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Abstract The wide spread of location-based social networks brings about a huge volume of user check-in data, which

facilitates the recommendation of points of interest (POIs). Recent advances on distributed representation shed light on

learning low dimensional dense vectors to alleviate the data sparsity problem. Current studies on representation learning

for POI recommendation embed both users and POIs in a common latent space, and users’ preference is inferred based

on the distance/similarity between a user and a POI. Such an approach is not in accordance with the semantics of users

and POIs as they are inherently different objects. In this paper, we present a novel translation-based, time and location

aware (TransTL) representation, which models the spatial and temporal information as a relationship connecting users and

POIs. Our model generalizes the recent advances in knowledge graph embedding. The basic idea is that the embedding of

a <time, location> pair corresponds to a translation from embeddings of users to POIs. Since the POI embedding should

be close to the user embedding plus the relationship vector, the recommendation can be performed by selecting the top-k

POIs similar to the translated POI, which are all of the same type of objects. We conduct extensive experiments on two

real-world datasets. The results demonstrate that our TransTL model achieves the state-of-the-art performance. It is also

much more robust to data sparsity than the baselines.
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1 Introduction

Location-based social networks (LBSNs), such as

Foursquare 1○, Yelp 2○, and Facebook Places 3○, are be-

coming pervasive in our daily lives. Users on LBSN like

to share their experiences with their friends for points

of interest (POIs), e.g., restaurants and museums. The

location-based service providers have collected a huge

amount of users’ check-in data, which facilitates the

recommendation of POIs to unvisited users. The POI

recommendation is of high value to both the users and

companies, and thus has attracted much attention from

researchers in recent years[1−5].

More importantly, while time and location together

play a critical role in determining users’ activities in

LBSN, rare work has modeled their joint effects. Consi-

dering only one factor will deteriorate the predictive

accuracy. For instance, whether a student may go to a

school cafeteria or to a food court in a mall at lunch

time depends on whether he/she is on campus or out-

side. It is not suggested for a system to recommend the

same restaurant to a user in different places at the same
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time. This example shows the ineffectiveness of using

one type of information but ignoring the other. How-

ever, taking both time and location into consideration

exaggerates the data sparsity.

In this paper, we propose a novel translation-based,

time and location aware (TransTL) model, which cap-

tures the joint effects of spatial and temporal informa-

tion. Our model has the following distinct characteris-

tics.

• TransTL takes location and time as a whole to

determine the users’ choice of POIs.

• TransTL embeds a spatiotemporal pair <time,

location> as a relationship connecting users and POIs.

By considering the time and the location simultane-

ously, our model can be successfully applied to real-

time POI recommendation. Furthermore, distributed

representations of TransTL are very effective in solving

the problem of data sparsity.

Existing approaches that embed both users and

POIs in a common latent space are unnatural because

users and POIs are inherently different objects. In con-

trast, our TransTL model generalizes recent advances

in knowledge graph embedding[6]. A user u reaches an

interested POI vq via an edge tl denoting the <time,

location> pair, i.e., ~u + ~tl ≈ ~vq. With this transfor-

mation, we can do recommendation for u by selecting

the top-k POIs similar to POI vq, which are all of the

same type of objects with similar semantics.

TransRec by He et al.[7] represents the user as a

relation vector to capture the transition from the pre-

vious item to the next item. This is the most recent

work related to our proposed TransTL model. Both

TransRec[7] and our TransTL are based on knowledge

graph embedding technique[6−8]. However, TransRec

mainly focuses on the sequential effects. Its rationale

is that there is a sequential continuity between the pre-

vious item and the next item. This is reasonable in

basket recommendation. However, in the POI recom-

mendation, if the previous visited POI is far away from

the next location, or the last check-in occurred several

hours ago, such a sequential continuity will not take

effects any more. Our TransTL model, on the other

hand, is time- and location-aware, and thus is more ap-

propriate for POI recommendation than TransRec.

The rest of this paper is organized as follows. Sec-

tion 2 presents related work. Section 3 gives the prob-

lem definition and preliminary. Section 4 introduces our

novel framework. Section 5 presents the experimental

evaluation. Section 6 concludes the paper.

2 Related Work

Most existing studies mainly focused on leverag-

ing spatial information due to the well-known strong

correlation between users’ activities and geographical

distances[9−12]. For example, Ye et al.[13] proposed a

Bayesian collaborative filtering (CF) algorithm to ex-

plore the geographical influence. Cheng et al.[14] cap-

tured the geographical influence by modeling the proba-

bility of a user’s check-in on a location as a multi-center

Gaussian model and then combined it into a general-

ized matrix factorization model. Lian et al.[15] adopted

a weighted matrix factorization framework to incorpo-

rate the spatial clustering phenomenon.

Similar to the geo-spatial information, time is an-

other important factor in POI recommendation. Ye et

al.[16] found the periodic temporal property that peo-

ple usually go to restaurants at around noon and visit

clubs at night. Yuan et al.[17] developed a CF-based

model to integrate temporal cyclic patterns. Cheng et

al.[18] explored the temporal sequential patterns for per-

sonalized POI recommendation by using the transition

probability of two successive check-ins of a user. Zhao

et al.[19] proposed an Aggregated Temporal Tensor Fac-

torization (ATTF) model for POI recommendation to

capture the three temporal features together at diffe-

rent time scales.

Existing studies have exploited spatial or temporal

influences mainly using CF[13,17] and Markov transition

approaches[18]. Due to the sparsity of users’ check-in

records, it is hard to find similar users or to calculate

transition probability. Although matrix factorization

(MF) methods are effective in dealing with the sparsity

in user-POI matrix[14,15,20], they do not consider the

current location of the user.

Several recent studies[7,21−24] also exploited the

power of distributed representation for alleviating data

sparsity. The personalized ranking metric embedding

(PRME) by Feng et al.[21] projects each POI and each

user into a latent space, and then recommends a POI

v to a user u at location l based on the Euclidean dis-

tance between the POI and the user ‖ ~u − ~v ‖2 and

that between the POI and the location ‖ ~l − ~v ‖2.

Xie et al.[22] proposed a graph-based embedding model

(GE) by embedding graphs into a shared low dimen-

sional space, and then computed the similarity be-

tween a user u’s query q at current time t and loca-

tion l and a POI v using an inner product, S(q, v) =

~u
T · ~v+~t

T
· ~v+~l

T
· ~v. GE is a unified model which in-

tegrates the spatial, temporal, and semantic effects by
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using POI-POI, POI-region, POI-time, and POI-word

bi-partite graphs. Zhao et al.[23] proposed a spatial-

temporal latent ranking (STELLAR) method to explic-

itly model the interactions among user, POI, and time.

Zhao et al.[24] then proposed a Geo-Temporal sequential

embedding rank (Geo-Teaser) model for POI recom-

mendation. The Geo-Teaser model is a unified frame-

work combining the temporal POI embedding model

and the geographically hierarchical pairwise preference

ranking model. While these approaches show signif-

icant improvements over many other baselines, they

have the drawback that both users and POIs are em-

bedded in a common latent space, and users’ preference

is inferred based on the distance/similarity between a

user and a POI. Since users and POIs are inherently

different objects, these embedding models are unnatu-

ral.

3 Problem Definition and Preliminary

Definition 1 (POI). A POI v is defined as a unique

identifier representing one specific position (e.g., a cafe

or a hotel), and V is a set of POIs, i.e., V = {v|v =

(pid, position)}. In paritcular, for POIs in Foursquare,

there is additional tag information.

Definition 2 (Check-in Activity). A check-in ac-

tivity is a quadruple (u, t, l, v), which means a user u

visits a POI v in location l at time t.

Definition 3 (Spatiotemporal Pattern). A spa-

tiotemporal pattern, denoted as tl, is a combination of a

time slot t and a location l like <11 a.m., Los Angeles>.

Definition 4 (TL-Translation). We define a TL-

translation as the connection between user u and POI v

corresponding to a spatiotemporal pattern. Specifically,

a TL-translation means that in this situation (time t

and location l) u tends to visit v.

For ease of presentation, we summarize the nota-

tions in Table 1.

Table 1. Notations Used in This Paper

Variable Interpretation

u, v User u and POI v

t Time slot discretized from timestamp

l Location mapped from (longitude, latitude)

tl Spatiotemporal pattern <t, l>

~u, ~tl, ~v Embeddings of u, (t, l), and v

uq , tq , lq Query user uq, his/her current time tq and location lq

vq Potential POI that query user uq is interested in

D Users’ activity set D = {d|d = (u, t, l, v)}

The POI recommendation problem investigated in

this paper has the same settings as that in [22]. For-

mally, the formal definition is as follows.

Definition 5 (Location-Based Recommendation).

Given a dataset D = {d|d = (u, t, l, v)} recording a set

of users’ activities, and a query q = (uq, tq, lq), we aim

to recommend top-k POIs in V that the query user uq

would be interested in.

Preliminary — KG Embedding. The knowledge

graph (KG) is a directed graph whose nodes and edges

describe entities and their relations of the form (head,

relation, tai), denoted as (h, r, t). The goal of know-

ledge graph embedding is to learn a continuous vector

space where the embeddings of entity and relation can

preserve certain information of the graph. Bordes et

al.[8] presented a simple yet effective approach TransE

to learn vector embeddings for both entities and re-

lations in KG. The basic idea is that the relationship

between entities corresponds to a translation of the em-

beddings of entities, namely, ~h + ~r ≈ ~t when (h ,r, t)

exits in graph. Later, a model named TransH[25] was

proposed to enable an entity to have distinct represen-

tations when it is involved in different relations.

Both TransE and TransH project all entities and

relations into the same space. However, some enti-

ties may have multiple aspects and relations focusing

on different aspects of the entities. Such entities are

close in the entity space when they are similar, but

they should be far away from each other in the rela-

tion space if they are strongly different in some specific

aspects. To address this issue, Lin et al.[6] presented

a TransR model to project two entities h and r of (h,

r, t) into a r -relation space as hr and tr with ope-

ration Mr, such that ~hr + ~r ≈ ~tr holds in the relation

space. A short description of TransR is as follows. For

each triple (h, r, t), two entities h and t are embedded

into a k -dimensional entity space Rk and the relation r

embedding is embedded into a d -dimensional relation

space Rd. For each relation r, a projection matrix Mr

is adopted to project the entities from entity space to

relation space, and we get two projected vectors of enti-

ties, i.e., hr = hMr, and tr = tMr. The score function

is then defined as fr(h, t) = || ~hr + ~r − ~tr||2, and the

objective is to minimize the score function.

4 Proposed Framework

We seek to learn the representations with the fol-

lowing characteristics.

• Spatiotemporal Awareness. Location and time to-

gether play a crucial role when a user selects a POI;
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they should not be separated into individual ones.

• Semantics Consistency. All the POIs, either the

query user’s interested POI vq or all existing POIs

v ∈ V , should come from a consistent semantic space.

In order to satisfy the first requirement, we combine

each time slot and location as a spatiotemporal pattern

<t, l>, and convert the quadruples (u, t, l, v) ∈ D into

triples (u, <t, l>, v) in D′. We then learn representa-

tions for users, spatiotemporal patterns, and POIs from

the converted set D′ to meet the second condition, us-

ing the translation technique originated from knowledge

graph embedding.

4.1 TransTL Model

For the location-based recommendation problem,

we focus on the connections between users and POIs

corresponding to the spatiotemporal relations. Intu-

itively, if a POI v is often visited by similar users in

location l at time t, the probability of a query user uq

visiting v with the same spatiotemporal relation will

be high. On the other hand, users similar in the entity

space may visit different POIs under distinct tempo-

ral and geographic conditions. In order to capture the

strong correlations of users and POIs to the spatiotem-

poral patterns, we generalize the TransR technique[6]

to fit the POI recommendation task. The basic idea

is that a user u will reach an interested POI vq via a

translation edge tl, i.e., ~u + ~tl ≈ ~vq. Fig.1 illustrates

the impacts of tl patterns.

u

u

u

u

u uq

u

uq

uq

tl

tl
tl

tl

tl

tl

vq

vq

v v

v

v

(b)

(a)

(c)

Fig.1. Impacts of spatiotemporal patterns. (a) Entity space.
(b) Relation space of tl1. (c) Relation space of tl2.

In Fig.1, suppose u1, uq, and u2 are three university

students, u1 and uq taking same courses, and u2 and uq

sharing the dormitory. Given two patterns tl1 = <12

p.m., campus> and tl2 = <8 p.m., dormitory>, the

query user uq will be translated into two POIs vq1 and

vq2; hence we should recommend for uq the POI v1

in Fig.1(b) and the POI v2 in Fig.1(c), which are the

close neighbors of vq1 and vq2, respectively. The diffe-

rent recommending results v1 and v2 are caused by the

effects of different spatiotemporal relations tl1 and tl2

respectively.

We now give the detail for TransTL. For each triple

(u, <t, l>, v) in D′, the user u, the spatiotemporal pair

< t, l > (tl in short), and the POI v correspond to the

head entity h, the relationship edge r, and the tail entity

t in TransR, respectively. Their embeddings are set as

~u, ~v ∈ Rd, and ~tl ∈ Rm. For each spatiotemporal pair

tl, we set a projection matrix Mtl ∈ Rd×m to project

a user embedding ~u and a POI embedding ~v in the

original entity space to ~utl = ~uMtl and ~vtl = ~vMtl in

the relation space respectively, such that ~utl+ ~tl ≈ ~vtl.

This indicates that a POI embedding ~vtl should be the

nearest neighbor of ~utl + ~tl. Temporal can be encoded

as hourly, weekday hourly or weekend hourly slot de-

pending on applications. Hence the score function can

be defined as:

stl(u, v) =‖ ~utl + ~tl− ~vtl ‖
2
2,

s.t. ‖ ~u ‖2 6 1, ‖ ~v ‖2 6 1, ‖ ~tl ‖2 6 1,

‖ ~utl ‖2 6 1, ‖ ~vtl ‖2 6 1. (1)

Given the score function defined in (1) for a triple

(u, tl, v), the entire objective function for training is as

follows.

L =
∑

(u, tl, v)∈T

∑

(u′, tl, v′)∈T ′

max(0, stl(u, v) +

γ − stl(u
′, v′)), (2)

where max(a,b) is used to get the maximum between

a and b, γ is the margin, and T and T’ are the sets

of correct and corrupted triples, respectively. The cor-

rupted triples are generated by replacing the head and

tail entities in correct triples using the same sampling

method as that in [25]. More specifically, we assign

different probabilities when replacing the user or POI

entity. We also raise the chance of replacing the “one”

side for the 1-to-N, N -to-1 and N -to-N relations, such

that the chance of generating false-negative instances

will be reduced.

We adopt stochastic gradient descent (SGD) (in

mini-batch mode) to minimize the objective function in

(2). A small set of triplets is sampled from the training
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data. For each such triplet, we sample its corresponding

incorrect triplets. All the correct and incorrect triples

are put into a mini-batch. We compute the gradient and

update the parameters after each mini-batch. When the

iteration reaches a predefined number, we learn all the

embeddings for users, POIs, and spatiotemporal pat-

terns.

4.2 Recommendation Using TransTL

Once we have learned the embeddings, given a query

user uq with the query time tq and location lq, i.e., q =

(uq, tq, lq), we first combine tq and lq as a spatiotempo-

ral pattern tlq, and then we can get the potential POI

vq using (3).

~vqMtl = ~uqMtl + ~tlq. (3)

The learned POI embedding vq naturally reflects

the user’s preference, because it encodes the user’s past

activities in ~uq. It also captures the geographic and

temporal influence in ~tlq.

For each POI v ∈ V , we compute its distance to the

POI vq in the normed linear space as defined in (4), and

then select the k POIs with the smallest ranking score

as recommendations.

d(v, vq) =‖ ~vMtl − ~vq ‖1 . (4)

We would like to emphasize our differences in com-

puting vq and recommending POIs from those in [6,

22]. First, we can find an explicit POI vq directly from

the latent space through the translation of the embed-

ding of the spatiotemporal pattern on the user’s em-

bedding, while others compute an implicit vq by its

distance/similarity to user uq. Second, since the em-

beddings for POIs in V are also from the same space, we

can choose the ones which are the closest neighbors of

vq in this space. This indicates that our recommended

POIs are semantically consistent with the query user’s

interested POI vq.

4.3 Dealing with Cold Start POIs

Considering the cold start POIs, which contain ge-

ographic and content information like tags but do not

have any check-ins[22], we can simply extend our model

to include the POI-POI relationship through the trans-

lation of content patterns. We call this model TransTL-

C. The rationale is that if two POIs share a common

tag or location, there will be a high degree of similarity

between them, and their vector representations should

be close to each other. Based on this observation, we

define the score function as follows:

stlw(u, v, s)

= stl(u, v) + swl(v, s)

= ‖ ~utl + ~tl− ~vtl ‖
2
2 + ‖ ~vwl + ~wl − ~swl ‖

2
2, (5)

where s is a POI sharing at least one <word, location>

pair with POI v. By combining (2) and (5) together,

the objective function for cold start POIs is defined as:

LC =
∑

(u,tl,v)∈T

∑

(u′,tl,v′)∈T ′

max(0, stl(u, v) +

γ − stl(u
′, v′)) +∑

(v,wl,s)∈W

∑

(v′,wl,s′)∈W ′

max(0, swl(v, s) +

γ − swl(v
′, s′)). (6)

We once again use stochastic gradient descent to

minimize the objective function LC in (6). The only

difference is the sampling procedure. For TransTL-C,

since we have two types of edges, we sample the triplets

(u, tl, v) and (v, wl, s) and their corresponding incor-

rect triples alternatively to update the model.

Our TransTL-C model proposed for dealing with

cold start POIs can also be applied to the normal POI

recommendation problem. However, it requires that

those POIs should contain content information. For the

recommendation on datasets like Gowalla, TransTL-C

is not valid. Hence we only treat it as an extended

model. Please also note that it is TransTL-C that

uses the same information as GE does. Our standard

TransTL model, on the other hand, uses less informa-

tion than GE because it does not include the contents

of POIs.

5 Experimental Evaluation

In this section, we first introduce the experimental

setup and then compare our experimental results with

those of baselines. Finally we show the performance of

our method for addressing the data sparsity and cold

start problem.

5.1 Experimental Setup

Datasets. We evaluate our method on two real-life

LBSN datasets: Foursquare and Gowalla. A number

of researchers have conducted experiments on data col-

lected from these two social networks[3,4,17,22,26]. How-

ever, many of them are collected from various regions

or in different time spans. For a fair comparison with
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GE, we use the publicly available version 4○ provided by

the authors of [22].

The two datasets have different scales such as geo-

graphic ranges, the number of users, POIs, and check-

ins. Hence they are good for examining the perfor-

mance of algorithms on various data types. Their

statistics are listed in Table 2.

Table 2. Statistics of Foursquare and Gowalla

Foursquare Gowalla

Number of users 114 508 107 092
Number of POIs 62 462 1 280 969
Number of check-ins 1 434 668 6 442 892
Number of standard time slots 24 24
Number of locations 5 846 200
Number of <t, l> patterns 28 868 3 636

Each check-in is stored as user-ID, POI-ID, POI-

location in the form of latitude and longitude, check-in

timestamp, and POI-content (only for Foursquare). In

order to get the spatiotemporal patterns <t, l> in Ta-

ble 2, we use the same discretized method as that in

[22], i.e., dividing time into 24 time slots which corre-

spond to 24 hours, and the whole geographical space

into a set of regions according to 5 846 administrative

divisions (for Foursquare) and 200 regions clustered by

a standard k -means method (for Gowalla). We finally

get 28 868 and 3 636 <t, l> pairs on Foursquare and

Gowalla, respectively.

Baselines — {GE, TransRec, TransTL-E, TransTL-

H}. We use GE[22] and TransRec[7], two state-of-

the-art location-based recommendation approaches, as

our baselines. GE adopts a graph-based embed-

ding framework. It learns the embeddings based on

POI-POI, POI-Time, POI-Location, and POI-Words

graphs. By integrating the sequential, geographical,

temporal cyclic, and semantic effect into a shared space,

GE effectively overcomes the data sparsity problem and

reaches the best performance so far. TransRec[7] repre-

sents the user as a relation vector to capture the tran-

sition from the previous item to the next item, and

makes recommendation via the nearest neighbor search

between the recommended item and the candidates.

We do not compare our method with other exist-

ing approaches because GE and TransRec have already

significantly outperformed a number of baselines in-

cluding JIM[27], PRME[21], and Geo-SAGE[28]. We

thus only show our improvements over GE and Tran-

sRec.

Also note that although we choose the TransR[6]

technique in knowledge graph embedding to material-

ize our TransTL model, the essence of our proposed

framework is the translation of <time, location> pairs

in the embedding space. This indicates that we do not

rely on a specific translation model. Hence we can use

TransE[8] and TransH[25] to translate <time, location>

pairs in the embedding space. We denote the resulting

methods as TransTL-E and TransTL-H, respectively.

Settings. We first organize the quadruples (u, v, t,

l) in each dataset by users to get each user’s profile

Du. We then rank the records in Du according to the

check-in timestamps, and finally divide these ordered

records into two parts: the first 80% as the training

data, and the rest 20% as the test data. Moreover, the

last 10% check-in records in the training data are used

as a validation set for tuning the hyper-parameters.

We use the default settings in the original TransR[6]

as the parameter settings for our TransTL model.

Specifically, we set the learning rate λ = 0.000 1, the

margin γ = 2, the mini-batch size B = 4 800, and the

embedding dimensions m = d = 100, and we traverse

over all the training data for 1 000 rounds. The same

settings are also used for TransTL-E and TransTL-H

models. The parameters for other baselines are listed

as follows. For GE, the dimensionality is set to 100,

and the number of negative sampling is 150 million. For

TransRec, the learning rate ǫ is 0.05, the regularization

hyperparameter λΘ is 0.1, the balance hyperparameter

α is 0.2, and the dimensionality K is 100. The values

of these parameters are the same with those in their

original papers.

We use the Accuracy@k and Recall@k (k = {1, 5,

10, 15, 20}) as our evaluation metrics. Accuracy@k is

based on hit@k. For a single test case, hit@k is either

the value 1, if the ground truth POI appears in the top-

k results, or the value 0, otherwise. The Accuracy@k

for each user is defined by averaging over all test cases

of this user:

Acc@k =
|hit@k|

|Dtest|
, (7)

where |hit@k| denotes the number of hits in the whole

test set, and |Dtest| is the number of test cases.

Like other recommender systems, we sort the pre-

dicted scores of the candidate POIs and recommend the

top-k POIs to the target user. The Recall@k for each

user is defined as:

Rec@k =
tp

tp+ tn
, (8)

where tp is the number of recommended POIs visited

by a user u, and tn is the number of recommended POIs

visited by u but not in the top-k recommendations.

4○https:/sites.google.com/site/dbhongzhi, Aug. 2018.
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The average of recall and accuracy values for all test

users is reported as the final Recall@k and Accuracy@k

respectively. These two metrics are both in the range

from 0 to 1 and a higher value means a better result.

5.2 Comparison with Baselines

For a fair comparison, we implement GE using the

same LINE software provided by the authors of [29].

TransRec is implemented using the code provided by

the authors of the original paper[7]. All the parameters

for GE and TransRec are the same with those in [22]

and [7], respectively. Both methods are run on our data

division. We find a slightly difference (less than 1% in

accuracy) between the original results and the results

by our implemented GE. This is understandable and

acceptable considering the randomness when we sam-

ple negative edges in LINE and initiate the centers of

clusters of regions. All parameters for TransTL-E and

TransTL-H use the default settings in [8] and [25] re-

spectively. We present the comparison results in terms

of accuracy and recall in Fig.2 and Fig.3, respectively.
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Fig.2. Comparisons with baselines in terms of accuracy.
(a) Comparison on Foursquare(Acc@k). (b) Comparison on
Gowalla(Acc@k).
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Fig.3. Comparisons with baselines in terms of recall.
(a) Comparison on Foursquare(Rec@k). (b) Comparison on
Gowalla(Rec@k).

From Fig.2 and Fig.3, it is clear that all our pro-

posed TransTL-style models significantly outperform

GE and TransRec in terms of accuracy and recall.

For instance, the Accuracy@1 for TransTL, TransTL-

H, and TransTL-E is 0.307, 0.280, 0.255, respectively,

much better than 0.225 and 0.218 for GE and Tran-

sRec respectively. Similarly, we observe the Recall@1

for TransTL is 0.028 while that for GE and Tran-

sRec is 0.017 and 0.011, respectively. The superiority

of our model over GE shows the effectiveness of our

translation-based framework. More importantly, the

comparison results between our TransTL style models

and TransRec clearly demonstrate our modeling of time

and location as the relation is much more reasonable

than the modeling of TransRec.

While TransTL shows drastic improvement over GE

and TransRec for all ks on Foursquare in Fig.2(a)

and Fig.3(a), the trends on Gowalla in Fig.2(b) and

Fig.3(b) are not that obvious. This is because there

is a much smaller number of relations in Gowalla than

in Foursquare. As shown in Table 2, Gowalla only has

3 636 relation patterns (< t, l > pairs) while Foursquare
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has 28 868 pairs. Hence the learnt embeddings for enti-

ties and relations are worse than those on Foursquare,

and incur the less accurate results when k is large.

Besides the significant improvement over GE and

TransRec (statistically significant at the 0.01 level for

all k settings), TransTL outperforms TransTL-H and

TransTL-E as well. The reason is that TransR can dif-

ferentiate the entities in the transformed relation space.

Nevertheless, we see a less significant enhancement of

TransTL over TransTL-H on Gowalla. This also con-

forms to the characteristics of the data: the graph of

Gowalla is much larger but has less tl relation edges

than that of Foursquare, and the advantage of TransR

over TransE is not obvious on such a dataset.

5.3 Effects of Model Parameters

This subsection shows the effects of model parame-

ters. For clarity, we only show the results in terms of

accuracy and omit those for recall which exhibit simi-

lar patterns. The effects of embedding dimension d on

Foursquare and Gowalla are shown in Table 3 and Table

4, respectively.

Table 3. Effects of Dimensionality on Foursquare

d Accuracy

k=1 k=5 k=10 k=15 k=20

70 0.281 0.376 0.409 0.433 0.451

80 0.294 0.384 0.417 0.445 0.462

90 0.300 0.390 0.425 0.459 0.476

100 0.307 0.393 0.434 0.461 0.483

110 0.311 0.407 0.439 0.463 0.486

120 0.312 0.407 0.439 0.464 0.486

Table 4. Effects of Dimensionality on Gowalla

d Accuracy

k=1 k=5 k=10 k=15 k=20

70 0.355 0.432 0.474 0.503 0.527

80 0.358 0.436 0.478 0.508 0.530

90 0.359 0.439 0.482 0.509 0.535

100 0.361 0.445 0.486 0.511 0.539

110 0.361 0.445 0.488 0.513 0.540

120 0.361 0.445 0.488 0.513 0.540

We can see that the experimental results are not

very sensitive to the dimension d. With an increas-

ing number of dimension, the accuracy on Gowalla is

almost unchanged, i.e., the improvement is less than

1% in nearly all cases. The accuracy on Foursquare is

slightly enhanced with a large dimension d, and finally

it becomes stable.

To investigate the effects of time interval, we di-

vide timestamps by three methods, i.e., splitting time

into 24, 7, and 2 time slots, corresponding to the

hourly, daily, and weekday/weekend patterns, respec-

tively. Fig.4 shows the effects of various time intervals.

We observe that the impact of the hourly patterns is

the most significant on both datasets. In addition, the

results for different patterns vary widely, suggesting a

good strategy for dividing the time slot is important.
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Fig.4. Effects of time interval. (a) Time interval ef-
fects on Foursquare (Acc@k). (b) Time interval effects on
Gowalla(Acc@k).

5.4 Sensitivity to Data Sparsity

In order to compare the sensitivity to the data spar-

sity of our proposed TransTL model with that of GE

and TransRec, we conduct extensive experiments to

evaluate the performance on two datasets by reduc-

ing training data. More precisely, we keep the test-

ing dataset unchanged and reduce the training data

randomly by a ratio of 5% to 20% stepped by 5. In

this paper, we only present the results by reducing 20%

training data on Foursquare and Gowalla in terms of

accuracy and recall in Table 5–Table 6, and Table 7–

Table 8, respectively. The trends with other ratios are
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Table 5. Sensitivity to Sparsity on Foursquare in Terms of Accuracy

k GE TransRec TransTL

+ − ↓ (%) + − ↓ (%) + − ↓ (%)

1 0.225 0.154 −31.69 0.218 0.102 −53.41 0.307 0.246 −19.99

5 0.321 0.228 −28.84 0.313 0.193 −38.39 0.393 0.320 −18.46

10 0.369 0.270 −26.82 0.350 0.229 −34.59 0.434 0.365 −15.86

15 0.388 0.295 −23.95 0.372 0.247 −33.62 0.461 0.382 −17.04

20 0.422 0.318 −24.66 0.409 0.271 −33.74 0.483 0.407 −15.74

Table 6. Sensitivity to Sparsity on Foursquare in Terms of Recall

k GE TransRec TransTL

+ − ↓ (%) + − ↓ (%) + − ↓ (%)

1 0.017 0.014 −18.93 0.011 0.010 −15.93 0.028 0.027 −6.69

5 0.052 0.048 −6.21 0.045 0.039 −13.45 0.074 0.072 −3.09

10 0.078 0.064 −18.01 0.068 0.055 −18.37 0.100 0.095 −4.92

15 0.100 0.096 −4.30 0.093 0.087 −6.58 0.126 0.124 −1.82

20 0.119 0.115 −3.20 0.104 0.094 −9.36 0.136 0.133 −2.43

Table 7. Sensitivity to Sparsity on Gowalla in Terms of Accuracy

k GE TransRec TransTL

+ − ↓ (%) + − ↓ (%) + − ↓ (%)

1 0.282 0.209 −25.77 0.264 0.175 −33.78 0.361 0.291 −19.36

5 0.386 0.303 −21.67 0.379 0.252 −33.38 0.445 0.384 −13.72

10 0.448 0.354 −20.98 0.429 0.313 −27.18 0.486 0.415 −14.64

15 0.489 0.396 −19.13 0.476 0.348 −26.93 0.511 0.445 −13.01

20 0.521 0.423 −18.91 0.508 0.385 −24.15 0.539 0.468 −13.15

Table 8. Sensitivity to Sparsity on Gowalla in Terms of Recall

k GE TransRec TransTL

+ − ↓ (%) + − ↓ (%) + − ↓ (%)

1 0.017 0.010 −37.35 0.016 0.007 −55.90 0.023 0.022 −4.82

5 0.041 0.038 −8.74 0.036 0.031 −16.21 0.055 0.053 −4.01

10 0.075 0.070 −6.71 0.072 0.066 −7.95 0.090 0.087 −2.46

15 0.106 0.102 −4.33 0.097 0.092 −5.17 0.116 0.114 −1.99

20 0.124 0.120 −3.78 0.118 0.113 −4.73 0.139 0.137 −1.37

all alike. Note that the higher accuracy (recall) and the

smaller change, the better (shown in bold). Also note

that +, −, ↓ denote the original, 20% less training data,

and change ratio, respectively.

We have the following important notes for Tables 5–

8. With the reduction of training data, the accuracy

values for GE, TransRec, and TransTL all decrease.

However, TransTL always achieves the best results at

different k values on two datasets in terms of both met-

rics.

The reduction of accuracy of our TransTL model

is much smaller than that of GE and TransRec. For

instance, the Accuracy@1 of GE and TransRec shows

a 31.69% and 53.41% drop, respectively. In contrast,

our TransTL model only has a 19.99% change. This

strongly suggests that our model is more robust to the

data sparsity.

TransRec is the most sensitive approach. The rea-

sons may be two-fold. Firstly, compared with GE, it

lacks the integration of various kinds of social, geo-

graphical, and semantic information. Secondly, com-

pared with TransTL, its dependency on previous item

makes it more sensitive to the reduced POI embeddings.

The declination of accuracy on Foursquare is more

obvious than that on Gowalla. The reason may be

that Foursquare is much sparser in users’ check-ins than

Gowalla, hence reducing the training data has a greater

impact on Foursquare.
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5.5 Test for Cold Start Problem

In this experiment, we further compare the effec-

tiveness of our extended TransTL-C model with that of

GE and TransRec when addressing the cold-start prob-

lem. The cold-start POIs are defined as those visited

by less than five users[26]. To test the performance of

cold-start POI recommendations, we select users who

have at least one cold-start check-in as test users. For

each test user, we choose his/her check-in records asso-

ciated with cold-start POIs as test data and the remains

as training data. Since there is no content information

for POIs in Gowalla, we conduct experiments, just as

GE does, only on Foursquare. The results are shown in

Fig.5.
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Fig.5. Test for cold start problem on Foursquare. (a) Test for
cold start problem (Acc@k). (b) Test for cold start problem
(Rec@k).

From Fig.5, it is clear that our proposed TransTL-

C model consistently beats GE and TransRec in terms

of both metrics when recommending cold-start POIs.

The superior performance of TransTL-C model is due

to the translation of content and geography informa-

tion wl from an ordinary POI v to a cold-start POI vc.

As long as there is an existing v sharing one <word,

location> pair with vc, our TransTL-C model can get

a translation for vc. In contrast, GE utilizes the bi-

partite graphs of POI-Word and POI-Location. The

weight of an edge in the graph is calculated by a TF-

IDF value of the word or the frequency of a location.

The edge weight is proportional to the probability of

edge sampling. Since there are few check-in records for

cold-start POIs, a vc-word and vc-location edge has an

extremely rare chance to be selected and updated. Sim-

ilarly, TransRec requires the embedding of a previous

check-in, which is scare in the case of the cold-start sce-

nario. Consequently, the learnt embedding for vc in GE

and TransRec will be poor and further deteriorates the

recommendation accuracy.

6 Conclusions

We presented a novel translation-based, spatiotem-

poral aware model TransTL for learning representations

of users, spatiotemporal patterns, and POIs. The basic

idea is to capture the geographic and temporal effects

using a <time, location> pair, and then model it as

a translation connecting users and POIs. We realized

TransTL using the knowledge graph embedding tech-

nique. Our method has two distinguished advantages.

1) We learned a joint representation for spatiotempo-

ral patterns whose components contribute together to

a user’s choice in POIs. 2) The translation mechanism

enables the learnt POI embeddings to be in the same

semantic space with that of the query POI.

We conducted extensive experiments on two real-life

datasets. Our results showed that TransTL achieves the

state-of-the-art performance in recommendation accu-

racy. It also significantly outperforms the baselines in

terms of the effectiveness in addressing both the data

sparsity and cold-start problems.
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