cacheap.

Memory Interfaces. A graph engine requests and

uses memory using Cacheap through three interface

functions: Request, Get and Release. Their parame-

ters are given in Algorithm 2. When calling Request,

the graph engine provides a key, which contains the file

location or a file-mapping function; therefore Cacheap

knows where to retrieve the data. Naturally, the key is

unique for each graph partition.

Algorithm 2 . Cacheap Interfaces

function Require(Key)

Push(ReqQueue, Key)

end function

function Get()

if ReadyQueue empty then

Wait(RQMutex) ⊲ sleep until ready

end if

partition = Pop(ReadyQueue)

return partition

end function

function Release(Partition)

Push(RelsQueue, Partition)

end function

function Hint(Args)

Push(HintQueue, Args)

end function

Each of Request and Release has a single parameter

and registers a need and a release for memory respec-

tively. They are non-blocking. Get has no parameter

and takes the next graph partition for processing. It is

blocking. Their implementation is shown in Algorithm

2. Request and Release insert requests into the request

queue and the release queue respectively. Get retrieves

from the ready queue. The request queue and ready

queue are illustrated in Subsection 3.2, and the release

queue is described in Subsection 3.5.

The memory interface of Cacheap is simplified be-

cause of its support of data objects of any size. It is

well known that in real-world graphs, the size of graph

partitions is not uniform and follows the power law

distribution[26]. In the past, a graph engine must han-

dle variable-size partitions. This adds extra burden to

system complexity and can impose unnecessary limits.

For example, GridGraph allocates a fixed-size buffer for

each computing thread. If the thread loads a partition

Peng Zhao et al.: Cacheap: Portable and Collaborative I/O Optimization for Graph Processing 699

that is larger than the buffer size, the thread has to di-

vide the partition into pieces (batches) and load them

separately. However, with Cacheap, graph engine pro-

grammers do not need to care about the management

of memory for the variable-size partitions (e.g., buffers

in GridGraph)

Cache Interface. Cacheap provides an interface op-

tionally used for implementing customized cache poli-

cies. A graph engine can define a new cache policy class

by inheriting from the abstract class given in Fig.6, with

three abstract functions, add, evict and delete. They

must be implemented in the new cache policy class. A

fourth function, hint, can be used if the new policy is

collaborative as CGC.

class CachePolicy {

virtual void add(Partition) = 0;

virtual void delete (Partition) = 0;

virtual Partition * evict(size_t) = 0;

virtual void hint(int n, ...){}

};

Fig.6. Abstract CachePolicy class.

Cacheap calls the add function when moving a parti-

tion from the heap to the cache and delete when moving

a partition in the opposite direction from the cache to

the heap. Both functions take the moving partition as

the parameter. When there is not enough free memory

to load a partition, Cacheap calls the evict function to

decide what to evict. The size of needed memory is

the parameter to the evict function. The function then

returns a list of victim partitions selected by the new

policy.

It takes a careful design to manage memory with

good utilization and cache with high efficiency. A cus-

tom design of the memory layer is either inferior or

a repetition of effort, if it is fully effective. By using

Cacheap instead, a graph engine can avoid the comple-

xity of memory management entirely and yet benefit

from maximizing parallelism, minimizing I/O, and fully

overlapping computation with I/O.

4.2 Integration in Graph Engines

In this subsection, we show how graph engines use

the Cacheap interfaces with GridGraph as an example.

GridGraph adopts the edge-centric programming model

and streams over the partitions containing edges. The

total modification is light, about 60 lines. In particular,

we modify GridGraph as follows.

1) The main thread calls the Require interface for

each active partition. We use the coordinate of the

partition as its key.

2) The computing threads retrieve ready partitions

by calling the Get interface, process the edges in the

partitions and release them when finished.

The process is listed in Algorithm 3. The function

F is a filter function to skip computing the inactive ver-

tices. Fe is a user-defined function for edge processing.

Note that each partition associates with a key. For

GridGraph, the key is an integer pair, (a, b), indicating

the partition coordinate in the grid.

We also implement CGC in GridGraph by integrat-

ing the CGC hints in its selective scheduling. Grid-

Graph uses a bitmap to indicate the activeness of ver-

tices. It provides an interface function for graph appli-

cation programmers to mark a vertex as active and to

be used in the next iteration. We extend the function to

find the corresponding active partitions and pass them

to Cacheap by calling the Hint interface.

Algorithm 3 . GridGraph Using Cacheap

function StreamEdges(Fe, F)

fork Compute(Fe, F)

for each active partition 1○ P do

Require(P.key)

end for

end function

function Compute(Fe, F)

Sum = 0

while not all active partitions done do

P = Get()

for each edge in P do

if F (edge.source) then

Sum += Fe(edge)

end if

end for

Release(P)

end while

return Sum

end function

5 Evaluation

We evaluate Cacheap in this section. Cacheap is

designed to optimize I/O for out-of-core graph engines.

To demonstrate Cacheap, we adopt it in GridGraph,

which is a representative out-of-core graph engine. To

show its portability, we also extend Cacheap to other

two graph engines, GraphChi and X-stream.

1○In GridGraph, an active partition is a partition with edges to be processed.

700 J. Comput. Sci. & Technol., May 2019, Vol.34, No.3

5.1 Experimental Setup

In our evaluation, we use four graph algorithms,

WCC, Radii, BFS and PageRank, which are all im-

plemented in GridGraph. WCC stands for weakly con-

nected components. It finds subsets of vertices con-

nected with edges by propagating the subset labels via

the edges iteration by iteration until convergence. BFS

is breadth-first search. In the first iteration, only the

chosen root vertex is active and all its unvisited neigh-

borhood will be marked as active in the next iteration.

The process ends until no vertex is active. Radii finds

the radius of a graph. It starts from 64 random se-

lected vertices doing breadth-first search and updating

the radius for each vertex until all the radii are found.

PageRank approximates the impact of each vertex on

the graph by propagating the impacts over the edges.

We run PageRank for 10 iterations in our experiments.

Four real-world graphs, listed in Table 1, are used

as inputs in our evaluation. They are all billion-edge

graphs with highly skewed power-law degree distribu-

tion.

Table 1. Graph Datasets

Graph |V | (×106) |E| (×109) Size (GB) Type

Twitter 42 1.5 11 Social

UK 106 3.7 30 Web

Yahoo 1 400 6.6 53 Web

Clueweb 978 42.6 336 Web

Note: |V | means the number of vertices and |E| means the num-

ber of edges.

We conduct all the experiments on AWS EC2

i2.2xlarge instances. We choose to use the i2.2xlarge in-

stance because it is storage optimized providing direct-

attached SSD with high I/O bandwidth. The instances

are storage optimized and recommended by AWS to

run applications that can benefit from high I/O perfor-

mance. The i2.2xlarge instance has eight hyperthread

vCPU cores, 61 GB memory and 2× 800 GB SSD sto-

rage capacity. We run eight threads in our tests. The

actual I/O bandwidth is about 470 MB/s tested with

fio.

We modify GridGraph, GraphChi, and X-stream

lightly (tens of lines, including CGC hints). We do

not modify any of the four graph applications used in

our evaluation.

The baseline GridGraph adopts a heuristic mecha-

nism to determine whether to use OS page cache: page

cache is used only if the total size of all the partitions

used in an iteration does not exceed the memory. In

order to make a better comparison of page cache and

Cacheap, we make another modification of GridGraph,

in which page cache is always used. We call this version

PageCache.

5.2 Overall Performance

We report the performance of GridGraph and its

two modifications PageCache and Cacheap in Table 2,

for different memory sizes.

When the memory size is smaller than the graph

size, Cacheap outperforms GridGraph in all tests with

speedup ranges from 1.29x to 3.86x for WCC, 1.26x to

2.38x for PageRank, 1.27x to 4.49x for BFS, and 1.13x

to 1.98x for Radii. On average across all algorithms,

the improvement ranges from 1.30x for 11 GB Twitter

graph at 4 GB memory to 3.43x for 30 GB UK at 24 GB

memory. On average across all tests, Cacheap is twice

(2.04) as fast as GridGraph.

When the memory size is the same with or larger

than the graph size, caching does not matter. Cacheap

still outperforms GridGraph in all tests except for two,

in which it is slower by a negligible amount. We will

evaluate the overhead of Cacheap shortly. On ave-

rage, Cacheap is 1.15x as fast as GridGraph, because

Cacheap overlaps computation and I/O completely.

When the memory size is smaller than the graph

size, GridGraph uses I/O directly without caching. A

second solution, PageCache, uses the file cache, but the

performance is very similar to that of GridGraph, show-

ing little effect by the page cache.

Cacheap outperforms PageCache as significantly as

it does GridGraph. The improvements of Cacheap over

these two alternatives come from the benefits discussed

in Subsection 3.6 and from better caching to be shown

in Subsection 5.5.

We also show the Cacheap speedups over GraphChi

and X-stream in Table 3. Similar to the results on Grid-

Graph, Cacheap consistently outperforms GraphChi

and X-stream. On average across all tests with memory

smaller than the graph size, Cacheap is 3.48x and 2.78x

faster than GraphChi and X-stream, respectively.

5.3 Computation and I/O Overlapping

Fig.7 shows the computation time and the I/O time

for the first nine iterations of WCC computing on the

Twitter graph.

Peng Zhao et al.: Cacheap: Portable and Collaborative I/O Optimization for Graph Processing 701

Table 2. Execution Time (in Seconds) of Four Graph Algorithms on Four Graphs with GridGraph, PageCache and Cacheap and

the Speedup of Cacheap over GridGraph under Different Memory Sizes

Graph Algorithm System Twitter (11 GB) UK (30 GB) Yahoo (53 GB) Clue (336 GB)

4 GB 8 GB 12 GB 16 GB 24 GB 32 GB 32 GB 48 GB 61 GB 61 GB

WCC GridGraph 187.7 180.7 37.1 1 451 1 371 205.9 12 240 7 246 1 562 79 265

PageCache 187.1 180.1 37.42 1 433 1 357 206.9 12 127 5 458 1 554 79 032

Cacheap 116.4 73.51 34.45 723.8 354.8 146.3 8 879 2 961 1 510 61 328

Speedup 1.61x 2.46x 1.08x 2.00x 3.86x 1.41x 1.38x 2.45x 1.03x 1.29x

PageRank GridGraph 269.4 270.9 96.38 703.5 695.7 232.1 3 065 2 300 2 268 24 812

PageCache 283.8 273.3 94.11 706.3 693.4 233 2 122 1 983 1 989 24 690

Cacheap 229.8 141.7 96.8 450.5 292.2 184.8 2 015 1 829 1 940 17 035

Speedup 1.71x 1.91x 1.00x 1.56x 2.38x 1.26x 1.52x 1.26x 1.17x 1.46x

BFS GridGraph 230.5 226.1 38.27 1 786 1 747 183.4 9 845 5 601 1 320 69 274

PageCache 235.1 223 39.09 1 790 1 738 183.5 7 685 2 483 1 326 62 886

Cacheap 181.9 105.8 36.05 893.3 398.4 129.3 5 051 1 778 1 346 30 727

Speedup 1.27x 2.14x 1.06x 2.00x 4.39x 1.42x 1.95x 3.15x 0.98x 2.25x

Radii GridGraph 404.5 399.2 106.1 2 826 2 468 308.7 36 274 16 406 14 654 211 255

PageCache 426.13 406.26 106.22 2 656 1 893 313.8 36 168 16 742 11 644 211 289

Cacheap 356.9 201.2 106.1 1 600 794.5 295.44 28 136 13 209 11 241 175 447

Speedup 1.13x 1.98x 1.00x 1.77x 3.11x 1.04x 1.29x 1.24x 1.30x 1.20x

Average 1.30x 2.12x 1.03x 1.83x 3.43x 1.28x 1.53x 2.02x 1.12x 1.55x

Table 3. Cacheap Speedups over GraphChi and X-stream Under Different Memory Sizes

Graph Algorithm System Twitter (11 GB) UK (30 GB) Yahoo (53 GB) Clue (336 GB)

4 GB 8 GB 12 GB 16 GB 24 GB 32 GB 32 GB 48 GB 61 GB 61 GB

WCC GraphChi 1.89x 3.21x 1.10x 2.12x 3.46x 1.32x 1.89x 3.22x 1.11x 1.57x

X-stream 1.88x 2.93x 1.12x 2.45x 4.02x 1.22x 1.27x 2.88x 1.05x 1.39x

PageRank GraphChi 2.21x 3.86x 1.26x 1.97x 4.35x 1.22x 1.81x 2.89x 1.24x 1.91x

X-stream 1.41x 1.89x 1.04x 1.99x 3.27x 1.13x 1.86x 2.01x 1.17x 1.79x

BFS GraphChi 1.82x 2.88x 1.32x 1.93x 4.27x 1.31x 2.04x 4.55x 1.15x 2.32x

X-stream 1.26x 2.22x 1.01x 1.34x 2.97x 1.18x 1.92x 3.76x 1.00x 2.14x

Radii GraphChi 1.88x 2.61x 1.05x 2.86x 5.25x 1.17x 2.53x 4.64x 1.17x 2.19x

X-stream 1.42x 1.99x 0.99x 1.44x 1.87x 1.03x 1.43x 2.03x 1.12x 1.54x

Average GraphChi 1.95x 3.14x 1.18x 2.22x 4.33x 1.26x 2.07x 3.83x 1.17x 2.00x

X-stream 1.49x 2.26x 1.04x 1.81x 3.03x 1.14x 1.62x 2.67x 1.09x 1.72x

1 2 3 4 5

Iteration

T
im

e
 (

s)

I/O

Computation

Total

6 7 8 9

101

100

10-1

Fig.7. Computation, I/O time and total time for each iteration

in WCC on Twitter with 10 GB memory.

Note that the total time taken by each iteration

is always nearly the same as the computation time or

the I/O time depending on which is longer. Therefore,

Cacheap overlaps computation and I/O regardless of

the bottleneck, which is I/O in iterations 1, 3, 4, 5 and

computation in iterations 2, 6, 7, 8, 9, respectively.

For each iteration, we have measured the difference

between the running time and the larger one of the

computation and I/O time. This shows the degree of

insufficient overlapping. For the four algorithms on

Twitter with 8 GB memory and on UK with 16 GB

memory, the non-overlapped time is in the range from

0.08% to 2.9% and on average 1.39% of the total run

time, showing near complete computation-I/O overlap-

ping by Cacheap.

702 J. Comput. Sci. & Technol., May 2019, Vol.34, No.3

5.4 Cacheap Overhead

Cacheap may incur overhead due to queue pop/-

push, cache operations and partition allocation/deallo-

cations. All these operations are trivial compared with

the computation and I/O time for a partition.

The overhead is then calculated by dividing

Cacheap time by the sum of computation time, I/O

time and Cacheap time. The overhead for four algo-

rithms on Twitter with 8 GB memory and on UK with

16 GB memory is in the range from 0.1% to 2.2% and

on average 1.3%.

5.5 CGC Policy

We show the miss ratio curves of three cache re-

placement policies when running the four algorithms

on the Twitter graph in Fig.8. For LRU, MRU and

CGC, we run each algorithm for 15 times for each of

the polices with the cache size ranging from 1 GB to

15 GB and the memory budget from 2 GB to 16 GB.

We record the block access and miss frequency for each

run, and then compute the miss ratios showed in Fig.8.

Since the fourth policy, OPT, is an off-line policy which

needs the access information in the future, we simulate

it with a trace collected in one of the runs mentioned

above.

The four algorithms have been introduced earlier.

The first three algorithms, WCC, BFS and Radii, have

the dynamically changing subset property described in

Subsection 3.3. The subset in WCC is at first the

complete graph and then shrinks as the algorithm pro-

gresses. BFS and Radii have the same pattern. The

1 3 5

1.0

0.8

0.6

0.4

0.2

0.0
7

Cache Size (GB)

M
is

s
R

a
ti
o

9 11 13 15

LRU

MRU

CGC

OPT

(a)

1 3 5

1.0

0.8

0.6

0.4

0.2

0.0
7

Cache Size (GB)

M
is

s
R

a
ti
o

9 11 13 15

LRU

MRU

CGC

OPT

(b)

1 3 5

1.0

0.8

0.6

0.4

0.2

0.0
7

Cache Size (GB)

M
is

s
R

a
ti
o

9 11 13 15

LRU

MRU

CGC

OPT

(c)

1 3 5

1.0

0.8

0.6

0.4

0.2

0.0
7

Cache Size (GB)

M
is

s
R

a
ti
o

9 11 13 15

LRU

MRU

CGC

OPT

(d)

Fig.8. Comparison of the miss ratio curve of four graph algorithms computing on the Twitter graph using LRU, MRU, CGC and OPT.

(a) WCC. (b) BFS. (c) Radii. (d) PageRank.

Peng Zhao et al.: Cacheap: Portable and Collaborative I/O Optimization for Graph Processing 703

subset is small in the beginning, increases for some ite-

rations, and then shrinks for the remaining iterations.

PageRank does not have the dynamically changing sub-

set property because it accesses the entire graph in each

iteration.

CGC outperforms MRU the most in WCC and to

a less degree in BFS and Radii. In PageRank, CGC

and MRU perform the same. For algorithms that ite-

rate over the entire graph in each iteration, MRU is

optimal.

CGC, however, is optimal in all cases. There is no

further room for improvement. This shows that the

simple hint interface in Cacheap is sufficient to maxi-

mize cache performance at all memory sizes.

5.6 Memory Utilization

Cacheap manages memory in blocks. We evaluate

how fully Cacheap utilizes the memory as a function of

the block size. At each instant in execution, the mem-

ory utilization is the portion of the memory that is used

to store graph partitions. For each run, the instant

utilization is measured at each allocation, i.e., mmap,

mremap. We report the average as the utilization for

the execution.

Fig.9 shows the memory utilization with different

block sizes from 4 KB to 32 MB. At small sizes such as

4 KB, the memory utilization is almost 100%. However,

partial eviction happens more frequently, as indicated

by the number of mremap calls. Such calls are expen-

sive because they may copy data and invalidate TLB.

4 KB 16 KB

2.0

1.6

1.2

0.8

0.4

0.0

64 KB

Memory Utilization

Miss Ratio

Execution Time

#mremap

256 KB

Block Size

T
im

e
s

1 MB 4 MB 16 MB

Fig.9. Memory utilization, miss ratio, execution time and num-

ber of mremap calls (#mremap) of WCC on Twitter using 8 GB

memory with different block sizes from 4 KB to 32 MB. All

the metrics except memory utilization are normalized w.r.t. the

results with 4 KB block size.

We also report execution time, miss ratio and

remapping counts in Fig.9. As the block size increases

beyond half megabytes, the memory utilization starts

to drop beyond 5%. The lower utilization reduces the

usable memory and the effective cache size. As a result,

the miss ratio increases, and the running time increases

with the miss ratio. The relative increase of the running

time is lower than that of the miss ratio. We believe

that the reason is the reduction of mremap calls and

hence their overhead.

These results show that memory utilization is highly

critical to performance. It is more important than

the memory allocation overhead such as remapping by

mremap. Therefore, Cacheap uses the block size of

4 KB.

6 Related Work

Research on disk-based graph processing systems is

pioneered by Kyrola et al. who proposed GraphChi[13].

GraphChi splits the vertices of a graph into P disjoint

intervals and divides the large edge lists into shards.

Each of the intervals is associated with a shard which

contains all the edges whose destination is in the in-

terval. GraphChi employs a parallel sliding window

method to process the graph and the shards need to be

loaded twice with θ(P 2) non-sequential disk seeks for

each full iteration, making I/O take most of the run-

ning time.

Since I/O is the bottleneck of the disk-based graph

processing systems, a lot of efforts[5−12,20,27,28] have

been made to ameliorate the I/O burden.

TurboGraph[7] is an out-of core graph processing

engine using SSDs. It proposes an adjacency list based

graph representation to exploit I/O parallelism. The

graph is represented by adjacency lists. The graph and

the metadata for the adjacency lists are organized as

pages which are of size 1 MB and consecutively stored

on disk. In TurboGraph, a buffer manager is used to

maintain a buffer pool which is an array of frames to

store the pages in memory. Cacheap is similar to the

buffer manager in TurboGraph. Both serve as memory

cache for graph data. Cacheap differs from the buffer

manager in granularity and portability. Cacheap sup-

ports arbitrary size data instead of fixed size frames,

making it easier to use by graph engines and usable

for storing all kinds of graph representations. In addi-

tion, Cacheap supports collaborative and user-defined

cache replacement policies, while the buffer manager

uses LRU.

704 J. Comput. Sci. & Technol., May 2019, Vol.34, No.3

VENUS[5] adopts a novel graph computing model

called streamlined processing which supports the fine-

grained parallelism of computation and disk I/O. The

authors[5] also proposed a new graph representation

with which the total amount of graph data can be re-

duced. We note that VENUS also exploits a memory

cache. However, the cache is only used for storing ver-

tex data, and it uses LRU as TurboGraph does.

Maass et al. proposed MOSAIC[8], which is a graph

processing system designed for single heterogeneous

machine (CPU+Xeon Phi) with fast storage (NVMe

SSD). They designed a new Hilbert-order based data

structure for graph representation, which can compress

the graph and save up to 68.8% disk size for real-world

graph datasets. They also proposed a hybrid compu-

tation and execution model, which can execute vertex-

centric operations on CPU processors and execute edge-

centric operations on Xeon Phi processors.

Mostly recently, Liu and Huang proposed an I/O

request-centric programming model in a new graph en-

gine Graphene[19]. We notice that, with Cacheap in-

terface, we can easily make a graph engine become

I/O request-centric. Also, the other techniques such as

bitmap based adjacency list representation and work-

load balancing are orthogonal to Cacheap’s optimiza-

tions and Cacheap is adoptable to Graphene.

Besides all these graph processing systems, Vora et

al.[10] proposed a generic I/O optimization for disk-

based graph processing. The optimization employs dy-

namic partitions which are dynamically adjusted parti-

tions with only needed edges to reduce the I/O amount.

There is a possibility that the needed edges are not

present in the dynamic partitions and the system will

fail to continue executing. The authors present a new

accumulation-based programming model to solve the

problem. The graph system developers need to adapt

their programming model to the accumulation-based

model. At the same time, there are cases where the

total I/O amounts are larger than the baseline due to

the reading and writing of the missing edges. Because

of the dynamic partitions, the optimization takes up

to 28% additional disk space. Cacheap cannot compact

the graph representation as in dynamic partition, but as

a generic memory layer, Cacheap does not require deve-

lopers modify their programming model, guarantees to

minimize the amount of I/O, and does not consume

additional disk space.

7 Conclusions

In this paper, we proposed a generic I/O optimizing

system for out-of-core graph engines. Cacheap adopts

three techniques, variable granularity memory mana-

gement, computation-I/O overlapping, and collabora-

tive graph cache. Cacheap can be easily integrated

into graph engines and take over the task of memory

and I/O management. Evaluation shows that Cacheap

can achieve effectively in practice full memory utiliza-

tion, complete computation-I/O overlapping, and opti-

mal graph data caching.

References

[1] Coffman T, Greenblatt S, Marcus S. Graph-based technolo-

gies for intelligence analysis. Communications of the ACM,

2004, 47(3): 45-47.

[2] Han W, Miao Y, Li K, Wu M, Yang F, Zhou L, Prabhakaran

V, Chen W, Chen E. Chronos: A graph engine for temporal

graph analysis. In Proc. the 9th Eurosys Conference, April

2014, Article No. 1.

[3] Jeong H, Mason P S, Barabasi A L, Oltvai N Z. Lethality

and centrality in protein networks. Nature, 2001, 411(6833):

41-42.

[4] Xiang L, Yuan Q, Zhao S, Chen L, Zhang X, Yang Q, Sun J.

Temporal recommendation on graphs via long- and short-

term preference fusion. In Proc. the 16th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data

Mining, July 2010, pp.723-732.

[5] Cheng J, Liu Q, Li Z, Fan W, Lui C S J, He C. VENUS:

Vertex-centric streamlined graph computation on a single

PC. In Proc. the 31st IEEE International Conference on

Data Engineering, April 2015, pp.1131-1142.

[6] Chi Y, Dai G, Wang Y, Sun G, Li G, Yang H. NXgraph:

An efficient graph processing system on a single machine.

In Proc. the 32nd IEEE International Conference on Data

Engineering, May 2016, pp.409-420.

[7] Han W, Lee S, Park K, Lee J, Kim M, Kim J, Yu H. Turbo-

Graph: A fast parallel graph engine handling billion-scale

graphs in a single PC. In Proc. the 19th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data

Mining, August 2013, pp.77-85.

[8] Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T.

Mosaic: Processing a trillion-edge graph on a single ma-

chine. In Proc. the 12th European Conference on Computer

Systems, April 2017, pp.527-543.

[9] Roy A, Mihailovic I, Zwaenepoel W. X-Stream: Edge-

centric graph processing using streaming partitions. In

Proc. the 24th ACM SIGOPS Symposium of Operating Sys-

tems Principles, November 2013, pp.472-488.

[10] Vora K, Xu G Q, Gupta R. Load the edges you need: A

generic I/O optimization for disk-based graph processing.

Peng Zhao et al.: Cacheap: Portable and Collaborative I/O Optimization for Graph Processing 705

In Proc. the 2016 USENIX Annual Technical Conference,

June 2016, pp.507-522.

[11] Zhang Y, Liao X, Jin H, Gu L, Tan G, Zhou B. Hot-

Graph: Efficient asynchronous processing for real-world

graphs. IEEE Transactions on Computers, 2017, 66(5):

799-809.

[12] Zhu X, Han W, Chen W. GridGraph: Large-scale graph

processing on a single machine using 2-level hierarchical

partitioning. In Proc. the 2015 USENIX Annual Technical

Conference, July 2015, pp.375-386.

[13] Kyrola A, Blelloch E G, Guestrin C. GraphChi: Large-scale

graph computation on just a PC. In Proc. the 10th USENIX

Symposium on Operating Systems Design and Implemen-

tation, October 2012, pp.31-46.

[14] Zheng D, Mhembere D, Burns C R, Vogelstein T J, Priebe E

C, Szalay S A. FlashGraph: Processing billion-node graphs

on an array of commodity SSDs. In Proc. the 13th USENIX

Conference on File and Storage Technologies, February

2015, pp.45-58.

[15] Nguyen D, Lenharth A, Pingali K. A lightweight infrastruc-

ture for graph analytics. In Proc. the 24th ACM SIGOPS

Symposium on Operating Systems Principles, November

2013, pp.456-471.

[16] Chhugani J, Satish N, Kim C, Sewall J, Dubey P. Fast and

efficient graph traversal algorithm for CPUs: Maximizing

single-node efficiency. In Proc. the 26th IEEE International

Parallel and Distributed Processing Symposium, May 2012,

pp.378-389.

[17] Gonzalez E J, Low Y, Gu H, Bickson D, Guestrin C. Pow-

erGraph: Distributed graph-parallel computation on natu-

ral graphs. In Proc. the 10th USENIX Symposium on Ope-

rating Systems Design and Implementation, October 2012,

pp.17-30.

[18] Gonzalez E J, Xin S R, Dace A, Crankshaw D, Franklin J M,

Stoica I. GraphX: Graph processing in distributed dataflow

framework. In Proc. the 11th USENIX Symposium on Ope-

rating Systems Design and Implementation, October 2014,

pp.599-613.

[19] Liu H, Huang H H. Graphene: Fine-grained IO mana-

gement for graph computing. In Proc. the 15th USENIX

Conference on File and Storage Technologies, February

2017, pp.285-300.

[20] Malexicz G, Austern H M, Bik J C A, Dehnert C J, Horn

I, Leiser N, Czajkowski G. Pregel: A system for large-

scale graph processing. In Proc. the ACM SIGMOD Inter-

national Conference on Management of Data, June 2010,

pp.135-146.

[21] Roy A, Bindschaedler L, Malicevic J, Zwaenepoel W.

Chaos: Scale-out graph processing from secondary storage.

In Proc. the 25th Symposium on Operating Systems Prin-

ciples, October 2015, pp.410-424.

[22] Kwak H, Lee C, Park H, Moon B S. What is Twitter, a

social network or a news media? In Proc. the 19th In-

ternational Conference on World Wide Web, April 2010,

pp.591-600.

[23] Boldi P, Vigna S. The WebGraph framework I: Compression

techniques. In Proc. the 13th International World Wide

Web Conference, May 2004, pp.595-602.

[24] Belady A L. A study of replacement algorithms for a virtual-

storage computer. IBM Systems Journal, 1966, 5(2): 78-

101.

[25] Mattson L R, Gecsei J, Slutz D, Traiger L I. Evaluation

techniques for storage hierarchies. IBM Systems Journal,

1970, 9(2): 78-117.

[26] Faloutsos M, Faloutsos P, Faloutsos C. On power-law rela-

tionships of the Internet topology. In Proc. the 1999 ACM

SIGCOMM Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communication,

August 1999, pp.251-262.

[27] Wang K, Xu H G, Su Z, Liu D Y. GraphQ: Graph query

processing with abstraction refinement: Scalable and pro-

grammable analytics over very large graphs on a single PC.

In Proc. the 2015 USENIX Annual Technical Conference,

July 2015, pp.387-401.

[28] Wu M, Yang F, Xue J, Xiao W, Miao Y, Wei L, Lin H,

Dai Y, Zhou L. GraM: Scaling graph computation to the

trillions. In Proc. the 6th ACM Symposium on Cloud Com-

puting, August 2016, pp.408-421.

Peng Zhao received his B.S. degree

in computer science and technology

from Jilin University, Changchun, in

2013. Currently he is a Ph.D. candidate

of Institute of Computing Technology

(ICT), Chinese Academy of Sciences

(CAS), Beijing. His research interests

include parallel and distributed pro-

gramming models and graph processing systems.

Chen Ding received his B.S. degree

in computer science from Peking Uni-

versity, Beijing, in 1994, M.S. degree

in computer science from Michigan

Technological University, Houghton, in

1996, and Ph.D. degree in computer

science from Rice University, Houston,

in 2000. Now he is a professor and

Ph.D. supervisor of University of Rochester, Rochester.

Chen Ding’s research seeks to understand the composite

and emergent behavior in computer systems, especially

its dynamic parallelism and data usage, and develop

software techniques for automatic or suggestion-based

locality optimization, memory management, and program

parallelization.

706 J. Comput. Sci. & Technol., May 2019, Vol.34, No.3

Lei Liu received his B.S. degree

in computer science from Changchun

University of Science and Technology,

Changchun, in 2001, M.S. degree in

computer science from Jilin University,

Changchun, in 2004, and Ph.D. degree

in computer architecture from Insti-

tute of Computing Technology (ICT),

Chinese Academy of Sciences (CAS), Beijing, in 2010.

He participated in the Advanced Compiler Technology

Laboratory (ACT) of ICT, CAS, in 2010, and is now an

assistant professor of ICT, CAS, Beijing. His research

interests include programming language and compiler

optimization.

Jiping Yu is a senior student of

Tsinghua University, Beijing. He is the

overall winner of ASC18 Student Su-

percomputer Challenge, ISC18 Student

Cluster Competition, and SC18 Student

Cluster Competition. His research

interests include high performance

computing and optimization.

Wentao Han received his B.S. de-

gree in computer science in 2008, Ph.D.

degree in computer science in 2015,

both from Tsinghua University, Beijing.

He is currently an assistant researcher

in Tsinghua University, Beijing. His

research interests include design and

implementation of brain-inspired soft-

ware systems.

Xiao-Bing Feng received his B.E.

degree in computer software from

Tianjin University, Tianjin, in 1992,

M.S. degree in computer software from

Peking University, Beijing, in 1996, and

Ph.D. degree in computer architecture

from Institute of Computing Technology

(ICT), Chinese Academy of Sciences

(CAS), Beijing, in 1999. Now he is a professor and Ph.D.

supervisor of ICT, CAS, Beijing. His research interests

include compiler optimization and binary translation.

