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Abstract Network traffic analysis is one of the core functions in network monitoring for effective network operations and

management. While online traffic analysis has been widely studied, it is still intensively challenging due to several reasons.

One of the primary challenges is the heavy volume of traffic to analyze within a finite amount of time due to the increasing

network bandwidth. Another important challenge for effective traffic analysis is to support multivariate functions of traffic

variables to help administrators identify unexpected network events intuitively. To this end, we propose a new approach

with the multivariate analysis that offers a high-level summary of the online network traffic. With this approach, the current

state of the network will display patterns compiled from a set of traffic variables, and the detection problems in network

monitoring (e.g., change detection and anomaly detection) can be reduced to a pattern identification and classification

problem. In this paper, we introduce our preliminary work with clustered patterns for online, multivariate network traffic

analysis with the challenges and limitations we observed. We then present a grid-based model that is designed to overcome

the limitations of the clustered pattern-based technique. We will discuss the potential of the new model with respect to the

technical challenges including streaming-based computation and robustness to outliers.

Keywords network traffic analysis, multivariate analysis, time-series similarity, network monitoring

1 Introduction

Analyzing network traffic is an integral part of net-

work operations and management for various purposes

such as traffic engineering, resource provisioning, net-

work security, usage statistics, and so forth. In particu-

lar, online traffic analysis is essential to identify any un-

expected events in a real-time manner, including net-

work anomalies, sudden changes, heavy hitters, etc.,

which would be an indication of cyber-attacks, mis-

configuration of network devices, or network fault[1−4].

For example, some anomalies may indicate performance

bottlenecks with a huge number of simultaneous con-

nections due to flash crowds, denial of service (DoS) at-

tacks, or router/switch configuration failures. In addi-

tion, today’s viruses and worms propagate very quickly,

and it does not take more than several minutes to in-

fect millions of machines on the Internet. Ideally, online

analysis should be able to detect such indicative events

in a timely manner to minimize the potential malignant

impacts.

While online traffic analysis has been studied for a

while, it is still intensively challenging due to several

reasons. One of the primary challenges is the heavy

volume of network traffic to analyze within a finite

amount of time. A recent report forecasts that the In-

ternet traffic will increase threefold over the next five

years with an over 20% annual growth rate from 2015

to 2020 1○. The past observation already confirmed the

traffic growth rate with a 27% annual increase of resi-

dential broadband traffic in 2007[5]. With the today’s

Regular Paper

A preliminary version of the paper was published in the Proceedings of ICCCN 2017.

This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231, and by the Office of Workforce Development for Teachers and
Scientists (WDTS), Office of Science, of the U. S. Department of Energy, under the Visiting Faculty Program (VFP).

1○http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-
c11-481360.pdf, Jan. 2019.

©2019 Springer Science +Business Media, LLC & Science Press, China



Jinoh Kim et al.: A New Approach to Multivariate Network Traffic Analysis 389

computing trend, it is not hard to expect a greater use

of mobile and IoT devices that will further contribute to

the network traffic volume. For instance, recent DoS at-

tacks were conducted by a botnet comprising hundreds

of thousands of IoT devices 2○. To enable online traffic

analysis against the large-scale data, streaming com-

putation techniques have been widely studied, and the

sketch[2,4,6,7] is an example technique based on k-ary

hashing. However, such existing methods are largely

limited to a specific purpose such as a heavy hitter de-

tection using a simple frequency counting method.

Another important challenge for effective traffic

analysis is to support multivariate functions of traf-

fic variables to help administrators identify unexpected

network events in an intuitive way. Traditionally net-

work traffic variables were independently analyzed, and

combining the individual results is left to the adminis-

trators. For example, Opprentice[1] assumes three vari-

ables of key performance indicator (the number of page

view, the number of slow responses, and the 80th per-

centile of search response time) in monitoring, and the

work assumes that the variables are independently ana-

lyzed to identify anomalous events. The sketch men-

tioned earlier is also limited to give statistics for a sin-

gle traffic variable, without any means to keep track

of multiple variables in a combined way. The proba-

bilistic density information has been considered to take

a snapshot of the network traffic for change detection,

but the current implementation is confined with a sin-

gle dimensional variable due to the complication of the

extension to multiple variables[3].

To address the above critical challenges to achieve

effective online network traffic analysis, we propose a

new approach that offers a high-level state summary of

the network traffic from the multivariate features under

consideration. With this approach, the current state of

the network will display patterns compiled from a set of

traffic variables. We define “network state” as a high-

level summary of the network traffic with respect to the

tracked variables to capture the current status of the

network. The obtained pattern can be compared with

another with the previously observed patterns. The de-

tection problems in traffic analysis (e.g., change detec-

tion or anomaly detection) can thus be reduced to one

of the pattern identification and classification problems.

The key contributions of this paper can be summarized

as follows.

• We present a new approach to multivariate, time-

series network traffic analysis as an underlying techno-

logy for online monitoring applications, such as change

detection and anomaly detection.

• We introduce the framework model for online

network traffic analysis and our preliminary work us-

ing clustered patterns for network state representation

and quantitative analysis with the challenges and limi-

tations we observed.

• We present a grid-based approximation model for

scalable, reliable-to-noise analysis with a quantitative

measure to estimate the similarity of network states in

different time windows.

• We demonstrate our proposed technique with the

tstat network traffic measurement collection from the

Energy Sciences Network (ESnet 3○) to see its applica-

bility.

The preliminary results were reported in our past

paper[8], and this paper extends it with further details

and new experimental results with the ESnet measure-

ment data. The organization of this paper is as follows.

Section 2 provides a summary of the closely related stu-

dies. We present our framework model for online traffic

analysis in Section 3, and introduce our preliminary

approach based on clustered patterns with its poten-

tial and limitations in Section 4. We then discuss a

new technique based on a grid approximation model

for scalable, streaming-based analysis with our initial

results in Section 5. In Section 6, we analyze the traffic

trace collected from ESnet, the Department of Energy’s

dedicated research network, using the clustered pattern

technique and the grid-based model. We discuss other

topics including a brief comparison of the clustered pat-

terns and grid-based techniques in Section 7. Finally,

we conclude our presentation in Section 8.

2 Related Work

One of the widely studied methods for network traf-

fic summarization is sketch, which is designed particu-

larly for heavy-hitter detection based on the data

streaming computation using a hash function[2,4,7]. Us-

ing a hash key extracted from the flow information (e.g.,

a 64-bit key composed by the source and destination IP

addresses in the flow), the sketch maintains a hash ta-

ble to keep the frequency information for each key. The

statistics of the hashed results can then be used for the

detection purpose (e.g., heavy-hitter). As discussed,

2○http://www.eweek.com/security/ddos-attack-snarls-friday-morning-internet-traffic.html, Jan. 2019.
3○https://www.es.net/, Jan. 2019.
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the sketch technique is not capable for multivariate ana-

lysis and limited to give statistics for a single variable

only.

In addition to sketch, other streaming data min-

ing techniques as well as sampling methods and data

reduction techniques were studied for network traf-

fic analysis by frequency counting[9−11], histogram[12],

clustering[13−16], sliding windows[17], wavelets[9,18,19],

and dimensionality reduction[20,21]. Many of these sam-

pling methods provide a quick understanding of the

monitored data stream, but characterizing accurate

data patterns from the streaming data is still a chal-

lenge, especially with the recent hardware advances,

which produces data records at a much higher rate.

While the previous methods are limited to capture a

single traffic variable and individual variables should

be analyzed separately, the critical hurdle is how to

combine analysis on multiple attributes for comprehen-

sive analysis rather than single dimensional streaming

data analysis as discussed earlier. The key difference of

the proposed approach in this work is in the ability to

capture the multivariate traffic attributes to provide a

comprehensive view of the network state.

Visualization has also been widely accepted for net-

work management with the power of intuitive analysis.

CAIDA provides a tool for visualizing the Internet

topology using the autonomous systems (ASes) infor-

mation, which is helpful to understand the intercon-

nectivity of routing systems over the global Internet 4○.

Another tool provides a cyber-security map visualizing

global cyber attacks with the source, target, and attack

information in real time 5○. Additionally, the NeTra-

Mark project[22] implemented tools for BLINK[23] and

Traffic Dispersion Graphs[24], mainly for traffic classifi-

cation.

3 Proposed Framework

In this section, we introduce our framework for on-

line traffic analysis with its operational scenario. The

proposed framework model is shown in Fig.1.

The overall scenario is as follows. The raw traf-

fic data comes into the first module (“pre-processor”

or PP1) that performs the first-line of data processing

including normalization and flow record construction.

The output of PP1 is forwarded to 1) “post-processor”

(or PP2) that performs in-depth analysis in a batch

manner and 2) “network state representation” (NSR)

that creates a pattern for each time window. We as-

sume that the time domain is partitioned by a prede-

termined fixed interval, and NSR creates a pattern (or

network state si) for the associated time window wi

from the collected data.

NSR then reports the created pattern to the ad-

ministrator, and passes it to “catalog repository” (CR)

that maintains the historic patterns (S = {si|i > 0})

for future reference. PP2 annotates the post-analysis

information to the pattern stored in CR as soon as the

batch processing is completed. The annotated infor-

mation could be anomaly-related labels, traffic classifi-

cation labels, etc., depending on the focus of analysis.

The administrator can access CR to retrieve the pat-

terns created in the past. For example, similar patterns

to the current one can be searched to get an idea for

interpretation. The component of “quantitative ana-

lysis” provides a tool to estimate the similarity of pat-

terns in question. For example, ∆i,j defines the degree

of changes between two states si and sj , as discussed

in Section 4.

Pre-Processor (PP1)

(Normalization, 

Flow Record)

Network State 

Representation 

(NSR)

Post-Processor (PP2)

(In-Depth,   

Batch Analysis)

Catalog Repository

(CR)

Quantitative

Analysis

(QA)

Similarity?Retrieval

Traffic

Report

Fig.1. Proposed framework for online network monitoring.

4○http://www.caida.org/research/topology/as core network/2014/, Jan. 2019.
5○http://map.norsecorp.com/#/, Jan. 2019.
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In this paper, we focus on discussing the core el-

ements of NSR, QA, and CR in the framework. In

Section 4, we introduce our initial observations with

clustered patterns for network state representation and

quantitative analysis, and then discuss the challenges

and limitations.

4 Using Clustered Patterns

We initially studied clustering to capture the net-

work state from the collected traffic data within a finite

time interval. In this section, we briefly introduce the

basic concept of the clustered patterns with the discus-

sion of the challenges and limitations obtained from our

observations. The details of this technique with two use

cases of change detection and anomaly detection can be

found from [25].

4.1 Clustering-Based Representation

We first describe how the clustered pattern repre-

sents a network state. For each time window in the

monitoring process, a clustering is performed against

the data points within the window, and the result of

the clustering represents the high-level network state of

that window. In this work, we employ the partitioning-

based clustering to reduce the pattern information into

a set of vectors, an element of which contains the clus-

ter centroid position, population, and sum of squared

errors. Specifically, we use the k-means technique for

clustering that has maintained its popularity with the

speed and simplicity, and can be scalable with paral-

lelism (e.g., a parallel version of the k-means++[26]).

This approach has the following potential benefits.

First, the clustering method has the ability to combine

multivariate attributes in a straightforward manner

without an excessive extra computational cost, which

has been one of the critical challenges for network traffic

analysis. Second, it is flexible to configure the number

of clusters (k > 1) regardless of the number of variables

to be tracked, thus simplifying the analysis process. In

addition, the network state information (with a set of

vectors with length k) would be handy and possible to

compare one another. Thus, comparing the similarity

of given network states can be reduced to a problem of

comparing two vectors.

We next discuss how to estimate the similarity of the

clustered patterns under comparison in a quantitative

manner. Measuring the similarity of two windows is the

fundamental question in the change detection problem.

We discuss the concept of “degree of change” (∆) that

estimates the changes between two clustered patterns

representing the network states for the associated time

windows. ∆ is defined as a quantitative measure to esti-

mate the similarity, calculated based on the move of the

centroid positions between two time windows. This can

be reduced to an assignment problem with the minimal

cost (i.e., distance) between two patterns.

In detail, the clustered pattern of a time window

Wi is a vector of clusters, Ci = {c1i , c
2
i , ..., c

k
i }. Simi-

larly, the clustered pattern of Wj would be Cj =

{c1j , c
2
j , ..., c

k
j }. Then ∆i,j is defined as the minimal

move of the centroid coordinates from Wi to Wj . With-

out knowing which cluster in Wi is mapped with one in

Wj , we find a set of pairs showing the minimal move.

Suppose a distance function D : Ci × Cj → R. Then

the problem is reduced to the assignment problem that

finds a bijection f : Ci → Cj with the minimal distance

function:

∆i,j =
∑

l∈Ci

D(l, f(l)).

We employ the Hungarian algorithm to solve this

assignment problem, which has O(k3) of the computa-

tional complexity[27]. Note that it is true ∆i,j = ∆j,i

and ∆i,i = 0.

4.2 Example of Clustered Patterns and

Analysis

To see how it works, we apply the clustering tech-

nique on a 16-hour trace excerpted from the UNIBS

traffic trace, between 10 AM on September 30, 2009

and 2 AM on October 1, 2009[28]. The dataset contains

the information for network flows 6○ with timing, and

the ground-truth data with the associated application

for each connection is provided[29]. As for statistics, the

average number of flows is 789 flows/hour with a high

degree of variance (min = 20, max = 7052).

Fig.2 demonstrates the clustering results over 16

time windows (over 16 hours). From Fig.2, we can

see somewhat similar and dissimilar patterns over time.

For example, the pattern for 10 AM time window is

quite different from the one for 11 AM time window. In

contrast, the clustered patterns from 11 AM to 5 PM

are visually similar. The three patterns for 8 PM–

10 PM time windows are also resembling, whereas the

6○A flow is identified with five tuples of source IP address, source port number, destination IP address, destination port number,
and protocol in TCP/IP header.
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Fig.2. Clustering results against a UNIBS data trace[28] for flow duration on x-axis and the average number of packets in flow on
y-axis. Note that cluster IDs were randomly selected by the clustering tool (R).

last three time windows (11 PM–1 AM) have fairly dis-

tinctive patterns.

In Fig.2, ∆ is a quantitative measure to estimate the

similarity, calculated based on the movement of the cen-

troid positions between two time windows. Thus, it can

be reduced to the assignment problem with the minimal

cost (i.e., distance), which can be simply calculated us-

ing the Hungarian algorithm with O(k3) of the compu-

tational complexity[27]. We can see that the quantita-

tive measure based on the centroid position movement

shows strong correlations with the visual patterns 7○.

Fig.3 shows the composition of applications for each

window using the ground-truth information provided

with the dataset. For example, the breakdown graph

(Fig.3) shows a high degree of similarity from 11 AM

to 5 PM and from 8 PM to 10 PM, respectively, which

agrees with the similarity of the clustered patterns in

Fig.2. On the other hand, there is a high degree of

difference in the breakdown graph between 10 AM and

11 AM. Similarly, we can see huge differences from the

windows of 11 PM–1 AM, suggesting strong correla-

tions with the patterns in Fig.2.

Our preliminary experiments show that the clus-

tered patterns would be helpful to summarize multi-

7○We normalized the centroid position values based on the maximal coordinate value, and hence, ∆ should not go beyond k×
√
2

in this calculation (as one move cannot be greater than
√
2).
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variate features in analysis to represent the associated

network states. At the same time, we observed several

limitations with this method as discussed in Subsec-

tion 4.3.
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Fig.3. Breakdown of applications for time windows (10 AM–
1 AM), compiled from the ground-truth data in the UNIBS data
trace.

4.3 Challenges and Limitations

The clustered patterns are intuitive to interpret and

lightweight with respect to the complexity since a pat-

tern can be represented with a vector of clusters, each

of which includes a centroid coordinate, sum of squared

errors, and so forth. At the same time, we observed po-

tential limitations. In this section, we discuss the pri-

mary challenges we observed from the clustering-based

method: 1) robustness to sampling, 2) data stream pro-

cessing, and 3) robustness to noise.

4.3.1 Robustness to Sampling

A key requirement for the network state represen-

tation is a high degree of scalability. In this regard,

the clustered pattern method used in the preliminary

study may not be a good option. For example, we ob-

served that it takes 10 seconds to construct clusters

with 16 000 data points in a commodity PC with the

simple k-means that is known as a scalable method for

clustering. As discussed, the traffic volume in a network

becomes much heavier, and the MAWILab trace[30]

contains 10 000 flows per second. To relax this con-

cern, sampling could be considered like NetFlow[31] and

sFlow[32]. However, we observed that sampling is not

viable for clustered patterns, as can be seen from Fig.4

that demonstrates the result of sampling. From Fig.4,

we can see that the random sampling results in a high

degree of discrepancies, suggesting ineffectiveness for

the continuous monitoring. Although not shown, we

also computed ∆s between sampled and non-sampled

results and observed non-trivial variations.

4.3.2 Data Stream Processing

Another problem with the clustered pattern method

is in its nature of the batch-style processing. That is,

clustering can be executed when all the data points are

available for the time window. However, data stream-

ing processing is a desired property for online analysis

with much greater scalability. One well-known stream-

ing computation technique is the sketch[2,4,6,7] that pro-

vides a probabilistic summary of a variable for analyz-

ing network traffic data.

4.3.3 Robustness to Noise

A partition-based clustering for generating patterns

may be in a high degree of sensitivity to outliers. Fig.5

shows how only one or two outliers could significantly

impact and construct somewhat different patterns. Al-

though our initial observations with clustered patterns

were interesting, the simple partitioning-based cluster-

ing would be ineffective to noises.

5 Grid-Based Representation and Analysis

To relax the limitations of the clustered pattern-

based technique, we investigated a grid-based structu-
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re[33] with its computational potential for data stream-

ing support using approximation. In this section, we

introduce the network state representation using a grid

structure and a quantitative measure to estimate the

similarity of the grid patterns. For the purpose of

demonstration, we employed the KDDCup 1999 data

(“kddcup.data 10 percent corrected”) 8○ that has been

widely used in the anomaly detection study. We formed

16 windows from the dataset, each of which contains

10 000 connections excerpted from the beginning of the

data file in order. Table 1 shows the summary of the

16 windows with respect to traffic composition.

Table 1. Traffic Composition (10 000 Connections per Window)

Window AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP

NORMAL 7 787 8 392 9 837 9 720 2 230 1 332 0 5 786 9 587 1 566 4 483 0 15 3 526 6 964 0

DOS 2 209 1 607 0 278 7 531 8 174 10 000 4 079 120 7 846 5 516 10 000 9 985 6 474 483 10 000

U2R 4 0 0 0 1 0 0 0 3 1 0 0 0 0 20 0

R2L 0 1 52 2 6 7 0 33 1 0 0 0 0 0 1 023 0

PROBE 0 0 111 0 232 487 0 102 289 587 1 0 0 0 1 510 0

5.1 Network State Representation

We consider a grid structure to represent a network

state; hence, a network state consists of cells in a d-

dimensional space (Rd). The number of cells in a grid

space is determined by the resolution. For example,

there would be 1 024 cells in a 2D space if the reso-

lution is 32 for both x and y axes. For each data point,

there should be a mapping cell that contains an inte-

ger counter. The counter is simply incremented, and

the density information can be easily inferred from the

counters. Thus, it is straightforward to perform this

technique in the streaming computation manner (rather

than executing it in a batch computation). The comple-

xity of this technique is proportional to the number of

cells. Determination of the adequate resolution is essen-

tial in this technique, as too small resolutions may lead

to losing the specific information while too high resolu-

tions will yield too many empty cells in the space. We

will discuss this again in Subsection 7.1.

The following pseudocode in Fig.6 shows the steps

to create a grid representation for a time window under

the assumption of two-dimensional variables.

Step 1: Create an M ×N grid structure

Grid[0...M − 1][0...N − 1]← 0

Step 2: For every connection record i:

1. Normalize the record

2. Calculate x and y indices

3. Grid[x][y]←Grid[x][y] + 1

Fig.6. Pseudocode for the steps to create a grid representation
for a time window under the assumption of two-dimensional vari-
ables.

Fig.7 shows the representation of a single window

(with 10 000 data points) in the KDDCup dataset,

where src bytes and dst bytes mean the number of data

bytes from the source to the destination and the num-

ber of data bytes from the destination to the source

respectively 9○. From Fig.7, we can see that the cells oc-

cupied by the data points with the density level. The

number of cells in this representation is (64 × 64) =

4 096.

To learn more about the grid-based structure, we

8○http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Jan. 2019.
9○http://kdd.ics.uci.edu/databases/kddcup99/task.html, Mar. 2019.
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applied it for classification learning for the tradi-

tional anomaly detection[34]. Through the experiments

with the original KDDCup dataset and the NSL-KDD

dataset[35], we observed 98.5% and 83% of detection ac-

curacy, respectively, which are comparable to those of

the classical learning methods including decision tree

and random forest. The learning complexity is very

cheap and two orders of magnitude faster than the well-

known classification techniques.
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Fig.7. Example of a grid-based representation of network state
with a resolution of 64 × 64.

5.2 Quantitative Analysis

The proposed framework model includes a tool to

estimate the similarity of patterns, which plays a key

role to identify changes and anomalies. As an initial

experiment, we established a simple measure that com-

pares two grid spaces in questions, using a Jaccard co-

efficient model. The similarity index for two patterns

of Pi and Pj is calculated as follows:

Si,j =
|Pi ∩ Pj |

|Pi ∪ Pj |
.

Thus, S = 1.0 indicates that the two windows in

question are identical, while S = 0.0 means that the

windows are completely unrelated to each other. We

evaluated this simple measure against the 16 windows

in Table 1.

Fig.8 demonstrates the similarity matrix calculated

by the Jaccard coefficient model. From the matrix, we

can see some windows are highly similar, while some

other windows (such as AG, AL, and AP with a full

of DOS connections as shown in Table 1) are relatively

less similar to others. Interestingly, the matrix shows

that SAG,AL = 1.0, whereas SAG,AP = SAL,AP = 0.0,

although the windows contain DOS connections only.

From the dataset, we found that the DOS attack in AG

and AL is by Neptune, while it is by Smurf in AP, which

results in the extreme similarity scores for those win-

dows. As another example, the window of AC contains

R2L and PROBE connections. Using the similarity

measure, we observed SAC,AI = 0.83 and SAC,AH = 0.79

as the most similar windows, and both of AH and AI

contain R2L and PROBE connections as well.
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Fig.8. Similarity matrix using Jaccard index (AA–AP): a higher
(darker) value indicates greater similarity between the two win-
dows.

In our initial experiment, we did not consider the

density information to compute similarity among win-

dows. It may be interesting to consider density dis-

tributions and distribution comparison methods such

as quantiles estimation[36], optimal transport[37,38], and

KS test[3] to establish a sophisticated measure to esti-

mate the similarity.

5.3 Catalog Repository

As described, the traffic data in a time window is

summarized into a pattern to represent the network

state. The pattern is then stored to CR for future refe-

rence and statistics. The formats of the pattern repre-

sentation may not be identical in NSR and CR. For ease

of exposition, we refer to the format of the pattern in

NSR as “representative pattern” and the other in CR

as “reference pattern”.

As discussed, we employed a partitioning-based

clustering to obtain patterns in our initial work. A

cluster created by the k-means technique is possibly

characterized with a set of attributes, such as the cen-

troid coordinate, the information related to the sum of
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squares, and the number of points in the cluster. And

those cluster-related attributes were accounted to es-

tablish the similarity measures in our prior work. How-

ever, such a limited set of information may not be suffi-

cient to well characterize a cluster. As a result, the net-

work state represented with a set of cluster information

would be too abstract to indicate the actual summary

of the associated traffic data. Compared with this, the

grid-based representation is basically rich with the cell-

level information, including the occupancy and density

information.

For the reference pattern, there would be two

choices. The first choice is to use the identical method

that is used for the representative pattern; the other

is to implement a new model for the reference pattern.

For the first option, there is no additional overhead to

develop a new model for the reference pattern. How-

ever, the storage complexity could be a concern with

the first choice. In detail, the storage requirement for

each pattern will be O(cd) where c is the number of cells

and d is the number of dimensions. Since the reference

patterns can be referred in the future to search, for

example, top-N patterns that are most similar to the

current pattern, the storage complexity will be closely

connected to the complexity for comparison. In this

case, the complexity of O(cd) might be too expensive

for a single pattern.

Fig.9 demonstrates the use of the reference patterns,

showing the two patterns with the greatest index scores

compared with the window of AA. The result shows

that SAA,AB = 0.86 and SAA,AI = 0.79. It indicates

that 86% of the cells in the two patterns of AA and AB

are commonly occupied by the data points, while 79%

of the cells are common for AA and AI. The breakdown

information shows a high degree of similarity between

AA and AB, with a certain number of denial of service

records that are roughly 20% of the total. We can also

see that AI contains attack connections including DOS

attacks; the breakdown shows a high degree of simila-

rity with AA but it is smaller than the one between AA

and AB.

6 ESnet Traffic Analysis

In this section, we demonstrate the use of our net-

work traffic analysis techniques with a research network

traffic measurement dataset, collected from ESnet that

offers the high-bandwidth, reliable network connections

among national laboratories in the US, universities and

other research institutions. The traffic dataset contains

the tstat logs, collected to analyze how various net-

work tuning settings impact TCP behavior and net-

work throughput. tstat rebuilds each TCP connection

by looking at the TCP header in the forward and re-

verse direction. The details about the tstat tool can

be found from [39].

In this experiment, we analyzed the tstat data to

monitor the network state change over time. We se-

lected a subset of the measurement collection between

12:00 PM and 2:40 PM on May 9, 2016, to form 16 10-

minute windows (labeled from BA to BP), without any
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Fig.9. Similarity estimation using the measure established based on Jaccard index.
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bias in selection. The windows have 367 connections

for each on average (minimum = 157 and maximum =

721). We chose two variables of (number of packets,

max throughput) to evaluate the changes over time.

Fig.10 shows the complementary cumulative distribu-

tion (CCDF) of the two variables in a log-log scale. Due

to a high degree of skewness for the above two variables,

we performed normalization by applying a log function.

We set the number of clusters to 4 (K = 4), chosen by

the elbow method.

Fig.11 demonstrates the clustered patterns for the

16 windows, and a group of windows shows somewhat

similar patterns, for example, {BC, BD}, {BE, BF}

and {BN, BO}. Fig.12 shows the calculated degree of

changes (∆s) for all-pair windows, and a lighter color

indicates a smaller change (and thus more similar) be-

tween the two windows in comparison. The overall

results show that the quantitative measure produces

fairly relevant results with the visual representation.
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Fig.10. Complementary cumulative distribution (CCDF) of the
variables of the number of packets and the maximum (Max)
throughput of connection in the one-day trace in the ESnet data.
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We next applied the grid-based model against the

ESnet dataset. Fig.13 demonstrates the grid-based rep-

resentation for the dataset BA, with two different res-

olutions: (32 × 32) and (64 × 64) with respect to the

number of cells for a window. As in Fig.7, the exponen-

tial decay is applied to consider the impact of density

of each cell. As Fig.13 indicates, choosing a resolution

would be an interesting part in this study, although the

two representations look closely similar to each other.

Fig.14 shows the similarity matrix based on the Jac-

card index for the two grid representations in Fig.13.

We can see that the overall patterns are almost identi-

cal regardless of the resolutions. It would be interesting

to take a look at the similarity matrix with the degree

of changes (∆’s). We also observe that a high degree

of correlation between the similarity matrix (in Fig.14)

and the delta matrix (in Fig.12). For example, three
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Fig.13. Grid-based representation of BA with different resolutions. (a) Number of cells = (32× 32). (b) Number of cells = (64× 64).
npkt: the number of packets, max tput: the maximum throughput.
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windows of BE, BF, BG made relatively small changes,

and the similarity matrix shows a relatively high degree

of similarity. Another example would be the windows

of BN and BO, with a relatively small change and a

relatively high degree of similarity. BA also shows the

high ∆ values with BE, BF, BK, BL, and BP, and the

similarity matrix shows that BA is not much similar

to BE, BF, BK and BL, but not to BP. Since the ES-

net data does not contain annotation information, we

leave further examination of accuracy for the grid-based

model as a future task. As we discussed, however, the

grid-based method is reliable to noises and straightfor-

ward for streaming-based computation, enabling scal-

able analysis of network traffic measurements.

7 Discussion

In this section, we compare the two presented mod-

els for traffic summarization, and then discuss the di-

mension reduction issue for pattern representation in a

visual way.

7.1 Comparison of the Summarization Models

Table 2 provides a summary of the comparison be-

tween the clustered patterns and the grid representation

models. The main benefit of the grid structure model

is that it is straightforward to create patterns in a data

stream computation manner; comparatively clustering

relies basically on the batch processing to expect ac-

curate results. The clustered pattern model is cheap

with respect to the storage complexity since a pattern

is represented with a vector of clusters (including cen-

troid coordinates, sum of squared errors, etc.). On the

other hand, the grid-based model is more expensive be-

cause it needs to maintain the cell information in a two-

dimensional space. In addition, determining the reso-

lution would be an open question. For example, if the

resolution is (32×32), the number of cells is 1 024, while

it is 4 096 with the resolution of (64× 64), as in Fig.13.

Our future research tasks include the investigation of

the impact of the resolution on the summarization and

complexity.

7.2 Visualization and Dimension Reduction

Visualizing network states would be desired and

beneficial for operators to recognize the state of the

network in an intuitive way. Although online moni-

toring often limits the number of variables in analysis,

there would be a need to keep track of more than two

variables, which makes it complicated to visualize. One

simple option is to create multiple plots in independent

2D spaces for each combination of variables. In that

case, it needs
(

|V |
2

)

plots where |V | is the number of

variables. This option would be neither intuitive nor

scalable.

Another option is to use a dimension reduction tech-

nique such as PCA, t-SNE, autoencoder, and other re-

duction tools. Fig.15 shows the result of clustering with

PCA against the 16-hour trace used in Fig.2. In this

experiment, the data points were converted to create

z-scores for standardizing. We observed that the re-

sults largely consent to ones in Fig.2 with respect to

similarity. Grid-based patterns can also be created by

using a dimension reduction tool when we have more

than two traffic variables in the analysis. Examining

dimension reduction methods to see their efficiency for

our traffic summarization is also one of the interesting

research tasks.

8 Conclusions

This paper presents a new approach to the high-level

online network traffic analysis using clustered patterns

and grid patterns. The main goal of this study is to

enable intuitive analysis of multivariate network traffic

attributes at high level. We first demonstrated the use

of clustered patterns with the observed challenges, and

next presented a grid-based model to overcome the limi-

tations of the clustered pattern-based technique, with

particular respect to the streaming computation and ro-

bustness to noises. Finally, we demonstrated network

traffic analysis using the presented techniques against

the ESnet tstat trace.

The proposed approach has several important im-

pacts. First, the multivariate approach for network

Table 2. Comparison of Clustered Patterns and Grid Representation

Clustered Pattern Grid Representation

Robust to sampling Weak Moderate

Stream processing Hard Easy

Robust to noise Weak Robust

Representation complexity Relatively cheap Relatively expensive

(O(k), where k is the number of clusters) (O(c), where c is the number of cells)
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Fig.15. Clustering with PCA with three attributes (the same 16-hour trace used in Fig.2). The data points were transformed using
standardization for effective PCA analysis.

traffic analysis has not been explored well, and the

proposed method is new in the study area. Second,

our work enables data streaming processing for effec-

tive online monitoring. Third, one of the core elements

for scalability in this work is an approximation model

that minimizes computational and storage complexity

for the pattern-based network state representation and

the catalog repository.

As this work is still ongoing, there would be many

research tasks to be explored in the future. We are cur-

rently examining several possible methods for the repre-

sentation of network states based on the grid structure

and distribution models. For quantitative analysis, new

measures are also needed to be defined for the newly

established representation model. In addition, visuali-

zation and dimensionality reduction need to be investi-

gated to efficiently support the high-dimensional multi-

variate analysis with the defined representation model,

which will be helpful to enable an intuitive monitoring.
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