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Abstract Shingled magnetic recording (SMR) can effectively increase the capacity of hard disk drives (HDDs). Host-

aware SMR (HA-SMR) is expected to be more popular than other SMR models because of its backward compatibility and

new SMR-specific APIs. However, an HA-SMR drive often suffers performance degradation under write-intensive workloads

because of frequent non-sequential writes buffered in the disk cache. The non-sequential writes mainly come from update

writes, small random writes and out-of-order writes. In this paper, we propose a hybrid storage system called ROCO which

aims to use a solid state drive (SSD) cache to improve the performance of an HA-SMR drive. ROCO reorders out-of-order

writes belonging to the same zone and uses the SSD cache to absorb update writes and small random writes. We also

design a data replacement algorithm called CREA for the SSD cache. CREA first conducts zone-oriented hot/cold data

identification to identify cold-cached zones and hot-cached zones, and then evicts data blocks belonging to colder zones with

higher priorities that can be sequentially written or written through host-side read-modify-write operations. It gives the

lowest priority to data blocks belonging to the hottest-cached zone that have to be non-sequentially written. Experimental

results show that ROCO can effectively reduce non-sequential writes to the HA-SMR drive and improve the performance of

the HA-SMR drive.

Keywords solid state drive (SSD) cache, host-aware shingled magnetic recording (HA-SMR) drive, zone-oriented block

reordering, zone-oriented hot/cold data identification, data replacement algorithm

1 Introduction

Because of the limitation of thermal stability, the

areal density of conventional magnetic recording will

reach a limit at about 1 Terabit per square inch[1]. Shin-

gled magnetic recording (SMR) can effectively improve

the areal density of hard disk drives. SMR enables the

usage of write heads with strong fields and high tole-

rances, and brings no significant cost impact[2]. How-

ever, a shortcoming arises when SMR implements data

updates. The in-place updates are inefficient. When

some data is updated in a track, other data in the sub-

sequent tracks can be overlapped if not read out first.

There are three types of SMR drives: drive-managed

SMR (DM-SMR) drives, host-aware SMR (HA-SMR)

drives, and host-managed SMR (HM-SMR) drives[3,4].

A DM-SMR drive consists of a disk cache and multiple

shingled bands. It hides its internal layout information

from the host, and can be deployed without any modi-

fications to the existing storage systems[5]. HA-SMR

and HM-SMR drives are mainly composed of zones,

which are ranges of consecutive non-overlapping logical

block addresses (LBAs). HA-SMR drives can accept

non-sequential writes by buffering them in the internal

disk caches, and HM-SMR drives only accept sequential

writes[6]. Both HA-SMR and HM-SMR drives expose

their internal layout information to the host.

HA-SMR drives are expected to be more popular
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because they can supply higher and more predictable

performance than DM-SMR drives, and they are more

backward compatible with legacy software than HM-

SMR drives. However, HA-SMR drives often suffer per-

formance degradation under write-intensive workloads.

The main reason is that when too many non-sequential

writes are buffered in the disk cache, frequent data

cleaning is triggered to migrate data from the disk cache

to target zones through read-modify-write (RMW) ope-

rations. These RMW operations can consume the ma-

jority of resources in an HA-SMR drive and block the

ongoing workload. Non-sequential writes mainly come

from update writes, small random writes, and out-of-

order writes. Most update writes and small random

writes access only a few data blocks of a zone because

of low spatial locality of a workload within a short time

interval. They can be easily identified as non-sequential

writes and sent to the disk cache of the HA-SMR drive.

Out-of-order writes have good spatial locality under a

workload within a short time interval; however, they ar-

rive in the HA-SMR drive in an out-of-order state and

the majority of them are identified as non-sequential

writes[7].

Flash-based solid state drives (SSDs) or non-volatile

memories (NVMs) have been widely used to im-

prove the performance of conventional hard disk drives

(HDDs) or SMR drives[8−10]. However, directly apply-

ing these solutions to HA-SMR drives based storage

systems is challenging due to the special characteris-

tics of HA-SMR drives[7]. In this paper, we propose

ROCO, a hybrid storage system adopting zone-oriented

block reordering and a colder-zone first cache replace-

ment algorithm, to use an SSD to improve the per-

formance of an HA-SMR drive. The SSD works as a

write-back cache, and the HA-SMR drive works as the

main storage. In addition to using the SSD cache to

absorb update writes and small random writes, the key

idea of ROCO is that it reorders out-of-order writes

before they arrive in the HA-SMR drive, and evicts

data blocks from the SSD cache to the HA-SMR drive

according to the colder-zone first cache replacement al-

gorithm (CREA). CREA first conducts zone-oriented

hot/cold data identification to identify hot zones and

cold zones, and then evicts data blocks belonging to

colder zones with higher priorities that can be sequen-

tially written or written through host-side read-modify-

write operations. The main contributions of this paper

are as follows.

• Zone-Oriented Block Reordering. We propose to

implement the zone-oriented block reordering to reorder

the out-of-order data blocks belonging to the same zone

according to their start LBAs. This can reduce the

number of non-sequential writes and increase the num-

ber of sequential writes to the HA-SMR drive.

• Zone-Oriented Hot/Cold Data Identification.

Different cached zones have different access patterns

because of their cached data blocks. We propose to

use zone-oriented hot/cold data identification to iden-

tify hot or cold cached zones according to their respec-

tive numbers of cached non-overlapping data blocks and

access counts of these data blocks.

• Cache Replacement Algorithm — CREA. To fur-

ther reduce the non-sequential writes written to the

HA-SMR drive, CREA gives the highest priorities to

the data blocks belonging to colder cached zones that

can be sequentially written, and gives higher priorities

to the data blocks belonging to colder cached zones that

can be written through host-side RMW operations. It

gives the lowest priority to data blocks belonging to the

hottest cached zone that have to be non-sequentially

written.

The rest of the paper is organized as follows. The

background and the motivation are presented in Sec-

tion 2. We describe the design of ROCO in Section

3. The experimental results are presented in Section 4.

We review the related work in Section 5 and conclude

this paper in Section 6.

2 Background and Motivation

In this section, we provide the necessary background

knowledge about HA-SMR drives, including the model

of an HA-SMR drive and main operations on a zone.

The knowledge motivates our research and facilitates

our presentation of ROCO in the following subsections.

2.1 Host-Aware SMR Basics

2.1.1 Model of a Host-Aware SMR Drive

Fig.1 shows the model of an HA-SMR drive, which

consists of thousands of zones and a disk cache. The

entire capacity of the HA-SMR drive is organized into

logically contiguous, non-overlapping zones, each of

which is a range of consecutive LBAs. The zones

can be classified into two types: conventional zones

which are composed of conventional magnetic record-

ing tracks, and shingled zones which are composed of

SMR tracks. The conventional zones allow in-place up-

dates, while a shingled zone can only be written in a

log-structure way[7]. A few shingled zones compose the



Wen-Guo Liu et al.: Using SSD to Improve Host-Aware Shingled Magnetic Recording Drive 63

disk cache and the other shingled zones are used as

write-pointer zones[5,6]. A write pointer zone maintains

a write pointer which indicates the LBA where the next

write should start within this zone. Writes starting at

write pointers are seen as sequential writes, or they are

seen as non-sequential writes. The majority of zones

are write pointer zones; therefore in the rest of the pa-

per we use “zones” to refer to “write pointer zones”

unless otherwise stated.

Non-Sequential Writes Sequential Writes

Disk Cache
Data

Cleaning Zone 0 Zone N

Fig.1. Model of an HA-SMR drive.

When write requests arrive in an HA-SMR drive,

sequential writes are directly written into their target

zones while non-sequential writes are buffered in the

disk cache. When the disk cache is idle or full, data

cleaning is implemented. Each time data blocks are se-

lected belonging to the same zone to migrate to the tar-

get zone through read-modify-write operations[6]. After

data cleaning, the disk cache needs to reclaim enough

space for incoming non-sequential writes by implement-

ing garbage collection operations[5,7].

2.1.2 Main Operations on a Zone

The main operations on a write pointer zone can be

classified as three types: sequential-write operations,

read-modify-write operations and “synthesized data”

generated operations[7]. We use Fig.2 to describe these

types of operations. In Fig.2, the disk cache and zone

0 are initially empty, and the write pointer references

the starting LBA of zone 0. In the arriving data blocks

targeting zone 0 shown in the block queue, blocks A–D

are a set of consecutive data blocks, and blocks A’–C’

are update blocks for blocks A–C. Block G, block F,

block E and block H are out-of-order blocks of blocks

E–H with higher LBAs than blocks A–D, and block K

and blockM are small random data blocks. Assume the

starting LBA of block A is equal to the write pointer,

then as shown in Fig.2(a), blocks A–D can be directly

written to zone 0, and the write pointer references the

next LBA after block D, where block E targets. In the

following data blocks, the starting LBAs of blocks A’–

C’, block G and block F are not equal with the write

pointer; therefore they are sent to the disk cache. How-

ever, block E targets the place where the write pointer

indicates and it can be sequentially written to zone 0.

Hence, the write pointer moves to the next LBA where

block F targets. The starting LBAs of block H, block

K and block M are not equal with the write pointer

either, and thus they are sent to the disk cache.

Fig.2(b) shows a read-modify-write operation which

happens during the disk cache cleaning which migrates

data blocks belonging to the same zone from the disk

cache to their target zone. In-place updates are not

supported by zone 0; therefore before blocks A–C are

written to zone 0, blocks D–E have to be read out first,

and then written back to zone 0 together with blocks

A’–C’.

Fig.2(c) shows the generation of “synthesized data”

on a zone. How “far” the write pointer advances within

a zone depends on the largest LBA written by the host.

However, from block H to block M, there are LBA

gaps — block I, block J and block L are not written

by the host. To guarantee that the write pointer ad-

vances to the LBA right after blockM, synthesized data

blocks are generated and written to those LBA gaps[7].

Fig.2(c) also shows a block reordering operation, which

reorders out-of-order blocks, block G, block F and block

H, into ordered blocks, block F, block G and block H,

according to their start LBAs.

2.2 Motivation

As more and more non-sequential writes arrive in

the HA-SMR drive, data cleaning and garbage collec-

tion need to be performed in the disk cache of the

HA-SMR drive. Data cleaning migrates data blocks

from the disk cache to their target zones through read-

modify-write operations, and garbage collection makes

space for incoming non-sequential writes through read-

modify-write operations too when the free space in the

disk cache is exhausted or nearly exhausted. Too many

non-sequential writes cause frequent data cleaning and

garbage collection operations, making the disk cache

the main performance bottleneck and resulting in severe

performance degradation of the HA-SMR drive[6,7].

As shown in Fig.2, non-sequential writes to a zone

mainly come from update writes such as blocks A’–C’,

small random writes such as block F and block M, and

out-of-order writes such as blocks E–H. Update writes

appear because of frequent access to a zone. Small ran-
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Fig.2. Main operations on a zone. (a) Sequential and non-sequential data blocks are written to a zone and the disk cache respectively.
(b) Read-modify-write operation on a zone during data cleaning process. (c) “Synthesized data” generated operation on a zone.

dom writes appear mainly because of low spatial loca-

lity in a zone within a short time interval, and out-of-

order writes appear because they arrive out of order

within a short time interval. This motivates us to re-

order the out-of-order writes in the host and use a cache

(such as flash-based SSDs and NVMs) to absorb update

writes and small random writes.

When different zones are cached in the SSD (or

NVM), the numbers of non-overlapping data blocks be-

longing to these zones are usually different, and diffe-

rent non-overlapping data blocks usually have different

access counts too. This means that different cached

zones may have different “zone heat”s in the SSD

cache. This motivates us to conduct the zone-oriented

hot/cold data identification, and evicts the data blocks

belonging to colder cached zones from the SSD cache to

the HA-SMR drive. This can reduce the amount of data

blocks written to the HA-SMR drive, and even though

the evicted data blocks are buffered in the disk cache,

they are prone to triggering the disk cache cleaning less
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frequently than those belonging to hotter cached zones.

We also propose to reduce non-sequential writes

through host-side read-modify-write (RMW) ope-

rations. Fig.3 illustrates how a host-side RMW ope-

ration is performed. In the blocks stored in the SSD

cache, blocks A’–C’, blocks E–H, block K and block M

belong to zone 0, and blocks A’–C’ are update blocks

for blocks A–C. When evicted to the HA-SMR drive,

they are first read to the host. There are some gaps —

block D, block I, block J and block L — among these

blocks that are not written by the host. To guarantee

the cached blocks can be sequentially written to zone

0, these gaps should be filled in the host. Block D can

be directly read from zone 0 to the host; however, the

locations of block I, block J and block L are beyond

the write pointer of zone 0. In this situation, when

reading data from these locations, the HA-SMR drive

returns synthesized data as done in Fig.2(c)[7]. When

implementing a host-side RMW operation, data blocks

from the SSD cache, and block D and synthesized data

from the HA-SMR drive belonging to zone 0 are read

to the host. Subsequently, they are merged together

in the host and sequentially written to zone 0 in the

HA-SMR drive. To avoid too much overhead caused by

zone read operations, we implement host-side RMW

operations when the number of data blocks in the SSD

cache belonging to the same zone exceeds a predefined

threshold, such as 80% of the zone size.

Based on the above analysis, we can see that re-

ducing non-sequential writes to the disk cache can fun-

damentally improve the performance of the HA-SMR

drive, and there are three basic ways to reduce non-

sequential writes: absorbing update writes, improving

the spatial locality in a zone, and reordering out-of-

order data blocks belonging to the same zone. We pro-

pose to use an SSD to cache writes for the HA-SMR

drive. Even if the data writes to a zone have low spatial

locality within a short time interval, they can have high

spatial locality within a long time interval[11]. We cre-

ate a block list for each cached zone. In this list, all the

data blocks cached in the SSD belonging to the same

zone are sorted in the ascending order of their start

LBAs. When the SSD cache needs to evict data to the

HA-SMR drive, it first conducts zone-oriented hot/cold

identification, and then selects sequential writes belong-

ing to colder cached zones as victims. If there are no

sequential writes, it selects writes belonging to colder

cached zones with the number of data blocks exceed-

ing a predefined threshold, such as 80% of the zone

size as victims, and evicts them sequentially to the cor-

responding zone through host-side read-modify-write

operations. If there are no writes belonging to a zone

meeting the above two conditions, it selects data blocks

belonging to the coldest cached zone and evicts them

to the disk cache of the HA-SMR drive.

3 Design and Implementation

In this section, we first present an overview of

ROCO, and then describe the key data structure de-

signed for ROCO. After that we present the zone-

oriented hot/cold data identification, followed by the

data replacement algorithm for the SSD cache.

Fig.3. Host-side read-modify-write operation.
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3.1 Overview

As shown in Fig.4, in ROCO the SSD serves as a

write-back cache, and the HA-SMR drive serves as the

main storage. ROCO mainly consists of four functional

modules: zone-oriented data reordering module, zone-

oriented hot/cold data identification module, data re-

placement module, and host-RMW operation module.

The zone-oriented data reordering module sorts data

blocks belonging to the same zone in the ascending or-

der of their start LBAs in the SSD cache. The zone-

oriented hot/cold data identification module identifies

cold cached zones and hot cached zones according to the

behaviors of cached data blocks. The data replacement

module evicts data blocks from the SSD cache to the

HA-SMR drive according to the algorithm described in

Algorithm 1. The host-RMW operation module im-

plements host-side read-modify-write operations on the

zones in the HA-SMR drive selected by the data re-

placement module.

Fig.4. Overview of ROCO.

3.2 Key Data Structure

The key data structure used by ROCO is shown

in Fig.5. The cached zone list is used to main-

tain the information of all the zones that are cur-

rently cached in the SSD, which consists of a num-

ber of zone entries. In addition to the five variables

including zone no, zone block count, zone low LBA,

zone access count and zone heat, each zone entry

consists of a zone block list. The zone block list

consists of several block entrys, which represent non-

overlapping data blocks that are currently cached in

the SSD. Two non-overlapping data blocks have diffe-

rent blk start LBAs. The main variables in the key data

structure are explained as follows.

Algorithm 1 . CREA: Data Replacement Algorithm for

the SSD Cache

1: //Assume zone 0, zone 38, zone 153, ..., zone N are cached

in the SSD.

2: //zone heat sort() : sort cached zones in the ascending order

of their zone heats.

3: //write pointer[] : indicating the LBA in zone k where the

next write should target in the HA-SMR drive.

4: //seq write() : write data blocks belonging to zone k sequen-

tially from the SSD cache to zone k in the HA-SMR drive.

5: //reset() : reset the write pointer of a zone to its initial value.

6: //host rmw write() : write data blocks belonging to zone k

from the SSD cache to zone k by host-side read-modify-write

operations.

7: //non seq write() : write data blocks belonging to zone k

from the SSD to the disk cache in the HA-SMR drive.

8: //seq state: if there is a zone that can be sequentially writ-

ten, the value is set to 1.

9: //host rmw state: if there is a zone that can be written by

host-RMW operations, the value is set to 1.

10: seq state = 0, host rmw state = 0;

11: for k ∈ {0, 38, 153, ..., N} do

12:

zone[k].zone heat =
zone[k].zone access count

zone[k].zone block count
;

13: end for

14: zone heat sort({0, 38, 153, ...,N});

15: for k ∈ {38, 42, 16, ..., N} do

16: if (zone[k].zone low LBA == write pointer[k]) &&

(zone[k].zone block count < zone size) then

17: seq write(zone[k]);

18: seq state = 1;

19: break ;

20: end if

21: if (zone[k].zone block count == zone size) then

22: reset(write pointer[k]);

23: seq write(zone[k]);

24: seq state = 1;

25: break ;

26: end if

27: end for

28: if (seq state == 0) then

29: for k ∈ {38, 42, 16, ..., N} do

30: if (zone[k].zone block count > zone size× 0.8) then

31: host rmw write(zone[k]);

32: host rmw state = 1;

33: break;

34: end if

35: end for

36: end if

37: if (seq state == 0 && host rmw state == 0) then

38: non seq write(zone[38]);

39: end if

cached zone count: indicates the number of zones

which are cached in the SSD.

zone size: is a constant indicating the total number

of non-overlapping data blocks a zone in the HA-SMR

drive can hold.

zone no: indicates the zone number of a zone cached
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cached_zone_list
zone_entry

zone_entry

zone_entry

zone_block_list block_entry

block_entry

Fig.5. Key data structure in ROCO.

in the SSD.

zone block count: indicates the number of non-

overlapping data blocks of a zone cached in the SSD.

zone low LBA: indicates the starting LBA of the

data block with the lowest LBA among data blocks be-

longing to the same zone that are cached in the SSD.

blk start LBA: indicates the starting LBA of a

data block.

blk length: indicates the length of a data block.

access count: indicates the access count of a data

block when cached in the SSD.

zone access count: indicates the total number of

access counts of non-overlapping data blocks of a zone

that are currently cached in the SSD.

zone heat: indicates the access frequency of a zone

reflected by the data blocks that are currently cached

in the SSD.

When a write request arrives in ROCO, it is

first split into several consecutive data blocks. For

each data block, zone no is calculated according to

its blk start LBA, and the data reordering module

checks if a corresponding zone entry exists in the

cached zone list. If not, a zone entry is created for

the zone newly cached in the SSD and added to

the cached zone list in a zone-oriented first-in-first-out

(FIFO) order, and the value of cached zone count in-

creases by 1. After that, the data reordering mod-

ule checks if an arriving data block exists in the

zone block list of the corresponding zone according

to the blk start LBA of the block. If not, a block

entry is created for this data block and inserted

to the zone block list in the ascending order of the

blk start LBA, and the value of zone block count in-

creases by 1. Each time when a data block arrives

in the SSD cache, the values of the corresponding

access count and zone access count increase by 1 re-

spectively. When there is no free space in the SSD

cache, the data replacement module evicts data blocks

belonging to the same zone according to the algorithm

described in Algorithm 1 from the SSD to the HA-SMR

drive. After data blocks are evicted, the corresponding

entries are deleted.

3.3 Zone-Oriented Hot/Cold Data
Identification

The zone-oriented FIFO algorithm cleans all the

data blocks belonging to the oldest zone buffered in

the SSD cache during the cache cleaning process. How-

ever, different zones have different access frequencies in

the SSD cache. Cleaning cold zones usually brings less

data migration than cleaning hot zones and results in

better performance. We identify the cold-cached zones

and hot-cached zones by computing the zone heat for

each cached zone.

The numbers of cached data blocks belonging to

different cached zones are often different, and the ac-

cess counts of different cached data blocks are often

different too. We compute the zone heat for a cached

zone by combining the number and the access counts

of the cached data blocks together belonging to the

cached zone. We use Fig.6 to illustrate how to compute

the zone heat. Fig.6(a) shows zone 0 which consists of

4 096 non-overlapping LBAs. Each LBA corresponds to

a data block. Fig.6(b) shows 3 000 data blocks belong-

ing to zone 0, which are currently cached in the SSD.

An access count is maintained for each cached data

block which records the access count of each cached

data block. The zone access count denotes the sum of

the access counts of all the cached data blocks. Then

the zone heat can be calculated as

zone heat =
access count 0 + ...+ access count 3090

zone block count

=
zone access count

zone block count
.
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access_count 0 access_count 6
access_count

Fig.6. Write pointer zone with 3 000 data blocks cached in the SSD. (a) Zone 0 consisting of 4 096 non-overlapping LBAs. (b) 3 000

data blocks belonging to zone 0 that are currently cached in the SSD.

3.4 Data Replacement Algorithm for the SSD

Cache

When the SSD cache needs to evict data, we pro-

pose to first implement the zone-oriented hot/cold data

identification by computing the zone heat for each

cached zone, and then sort all the currently cached

zones in the ascending order of their zone heats. Af-

ter that we select data blocks belonging to the colder

zones that can be sequentially written to the HA-

SMR drive. This is because keeping hotter zones

cached in the SSD can reduce the data migration from

the SSD cache to the HA-SMR drive, and sequential

writes do not cause extra overhead to the HA-SMR

drive. We identify two types of writes as sequential

writes. The first type is that zone low LBA of a cached

zone is equal to the corresponding write pointer and

zone block count is less than zone size. The second

type is that zone block count is equal to zone size,

which means that the zone in the HA-SMR drive can be

entirely overlapped. If there are no sequential writes,

we select data blocks belonging to the colder zones

that can be evicted through host-side RMW operations.

Host-side RMW operations mainly utilize the host re-

sources and do not cause internal RMW operations of

the HA-SMR drive. If the above two kinds of data

blocks do not exist in the SSD cache, we select to evict

data blocks belonging to the coldest zone to the disk

cache of the HA-SMR drive. Our proposed cache re-

placement algorithm CREA is described in Algorithm

1.

Assume data blocks belonging to zone 0, zone 38,

zone 153, ..., and zone N are cached in the SSD.

As shown in Algorithm 1, CREA first computes the

zone heat for each cached zone according to (1), and

then invokes the zone heat sort() function to sort all

the currently cached zones in the ascending order of

their zone heats. After sorting, assume the order of the

cached zones is zone 38, zone 42, zone 16, ..., and zone

N. CREA checks if there are sequential data blocks from

zone 38 to zone N. If zone[38].zone low LBA is equal to

write pointer[38] and zone[38].zone block count is less

than zone size, then all the consecutive data blocks

starting from the block with zone low LBA belong-

ing to zone 38 are sequentially written to zone 38 in

the HA-SMR drive. The corresponding entries in the

zone block list of zone 38 are deleted and the value of

seq state is set to 1. If zone[38].zone block count is

equal to zone size, it means that zone 38 can be en-

tirely overlapped. Then the write pointer of zone 38

is reset to its initial value, and all data blocks belong-

ing to zone 38 are sequentially written to the HA-SMR

drive. The corresponding block entries are deleted from

the zone block list of zone 38 and the value of seq state

is set to 1. If the zone low LBA of each cached zone

is not equal to the corresponding write pointer and no

zones in the HA-SMR drive can be entirely overlapped,

CREA checks if there is a cached zone satisfying the

host-side read-modify-write condition from zone 38 to

zone N. If the zone block count of zone 38 is greater

than 80% of zone size, it first reads data blocks from

the SSD cache as well as valid data blocks and syn-

thesized data blocks (if needed) belonging to zone 38

from the HA-SMR drive to the host. The blocks are

then merged together in the host, and then written

back to zone 38 in the HA-SMR drive. All the en-

tries in the zone block list of zone 38 are deleted and

the value of host rmw state is set to 1. If there is not
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a zone that can be sequentially written or written by

host-side RMW operations, CREA evicts data blocks

belonging to the coldest zone — zone 38 here — to the

disk cache of the HA-SMR drive and all the entries in

the zone block list of zone 38 are deleted.

4 Experimental Results

In this section, we first describe the experimental

setup, and then evaluate the performance of ROCO

through trace-driven simulations.

4.1 Experimental Setup

We have implemented ROCO in a simulation envi-

ronment based on Disksim and SSD extension[12]. The

SSD is emulated based on SSD extension which emu-

lates SLC NAND flash memory chip operations, and the

page/block unit size is 4 KB/256 KB respectively. The

total capacity of the SSD is 4 GB. Trying to achieve bet-

ter performance with lower cost, we use 256 MB of the

total capacity as the SSD cache. The HA-SMR drive is

emulated based on the disk model of Maxtor Atlas 10K

IV disk whose average read and write latency is 4.4 ms

and 4.9 ms respectively, and the disk size is 146 GB.

The HA-SMR drive uses about 0.3%–0.4% of the to-

tal space as the disk cache[7], and the disk cache size

is set to 512 MB. The zone size is set to 16 MB. The

disk cache implements a zone-oriented FIFO data clean-

ing policy and greedy algorithm based garbage collec-

tion policy[7]. The SSD is used as the write-back cache

of the HA-SMR drive and implements CREA replace-

ment algorithm. We implement ROCO at the device

driver level, which intercepts all the incoming requests

before they reach the underlying disks. In addition,

we implement three other solutions: HA, Cache-LRU,

and Cache-ZFIFO. HA is implemented on an HA-SMR

drive and adopts a zone-oriented FIFO data cleaning

policy and greedy algorithm based garbage collection

policy in the disk cache. Cache-LRU and Cache-ZFIFO

are solutions for the hybrid storage system consisting

of an SSD cache and an HA-SMR drive. Cache-LRU

implements a block-oriented LRU cache replacement al-

gorithm for the SSD cache, which evicts data blocks to

the HA-SMR drive in a least recently used (LRU) or-

der. Cache-ZFIFO implements a zone-oriented FIFO

cache replacement algorithm for the SSD, which evicts

all the data blocks belonging to a zone to the HA-SMR

drive in a zone-oriented FIFO order.

The traces used here are collected from enterprise

servers at Microsoft Research (MSR) Cambridge[13].

The MSR traces consist of 36 traces and can be clas-

sified into two types: read-intensive traces and write-

intensive traces. An HA-SMR drive suffers from per-

formance degradation mainly because of the data mi-

gration during the disk cache cleaning when write re-

quests arrive. Because read-intensive traces rarely trig-

ger the disk cache cleaning in an HA-SMR drive, we

select write-intensive traces as input traces. We use

five write-intensive traces here since the other write-

intensive traces show the similar experimental results.

The main characteristics of the five traces are listed in

Table 1.

Table 1. Characteristics of Traces

Trace Total Write Average Write Write Ratio

Size (GB) Size (KB) (%)

proj 0 144.27 34.78 87.52

src2 2 39.28 51.11 69.67

prn 0 45.19 8.50 89.21

stg 0 15.09 9.19 68.02

src1 2 44.15 32.51 83.41

4.2 Results

In this subsection, we first evaluate the impact of

the zone-oriented block reordering on the performance

of the HA-SMR drive, and then evaluate the impact of

ROCO on the performance of the HA-SMR drive.

4.2.1 Impact of Zone-Oriented Block Reordering on

the Performance of the HA-SMR Drive

The zone-oriented block reordering module reorders

the data blocks belonging to the same zone according

to their blk start LBAs, which can reduce the number

of non-sequential writes and increase the number of se-

quential writes to the HA-SMR drive in varying degrees

under different traces. The basic cache replacement al-

gorithm for the hybrid storage system consisting of an

SSD cache and an HA-SMR drive is the zone-oriented

FIFO algorithm, and if the zone-oriented block reorder-

ing is implemented when data blocks are written to

the SSD cache, we call this solution Reorder-CZFIFO.

We show the impact of the zone-oriented block reorder-

ing on the HA-SMR drive by comparing the variations

of data migration of the HA-SMR drive when Cache-

ZFIFO and Reorder-CZFIFO are implemented respec-

tively.

Using the size of written data of each trace

(Trace WSize) as a baseline, Fig.7 shows the variations

of sequential data and non-sequential data written to
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Fig.7. Impact of zone-oriented block reordering on variations of sequential writes and non-sequential writes under proj 0, prn 0, src2 2,

stg 0 and src1 2. (a) Variations of non-sequential writes. (b) Variations of sequential writes.

the HA-SMR drive under proj 0, prn 0, src2 2, stg 0

and src1 2 respectively. In Fig.7(a) we can see that

compared with simply implementing Cache-ZFIFO, im-

plementing the zone-oriented block reordering can fur-

ther reduce the ratios of non-sequential data from

5.27%, 27.17%, 80.45%, 6.3% and 14.2% to 3.03%,

20.73%, 4.33%, 2.18% and 7.33% under proj 0, prn 0,

src2 2, stg 0 and src1 2 respectively.

Among the five write-intensive traces, src2 2 bene-

fits the most from the zone-oriented block reorder-

ing. Although src2 2 has good zone level locality,

it is less update-intensive than the other four traces,

and the majority of data blocks of src2 2 belonging

to a zone are out-of-order data blocks. The zone-

oriented block reordering can translate the majority

of non-sequential writes of src2 2 to sequential writes.

Fig.7(b) shows that, compared with simply implement-

ing Cache-ZFIFO, implementing Reorder-CZFIFO can

further increase the ratios of sequential data from

0.52%, 15.61%, 1.59%, 2.55% and 0.83% to 4.81%,

21.19%, 79.93%, 7.95% and 7.69% under proj 0, prn 0,

src2 2, stg 0 and src1 2 respectively.

The migrated data during the disk cache cleaning

in the HA-SMR drive comes from three parts: data

read from the disk cache and the zones, data synthe-

sized because of “LBA gaps”, and data written to the

zones. Because the written data comes from the read

data and the synthesized data, we only compare the

sizes of the read data and the synthesized data under

proj 0, prn 0, src2 2, stg 0 and src1 2 in Fig.8(a) and

Fig.8(b) respectively.

From Fig.8(a) we can see that, compared with

Cache-ZFIFO, Reorder-CZFIFO can reduce the ratios

of read data generated during the disk cache cleaning in

the HA-SMR drive from 8.5%, 89.31%, 103.37%, 2.42%

and 16.36% to 6.16%, 60.37%, 4.36%, 0.99% and 4.72%

under proj 0, prn 0, src2 2, stg 0 and src1 2 respec-

tively. This is because the zone-oriented block reorder-

ing translates more non-sequential writes to sequential

writes, reduces the amount of data buffered in the disk

cache, and finally reduces the frequency of the disk

cache cleaning in the HA-SMR drive.

Because of the same reason, Fig.8(b) shows the

similar results to those in Fig.8(a). From Fig.8(b) we

can see that, compared with Cache-ZFIFO, Reorder-

CZFIFO can reduce the ratios of synthesized data gene-

rated during the disk cache cleaning in the HA-SMR

drive from 9.1%, 40.87%, 24.33%, 24.09% and 9.32% to

7.94%, 27.67%, 7.82%, 12.36% and 2.99% under proj 0,

prn 0, src2 2, stg 0 and src1 2 respectively.

4.2.2 Impact of ROCO on the Performance of the HA-

SMR Drive

To show the performance improvement of the HA-

SMR drive by applying ROCO, we compare it with

the other three solutions: HA, Cache-LRU and Cache-

ZFIFO. As described in Subsection 4.1, HA is imple-

mented on an HA-SMR drive which implements a zone-

oriented FIFO data cleaning policy in the disk cache.

Cache-LRU implements a block-oriented LRU cache re-

placement algorithm and evicts data blocks from the

SSD cache to the HA-SMR drive in an LRU order.
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Fig.8. Impact of zone-oriented block reordering on data migration during disk cache cleaning under proj 0, prn 0, src2 2, stg 0 and

src1 2. (a) Read data generated during disk cache cleaning. (b) Synthesized data generated during disk cache cleaning.

Cache-ZFIFO implements a zone-oriented FIFO cache

replacement algorithm and evicts all the data blocks be-

longing to a zone from the SSD cache to the HA-SMR

drive in a zone-oriented FIFO order.

Using the size of written data of each trace

(Trace WSize) as a baseline, Fig.9 shows variations of

sequential data and non-sequential data written to the

HA-SMR drive under proj 0, prn 0, src2 2, stg 0 and

src1 2 respectively. From Fig.9(a) we can see that with-

out an SSD cache, 99.68%, 96.48%, 99.2%, 98.97% and

99.72% of the written data are buffered in the disk cache

of the HA-SMR drive under proj 0, prn 0, src2 2, stg 0

and src1 2 respectively. The main reason is that proj 0,

prn 0, stg 0 and src1 2 have a lot of update writes and

small random writes, and have poor spatial locality on

zones within a short time interval. Although src2 2 has

good spatial locality on zones within a short time in-

terval, the majority of the arriving data blocks belong-

ing to the same zone are out-of-order blocks. With an

SSD cache and implementing a block-oriented LRU re-

placement algorithm, Cache-LRU reduces the ratios of

non-sequential data to 13.07%, 38.94%, 96.71%, 8.59%

and 20.4% under proj 0, prn 0, src2 2, stg 0 and src1 2

respectively. This is because the SSD cache absorbs a

lot of update writes and small random writes for proj 0,

prn 0, stg 0 and src1 2. Cache-LRU does not work well

for src2 2. This is because src2 2 is mainly composed of

out-of-order data blocks and its update requests have

poor spatial locality in the SSD cache.

Unlike Cache-LRU which evicts data blocks at the

block level, Cache-ZFIFO evicts data blocks at the zone

level, which each time evicts the data blocks belonging

to a zone from the SSD cache to the HA-SMR drive

when it is implemented. Cache-ZFIFO can gain better

zone locality than Cache-LRU, and it reduces the ra-

tios of non-sequential data buffered in the disk cache

of the HA-SMR drive to 5.27%, 27.17%, 80.45%, 6.3%

and 14.2% under proj 0, prn 0, src2 2, stg 0 and src1 2

respectively.

ROCO performs the best among the four solutions.

It reduces the ratios of non-sequential data buffered

in the disk cache of the HA-SMR drive to 0.86%,

8.68%, 0.02%, 0.52% and 2.01% under proj 0, prn 0,

src2 2, stg 0 and src1 2 respectively. In addition to

the zone-oriented block reordering which can translate

more non-sequential writes to sequential writes, the

proposed cache replacement algorithm CREA first con-

ducts zone-oriented hot/cold data identification for the

cached zones, and then evicts data blocks belonging to

colder zones that can be sequentially written or written

through host-side read-modify-write operations. Com-

bined with the zone-oriented hot/cold data identifica-

tion, CREA not only can reduce the number of data

blocks written to the HA-SMR drive, but also can re-

duce the frequency of disk cache cleaning by buffering

data blocks belonging to colder zones in the disk cache

of the HA-SMR drive.
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Fig.9. Impact of ROCO on variations of sequential writes

and non-sequential writes under proj 0, prn 0, src2 2, stg 0 and

src1 2. (a) Variations of non-sequential writes. (b) Variations of

sequential writes. (c) Overhead of host-RMW operations.

Because of the same reasons analyzed above, from

Fig.9(b) we can see that ROCO writes more sequential

data to the HA-SMR drive than HA, Cache-LRU and

Cache-ZFIFO. It increases the ratios of sequential data

written to the HA-SMR drive from 0.32%, 3.52%, 0.8%,

1.03% and 0.28% to 10.54%, 23.5%, 87.64%, 13.72%

and 19.77% under proj 0, prn 0, src2 2, stg 0 and src1 2

respectively.

Fig.9(c) shows the overheads of host-side RMW ope-

rations under proj 0, prn 0, src2 2, stg 0 and src1 2 re-

spectively when implementing ROCO. In addition to

the zone-oriented block reordering and hot/cold data

identification, the host-side RMW operations can fur-

ther reduce the amount of non-sequential data writ-

ten to the HA-SMR drive. When necessary, host-side

RMW operations need to read extra data blocks from

the HA-SMR drive and later write them back to their

original locations. From Fig.9(c) we can see that the

host-side RMW operations only migrate extra 0.32%,

0.56%, 0.002 2%, 0.18% and 0.64% of the total writ-

ten data under proj 0, prn 0, src2 2, stg 0 and src1 2

respectively. The overhead is the least under src2 2.

This is mainly because src2 2 has much better spatial

locality and much fewer small random writes than the

other four traces.

Fig.10 shows the variations of data migration dur-

ing the disk cache cleaning in the HA-SMR drive when

HA, Cache-LRU, Cache-ZFIFO and ROCO are imple-

mented respectively.

From Fig.10(a) we can see that ROCO generates

the least read data during the disk cache cleaning in

the HA-SMR drive. It reduces the ratios of generated

read data from 24.72%, 82.58%, 109.18%, 55.8% and

32.69% to 0.68%, 13.65%, 0.94%, 0.45% and 2.06% un-

der proj 0, prn 0, src2 2, stg 0 and src1 2 respectively.

Cache-LRU generates more read data than ROCO not

only because it writes more non-sequential data to the

HA-SMR drive, but also because its block-oriented evic-

tion results in more frequent disk cache cleaning in

the HA-SMR drive. Cache-ZFIFO generates more read

data than ROCO mainly because ROCO effectively re-

duces the amount of non-sequential data by implement-

ing the zone-oriented block reordering and CREA re-

placement algorithm.

Synthesized data is generated mainly because of

small random writes. ROCO reduces the most small

random writes by SSD absorbing, zone-oriented block

reordering, and the CREA replacement algorithm, and

as can be seen in Fig.10(b), it reduces the ratios of gene-

rated synthesized data from 13.08%, 65.3%, 30.17%,
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Fig.10. Impact of ROCO on data migration during disk cache cleaning under proj 0, prn 0, src2 2, stg 0 and src1 2. (a) Read data

generated during disk cache cleaning. (b) Synthesized data generated during disk cache cleaning.

55.27% and 18.42% to 1.3%, 3.68%, 0.11%, 1.95% and

1.44% under proj 0, prn 0, src2 2, stg 0 and src1 2 re-

spectively.

Fig.11 shows the comparison of average response

time of the HA-SMR drive under proj 0, prn 0, src2 2,

stg 0 and src1 2. From Fig.11 we can see that ROCO

improves the performance of the HA-SMR drive the

most among the four solutions. Without an SSD cache,

the HA-SMR drive performs 52.89 times worse un-

der proj 0, 5.36 times worse under prn 0, 26.41 times

worse under src2 2, 18.42 times worse under stg 0 and

37.91 times worse under src1 2 respectively than that

when ROCO is implemented. With an SSD cache

and a block-oriented LRU replacement algorithm, when

Cache-LRU is implemented, the HA-SMR drive per-

forms 5.61 times worse under proj 0, 4.97 times worse

under prn 0, 14.1 times worse under src2 2, 5.46 times

worse under stg 0 and 11.29 times worse under src1 2

respectively than that when ROCO is implemented.

In addition to writing more non-sequential data than

ROCO, Cache-LRU is prone to triggering more fre-

quent disk cache cleaning of the HA-SMR drive because

of the block-oriented replacement algorithm. With an

SSD cache and a zone-oriented FIFO replacement al-

gorithm, when Cache-ZFIFO is implemented, the HA-

SMR drive performs 3.82 times worse under proj 0,

4.67 times worse under prn 0, 12.77 times worse un-

der src2 2, 3.7 times worse under stg 0 and 8.35 times

worse under src1 2 respectively than that when ROCO

is implemented.
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Fig.11. Average response time of the HA-SMR drive.

This is because ROCO implements the zone-

oriented block reordering to translate more non-

sequential writes to sequential writes, conducts the

zone-oriented hot/cold data identification to reduce the

amount of data written to the HA-SMR drive and

the frequency of disk cache cleaning, and further re-

duces the non-sequential writes through host-side read-

modify-write operations. Among the five traces, we can

see that ROCO improves the performance of the HA-

SMR drive the most under proj 0. This is because

ROCO reduces the largest amount of non-sequential

data under proj 0. We can also see that ROCO does

not improve the performance of the HA-SMR drive so

much under prn 0. This is because prn 0 has the worst

spatial locality and the most small random writes.
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5 Related Work

The main challenge of SMR technology is that in-

place updates cannot be directly supported. Cassuto

et al. proposed a set-associative STL model which

supports in-place updates, and an S-block STL model

which supports out-of-place update and intra-band

GC[14]. By the set-associative STL, each data update

needs a read-modify-write operation which often results

in severe performance degradation[5]. By the S-block

STL, data is always sequentially written into a band;

however, the intra-band GC often brings a large amount

of data migration. Lin et al. proposed a data layout

model called H-SWD which manages data in hot bands

and cold bands[15]. Jones et al. also classified data

as hot data and cold data, and stored them in cold

bands and hot bands respectively[16]. To reduce long-

term data migration, they also designed a cold-weight

algorithm to choose appropriate bands to reclaim. He

and Du proposed a hybrid update strategy, which can

reduce metadata overhead and write amplification[17].

These above solutions are mainly designed for DM-

SMR drives and HM-SMR drives, and cannot be di-

rectly used for HA-SMR drives. Wu et al. made a

thorough investigation of HA-SMR drives by carrying

out an in-depth performance evaluation and pointed

out the reasons why HA-SMR drives suffered perfor-

mance degradation when subjected to non-sequential

writes[6,7]. They proposed to use zone-oriented reorder-

ing to improve the disk cache cleaning efficiency of the

HA-SMR drive. Their work is different from ours in

that they focused on writing data blocks together be-

longing to the same zone but not writing data blocks

together belonging to different zones, and our work

goes a step further to focus on reordering out-of-order

data blocks belonging to the same zone to reduce non-

sequential writes to the HA-SMR drive.

A lot of work has been done to use SSDs or NVMs

to improve the performance of HDDs or SMR drives.

Xie and Sun proposed HIT, which was adapted to

data-intensive applications by periodically redistribut-

ing data between SSDs and HDDs[18]. Chen et al. pro-

posed Hystor to achieve performance improvement by

using an SSD as a write buffer for an HDD[9]. Mao

et al. proposed HPDA[19] and Zeng et al. proposed

HRAID6ML which improves the performance of SSD-

based storage systems by combining a group of SSDs

and one or two HDDs[20]. Luo et al. proposed HWSR

to accelerate the performance of SMR drives by using

SSD cache and memory buffer[10]. HWSR uses the con-

cept of segment as basic units accessing the SMR drive

and alleviates the write amplification to some extent.

Wang et al. proposed an SMR-oriented cache frame-

work which restricts the LBA range of evicted data from

SSD caches to DM-SMR drives[8].

Many cache replacement algorithms have been pro-

posed to improve the performance of the underlying

storage devices such as HDDs or SSDs. A widely-

used cache replacement algorithm is the LRU algo-

rithm, which takes advantage of recency and evicts the

least recently used page with the highest priority. A lot

of algorithms are designed based on LRU. Jung et al.

proposed a buffer replacement algorithm called LRU-

WSR[21] which decreases write traffic from the buffer

cache to flash storage by reordering writes of non-cold

dirty pages. Park et al. proposed CFLRU[22] for SSDs

which splits the whole cache into a working region and

a clean-first region which is one portion of the cache

near the end of the LRU position. To take advantage of

HDDs’ fast sequential access speed and the non-volatile

property of NVRAM, Fan et al. proposed a buffer cache

policy called I/O-Cache[23] to decrease storage writes

by regrouping and synchronizing long sets of consecu-

tive dirty pages. Fan et al. also proposed a coopera-

tive hybrid NVRAM and DRAM cache policy called

Hibachi[24] for storage arrays, which maximizes cache

hit rates by treating read cache hits and write cache

hits differently and captures workloads’ tendencies by

adjusting the clean and the dirty cache sizes. Park et

al. proposed a lookahead read cache[25] designed for a

backup application, which exploits future read access

patterns during dedupe processes and employs a small

log buffer to keep small portions of future reference data

chunks.

However, because of the special characteristics of

HA-SMR drives, all these solutions cannot be straight-

forwardly applied to improve the performance of HA-

SMR drives.

6 Conclusions

HA-SMR drives are expected to be more popular

than DM-SMR and HM-SMR drives in storage sys-

tems; however, they often suffer performance degrada-

tion under write-intensive workloads. The fundamental

approach is to reduce non-sequential writes buffered in

the disk cache of the HA-SMR drive. Update writes,

small random writes and out-of-order writes compose

the majority of non-sequential writes. In this paper,

we proposed a hybrid storage solution called ROCO,

which reorders the out-of-order writes belonging to the
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same zone before they arrive in the HA-SMR drive and

uses an SSD cache to absorb update writes and small

random writes. We also designed a data replacement

algorithm called CREA for the SSD cache. It imple-

ments zone-oriented hot/cold data identification, and

gives the highest priority to sequential writes belonging

to colder zones. If there are no sequential writes, it se-

lects data blocks belonging to the colder zones that can

be evicted through host-side RMW operations as vic-

tims. CREA gives the lowest priority to non-sequential

writes belonging to the hottest zone. Experimental re-

sults showed that ROCO can effectively reduce non-

sequential writes and improve the performance of the

HA-SMR drive.

Our current work mainly focuses on improving

the performance of HA-SMR drives by reducing non-

sequential writes from the host side. However, the data

cleaning and garbage collection policies working in the

disk cache also influence the performance of HA-SMR

drives. In the future, we plan to design more sophisti-

cated data cleaning and garbage collection policies for

the disk cache to improve the performance of HA-SMR

drives.
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