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Abstract Entity resolution (ER) aims to identify whether two entities in an ER task refer to the same real-world thing.

Crowd ER uses humans, in addition to machine algorithms, to obtain the truths of ER tasks. However, inaccurate or

erroneous results are likely to be generated when humans give unreliable judgments. Previous studies have found that

correctly estimating human accuracy or expertise in crowd ER is crucial to truth inference. However, a large number of

them assume that humans have consistent expertise over all the tasks, and ignore the fact that humans may have varied

expertise on different topics (e.g., music versus sport). In this paper, we deal with crowd ER in the Semantic Web area.

We identify multiple topics of ER tasks and model human expertise on different topics. Furthermore, we leverage similar

task clustering to enhance the topic modeling and expertise estimation. We propose a probabilistic graphical model that

computes ER task similarity, estimates human expertise, and infers the task truths in a unified framework. Our evaluation

results on real-world and synthetic datasets show that, compared with several state-of-the-art approaches, our proposed

model achieves higher accuracy on the task truth inference and is more consistent with the human real expertise.
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1 Introduction

In the Semantic Web area, the goal of entity resolu-

tion (ER) is to identify entities from diverse knowledge

bases referring to the same real-world thing[1,2]. It is

vital to the reuse, integration, and application of the

linked data. To obtain benefits from human knowledge,

many ER approaches involve humans into the workflow,

called crowd ER, e.g., using micro-task crowdsourc-

ing and aggregating the human-provided judgments for

learning[3,4]. However, as the humans participated in

the ER tasks are not always “oracles”, they probably

generate inaccurate or erroneous judgments. Conse-

quently, given a task, inconsistency often exists among

the human judgments[5]. Thus, a key issue for crowd

ER is to identify the task truth (i.e., whether or not

the entities in the task refer to the same thing) from

the human judgments with inconsistency.

To determine the task truths from inconsistent hu-

man answers, several existing approaches predict the

truths by considering human expertise, i.e., the accu-

racy or reliability of his/her judgments[6-8]. These ap-

proaches eliminate “bad” workers and select task an-

swers provided by “good” workers to decide the task

truths using majority voting[9] or other advanced meth-

ods. However, many existing approaches simply as-

sume that a human has the same expertise level over

all the tasks and do not consider expertise variance in

different task topics. This assumption may be suit-

able for some simple crowdsourcing tasks such as im-

age labeling[10] and recognizing textual entailment in a

single task topic[11], but it would lead to limited per-

formance on more complicated tasks such as ER[12].

For the tasks requiring different topic knowledge, a hu-

man may be good at the task topics of which they

have enough knowledge, but may provide poor answers

for other unfamiliar topics. As a result, human accu-

racy changes significantly among different task topics.

For example, a human familiar with American geog-

raphy can easily identify The Big Apple is identical to
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New York City but different from The Apple Company,

while he/she may not correctly identify the fact that

the American writer Mark Twain is alias to Samuel

Langhorne Clemens. Furthermore, although a human

is familiar with American geography, he/she may not

be familiar with Chinese geography. Therefore, it is

beneficial to estimate fine-grained human expertise on

different task topics for crowd ER.

Topic modeling[13] can be described as a method

for discovering the latent topics that occur in a col-

lection of documents, where each document is repre-

sented by a mixture of latent topics. It has become a

well-known solution to text analysis. In addition to the

great success in modeling text documents, topic mod-

eling is also widely used in other areas such as image

content modeling[13] and author resolution[14]. In this

paper, we model each crowd ER task as a mixture of

latent topics and leverage topic modeling to identify the

topics of tasks.

Furthermore, a crowd ER task is often similar to a

number of other tasks, e.g., based on some features.

The similarity between two tasks generally indicates

some similarity between their topic mixtures. In other

words, if two tasks are more similar, their topic mix-

tures should be more similar as well. Incorporating

task similarity can model the task topics more accu-

rately, avoid cold starts, and thus better estimate the

human expertise. For example, crowdsourcing may be

challenged by the data sparsity problem, i.e., a task

only collects very few judgments. As a result, it may

be unreliable to obtain the task truth based on such

limited number of judgments. But, the problem may

be alleviated by borrowing the trustworthy information

from similar tasks.

In this paper, we propose a probabilistic graphical

model, called Topic-Expertise-Similar-Tasks (TEST),

which computes ER task similarity, estimates human

expertise, and infers the truths of the tasks in a uni-

fied framework. TEST jointly models the content of

the tasks and human judgments to learn latent top-

ics and estimates a human’s topic-based expertise by

considering his/her completed similar tasks. Moreover,

TEST encodes the task similarity by clustering tasks

into groups to improve the topic coherence of similar

tasks and model the task topics and truths more accu-

rately. Our evaluation results show that the proposed

TEST model achieves better performance on both task

truth inference and human expertise estimation.

Our salient contributions of this paper are listed as

follows.

• We model the varied human expertise on various

latent topics to improve human expertise estimation.

We leverage similar task clustering for modeling the

topics more accurately.

• We propose a probabilistic model which can learn

the human varied expertise on task topics, compute the

task similarity, and infer the truths of the tasks inte-

grally.

• We experimentally demonstrate that, compared

with five representative approaches on two real-world

datasets and a synthetic dataset, the proposed TEST

model can achieve higher accuracy on truth inference

with less humans and be more consistent with the hu-

man real expertise.

The rest of this paper is organized as follows. Sec-

tion 2 reviews related work. Section 3 formalizes our

addressed problem. We describe the proposed model

in Section 4. We report the experiments and results in

Section 5. Finally, this paper is concluded with future

work in Section 6.

2 Related Work

Crowdsourcing has become an effective paradigm

for human-powered task solving and attracted a lot of

interest in a wide range of fields[15,16]. Crowd ER incor-

porates crowdsourcing into the ER process for harness-

ing the human knowledge[3,17-20]. In addition to the

crowd ER discussed in this paper, there are also many

other computer-hard problems that can benefit from

the use of crowdsourcing, such as linked data quality

assessment[21,22] and image labeling[10,23].

The quality of crowdsourcing results may be low and

imperfect. Thus, quality control is an important issue

for crowdsourcing. Humans usually have different lev-

els of expertise, and some of them may not be able to

provide right answers for hard and unfamiliar tasks. To

achieve high-quality results, we need to tolerate errors

and infer task truths from the crowd judgments contain-

ing noises. The first step of quality control is modeling a

human’s expertise/quality. Then, we can use strategies

like low-quality human elimination, answer aggregation

or targeted task assignment to improve quality[15]. In

crowd ER, human expertise can be easily estimated if

the ground truths of ER tasks have been known. How-

ever, in our problem setting, the ground truth for any

ER task is unknown, which is natural and prevalent

since the ground truths are often too expensive or too

tedious to be obtained on a large scale in many situa-

tions. As a result, the inference of task truths and the

estimation of human expertise depend on each other.



1206 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

Please note that this paper does not discuss other is-

sues in crowdsourcing in detail, such as cost control,

latency control and task design[15,24].

To estimate human expertise for quality control,

many existing approaches assume that a human worker

has consistent expertise over all tasks, which is diffe-

rent from TEST. CDB[25] provides a graph-based query

model that supports crowd-based query optimizations

in database systems for small monetary costs, low la-

tency, and high quality results. The work in [26] deals

with the problem of selecting a set of workers such that

their answers yield the highest result quality w.r.t. a

voting strategy without exceeding the overall budget.

Requallo[27] deals with the trade-off problem between

quantity and quality in crowdsourcing tasks under a

tight budget. SADU[28] detects sybil worker groups

by clustering and throttles sybil attack. ZenCrowd[18]

uses a factor graph to model human expertise and task

truths. CRH[29] formulates the truth inference and

human expertise estimation as an optimization prob-

lem for conflict resolution on heterogeneous data. The

Bayesian approaches that simultaneously estimate hu-

man expertise and task truths have also been proposed

in [7]. The solutions of these approaches are usually

computed by an Expectation-Maximization (EM) al-

gorithm or a dedicated algorithm for the correspond-

ing optimization problem. Several studies also con-

sider other factors besides human expertise for inferring

task truths. For example, GLAD[10] leverages the hu-

man expertise and task difficulty to infer task truths.

ETCIBoot[30] provides confidence interval estimations

of task truths. Sifter[31] learns from various online plat-

forms and measures platform-level and user-level ex-

pertise simultaneously to perform estimation on drug

side-effects. UbTD[32] focuses on the problem of dis-

covering truths from the distributed data. The work

in [33] proposes an optimization-based method, which

incorporates task correlation to estimate human exper-

tise and task truths. IATD[34] makes an assumption

that how a human worker provides his/her judgments

may be influenced by other workers and utilizes corre-

lations among human workers to learn human exper-

tise and task truths. There are also studies focusing

on task assignment to improve crowdsourcing quality.

The work in [35] utilizes the spatial location informa-

tion of human workers to measure the human quality

and performs online task assignment for crowdsourced

POI (points of interest) labeling. QASCA[36] leverages

the variants of two measures, accuracy and F -score, to

facilitate online task assignment. However, on the com-

plicated tasks requiring rich topic knowledge such as

ER, those approaches with only a single expertise level

per human may result in undesirable performance[12].

Rather than using consistent expertise, a few ap-

proaches assume that a human worker has diverse ex-

pertise over tasks[6,12]. For example, iCrowd[12] is an

optimization-based approach that leverages a human’s

performance on the completed tasks to infer his/her

expertise on similar tasks. ACRyLIQ[21] deals with

the adaptive task assignment problem in crowdsouced

linked data quality assessment, and addresses the cold-

start issue related to the new human workers by esti-

mating the new workers’ expertises based on the test

questions generated from a knowledge base. Different

from TEST, these approaches do not model human ex-

pertise based on task domains or topics, which may

not reveal humans’ knowledge well[8]. There also ex-

ist a few approaches assuming that a human has di-

verse expertise across task domains or topics. Some

of them identify latent task topics by task clustering

and consider each cluster as a latent task topic, on

which human expertise is modeled[37]. However, the

performance of these clustering-based approaches is in-

fluenced by the used clustering algorithms. ALM[8] is

an active learning algorithm. It firstly learns a high-

level feature representation of tasks by using a sparse

coding algorithm, where each feature component rep-

resents a latent topic. Then, ALM uses a probabilis-

tic graphical model to learn the task truths and hu-

man expertise, where the human expertise depends on

the high-level representation. FaitCrowd[5] is used for

crowdsourcing aggregation like aggregating answers in

question answering or slot filling. It leverages a proba-

bilistic model based on the topic model TwitterLDA to

identify the latent topics of tasks and estimate human

expertise and task truths simultaneously. DOCS[38] is

a system containing three modules: domain vector es-

timation (DVE), truth inference (TI), and online task

assignment (OTA). DVE uses entity linking to find en-

tities in the extra knowledge bases (i.e., Freebase) that

are mentioned in the task content, and resorts to their

categories for identifying the multiple explicit domains

(upper-level classes) of a task. TI takes iterative proce-

dures in which the truth inference step and the human

expertise estimation step are iteratively performed un-

til convergence. In addition, DOCS needs some ground

truths to initialize the human expertise. The work [39]

compares the performance of several truth inference al-

gorithms that use different modeling of human expertise

and task truth, and shows the differences among the al-
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gorithms on solving different types of tasks. Different

from ALM and DOCS, TEST leverages topic modeling

to identify the latent topics of tasks. Also, different

from FaitCrowd, which assigns a single topic to each

task, TEST assumes that a task belongs to multiple

topics. Furthermore, TEST incorporates task simila-

rity for truth inference.

For most of the aforementioned approaches except

[12] and [33], they do not consider the correlations

among tasks. However, the correlations among tasks

play a vital role in crowdsourcing aggregation, such as

improving the accuracy of task truth inference[40] or

solving the sparsity problem of human judgments[33].

In this paper, the proposed TEST model combines

topic modeling and task similarity modeling in a unified

graphical model, in order to model task topics better

and eventually estimate the human expertise and task

truths more accurately.

3 Problem Statement

An entity e is expressed as a tuple (ide, De), where

ide is a unique identifier denoting e, and De is a set

of property-value pairs {(p1, v1), (p2, v2), . . . , (pn, vn)}

representing the descriptions of e, where pi is a pro-

perty of e. In the Semantic Web, each named entity is

denoted by a URI as its unique identifier. Each value

can be a literal, another entity or a blank node.

Let R = {R1, R2, . . . , RT } denote the set of all ER

tasks. An ER task, Rt ∈ R, consists of two enti-

ties eti, e
t
j to be resolved and an unknown task truth

zt ∈ {0, 1}, where zt = 1 denotes that eti, e
t
j are matched

(i.e., refer to the same real-world thing), while zt = 0

denotes that they are not matched. In our paper, entity

resolution for an entity pair is equivalent to finding the

truth of the corresponding task.

Let H = {H1, H2, . . . , HU} be the set of all humans

who participate in the ER tasks and give their judg-

ments. A human, Hu ∈ H, resolves a subset of the

tasks, and a task can be judged by different humans.

Let Ut be the number of humans resolving the task Rt.

The judgment given by human Hu for task Rt is de-

noted by lt,u ∈ {0, 1}, where lt,u = 1 means that human

Hu regards entities eti, e
t
j in task Rt as matched ones,

while lt,u = 0 means that Hu regards the two entities

as non-matched ones.

A task can be represented by a mixture of latent

topics, each of which is a multinomial distribution over

a fixed set of features. We denote the multinomial dis-

tribution of the k-th topic by ϕk. A task Rt contains

Nt features {ft,n}
Nt

n=1. Each feature ft,n in the task is

a word extracted from the text descriptions of the two

involved entities, their properties and values. For ex-

ample, the feature words “longitude”, “latitude” from

properties geo:long and geo:lat contribute to the loca-

tion topic of an entity.

The tasks can be clustered together based on the

similarity of topics to form task groups, each of which

represents some semantic categorization of the task top-

ics. Let G be the total number of task groups. We

denote the probability of a task Rt belonging to the

g-th task group by φg,t with
∑

g φg,t = 1, and use st
to denote the group of Rt. Given a task Rt, we use

A
t = (I (s1 = st), I (s2 = st), · · · , I (sT = st)) to rep-

resent a vector consisting of the indices of the tasks in

the same group as Rt. A
t is a T -dimensional vector,

and I (·) is an indicator function.

Human expertise, denoted by ρ ∈ R
U×K , is referred

to as the expertise levels of different humans on K top-

ics, i.e., the probability of identifying the truth of a task

in specified topics, where ρu,k denotes the expertise of

human Hu on the k-th topic (1 6 u 6 U, 1 6 k 6 K).

For convenience, the main notations used in this paper

are summarized in Table 1.

Table 1. Notations for the TEST Model

Symbol Description

Rt The t-th task (including two entities and an unknown
truth)

zt Unknown truth for the t-th task

Hu The u-th human

lt,u Judgment given by the u-th human for the t-th task

ft,n The n-th feature for the t-th task

dt,n Topic assigned to feature ft,n

ρu,k Expertise of the u-th human on the k-th topic

st Task group of the t-th task

At Indices of the tasks that are in the same group as Rt

φg,t Probability of Rt belonging to the g-th task group

ϕk Multinomial distribution over features specific to the
k-th topic

θt Multinomial distribution over topics specific to the t-
th task

λt Multinomial distribution over tasks specific to the t-th
task

ct,n Latent variable from which dt,n is sampled, and its
value is a task in group st

α,β Dirichlet priors to multinomial distribution θ,λ, re-
spectively

π Prior probability of a task truth

Based on the above notations, we define our studied

problem as follows.

Definition 1 (Problem). Given the task set

{Rt}
T
t=1 with unknown truths, the features {ft,n}

Nt

n=1
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for each task Rt, the human judgments {lt,u}
T,U
t=1,u=1,

the number of topics K and the number of task groups

G, our goal in this paper is to estimate 1) the task truths

{zt}
T
t=1 for all the tasks and 2) the expertise of all the

humans {ρu,k}
U
u=1 on each topic.

4 Topic-Expertise-Similar-Tasks Model

In this section, we firstly describe the generative

process of the proposed TEST model. Then, we show

the variational inference and parameter estimation for

the model.

4.1 Generative Process

The plate graph of TEST is shown in Fig.1. In this

model, each task belongs to a task group. Each task

group has its unique task topic set different from other

groups. The tasks in the same group should have simi-

lar task topics, and consequently have similar human

labeling behaviors.

α β

θ λ φ

ρ

ϕ

s

G

N

T

K

K
U

l d

f

czπ

Fig.1. Overview of the TEST model.

The task generation process is as follows. For each

ER task Rt, we firstly sample its truth zt from a

Bernoulli distribution Ber(π), where π represents the

prior probability that a task truth is 1 (π is set to 0.5

if the prior probability is unknown). Then, we sample

its topic distribution θt from a Dirichlet distribution

Dir(α), where α is the Dirichlet prior of topics. θt is a

multinomial distribution showing the probabilities that

the task describes different topics. Next, let φg,t denote

the probability of Rt belonging to the g-th task group.

We sample a task group st for Rt from the multinomial

distribution derived from {φg,t}
G
g=1.

To leverage the similar tasks of Rt, we allow that

the topics of its similar tasks can also be used to gene-

rate the features of Rt. Towards this end, we use λt

to denote how likely each task in st can be sampled

to generate the features, which follows a multinomial

distribution. We generate λt from the Dirichlet distri-

bution Dir(βt ◦A
t), where βt denotes the prior simila-

rity between Rt and each other task in the whole task

set. βt is represented by a T -dimensional vector and

its dimension indicates the similarity between Rt and

another task. We use the weighted sum combination of

property similarity, URI pay-level-domain 1○ similarity

and value similarity to compute the overall similarity

between any two tasks. A
t indicates which tasks be-

long to st (see Section 3), which is computed by check-

ing each task Rk in the whole task set and validating

whether sk = st. ◦ represents the Hadamard product

(a.k.a. entrywise product), and βt ◦A
t retains the val-

ues of the tasks within group st and discards the others.

To generate the n-th feature ft,n in the task Rt,

we first need to decide which task within the group

st should be used to generate the feature. We de-

note this task as ct,n and sample it from a multino-

mial distribution Mult(λt). Then, we choose a topic

dt,n ∼ Mult(θct,n), where θct,n denotes the topic mix-

ture of ct,n. Finally, the feature ft,n is sampled accord-

ing to the multinomial distribution of topic dt,n using

ft,n ∼ Mult(ϕdt,n
), where ϕdt,n

denotes the multino-

mial distribution over features of topic dt,n.

Next, we need to generate the judgment lt,u given

by the human Hu for task Rt. We use ρu to denote

the expertise of human Hu on all the topics, which

is defined in Section 3. Let d̄t be a K-dimensional

vector, each element of which is computed by d̄t,k =
1
Nt

∑Nt

n=1 I(dt,n = k), 1 6 k 6 K, where I (·) is an in-

dicator function. As a human with better expertise on

a task’s topics is likely to give a correct judgment with

higher probability, we model the probability of lt,u as

a function g of the human expertise ρu, the task truth

zt, and the topics of Rt, which is defined as follows:

g(lt,u|zt, d̄t,ρu) = Ber
(

lt,u = zt|σ(ρ
T
u d̄t)

)

, (1)

where σ denotes the sigmoid function. Therefore,

whether the human provides a correct judgment de-

pends on the value of σ(ρT
u d̄t).

1○The pay-level-domain is a sub-domain of a public top-level domain, for which users usually pay, e.g., the pay-level domain for
www.example.com is example.com. Pay-level domains allow to identify a realm, where a data publisher is likely to be in control.
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To put it all together, the generative process is sum-

marized in Algorithm 1.

Algorithm 1. Generative Process of TEST

1 foreach task Rt do

2 Draw a truth zt ∼ Ber(π);

3 Draw a topic mixture θt ∼ Dir(α);

4 Draw a task group st ∼ Mult(φt);

5 Draw a similar task mixture λt ∼ Dir(βt ◦At);

6 foreach feature ft,n do

7 Draw a sampled task ct,n ∼ Mult(λt);

8 Draw a topic dt,n ∼ Mult(θct,n );

9 Draw ft,n ∼ Mult(ϕdt,n );

10 foreach human Hu judging Rt do

11 Draw a judgment lt,u ∼ g(·|zt, d̄t,ρu);

Fig.2 shows a running example of TEST. In the

whole task set, tasks are formed into groups. For exam-

ple, task group 1 describes location-related topics like

geometry while task group 2 describes company-related

topics. Four humans have relatively high expertise on

the topics of task group 1 but low expertise on the top-

ics of task group 2. On the contrary, five humans have

high expertise on the topics of task group 2 but not

task group 1. For the current task about resolving two

entities related to Beijing, we can find its similar tasks

from task group 1 and identify that Beijing should have

location-related topics. Assume that H1, H2 and H3

provide judgments on the current task, and H1 and H2

have higher expertise on the task topics than H3. In

the process of truth inference, the judgments of H1 and

H2 would be more preferable.

4.2 Variational Inference

The parameters in TEST areΘ = {α,β, π,φ,ϕ,ρ},

the observed variables are l,f , and the hidden variables

are ∆ = {θ,λ, s, c,d, z}. The joint distribution of all

the variables is computed as follows.

P (l,f ,∆|Θ)

=

T
∏

t=1

P (zt|π)P (θt|α)P (st|φt)P (λt|β,A
t)

Nt
∏

n=1

P (ct,n|λt)P (dt,n|θ, ct,n)P (ft,n|ϕdt,n
)

Ut
∏

u=1

P (lt,u|zt, d̄t,ρu). (2)

In order to apply an EM algorithm to (2), the key

inferential problem that we need to solve is to com-

pute the posterior distribution of the hidden variables

P (∆|l,f ,Θ). However, this posterior distribution is

intractable for exact inference[13]; thus we resort to the

approximate inference methods.

In this paper, we employ the mean-field variational

inference[41] due to its computational efficiency. Vari-

ational inference introduces a variational distribution

q over the hidden variables to approximate the true

posterior distribution P (∆|l,f ,Θ), which is defined as

follows:

q(θ,λ, s, c,d) =

T
∏

t=1

qθ(θt|̺t)qλ(λt|ηt)qs(st|ωt)

Nt
∏

n=1

qc(ct,n|ǫt,n)qd(dt,n|ϑt,n), (3)

dbr:Beijing geo:lat            "39 N"

geo:long          "116 E"

dbo:timeZone   dbr:China_Standard_Time

                                    Topic: Geometry

rdfs:label            "Beijing"
foaf:name           "Beijing Municipality"
                                        Topic: Name

wd:Beijing wdp:coordinate  "39N, 116E"
wdp:locatedTimeZone wd:UTC+08:00
                                   Topic: Geometry

skos:altLabel      "Peking"

rdfs:label           "Beijing"

wdp:alias           "Peking Municipality"

                                       Topic: Name

..
.

Similar Tasks

H

H

H

dbr:Amazon vs wd:Amazon

nyt:Microsoft vs dbr:Microsoft

dbr:Nanjing vs wd:Nanjing

geo:NY vs dbr:NewYork

fb:UK vs geo:UK

Task Group 1

Task Group 2

Task Set

Fig.2. Running example.
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where {̺t}
T
t=1, {ηt}

T
t=1, {ωt}

T
t=1, {ǫt,n}

T,Nt

t=1,n=1 and

{ϑt,n}
T,Nt

t=1,n=1 are the variational parameters specified

for the corresponding hidden variables. The basic idea

of variational inference is to optimize the variational

parameters so that the evidence lower bound[41] of the

log-likelihood of observed variables lnP (l,f |Θ) is max-

imized. To be more specific, we have

lnP (l,f |Θ) > L(̺,η,ω, ǫ,ϑ)

= Eq[lnP (l,f ,∆|Θ)]− Eq[ln q],

where L(̺,η,ω, ǫ,ϑ) = Eq[lnP (l,f ,∆|Θ)] − Eq[ln q]

indicates the evidence lower bound, Eq[lnP (l,f ,∆|Θ)]

is the expectation of the logarithm of (2) w.r.t. the

approximation distribution (3), and Eq[ln q] is the ex-

pectation of the logarithm of (3) w.r.t. the distribution

(3). Eq[lnP (l,f ,∆|Θ)] and Eq[ln q] are computed as

follows:

Eq[lnP (l,f ,∆|Θ)]

=

T
∑

t=1

Eq[lnP (zt|π)] +

T
∑

t=1

Eq[lnP (θt|α)] +

T
∑

t=1

Eq[lnP (st|φt)] +

T
∑

t=1

Eq[lnP (λt|β,A
t)] +

T
∑

t=1

Nt
∑

n=1

Eq[lnP (ct,n|λt)] +

T
∑

t=1

Nt
∑

n=1

Eq[lnP (dt,n|θ, ct,n)] +

T
∑

t=1

Nt
∑

n=1

Eq[lnP (ft,n|ϕdt,n
)] +

T
∑

t=1

Ut
∑

u=1

Eq[lnP (lt,u|zt, d̄t,ρu)],

Eq[ln q]

=

T
∑

t=1

Eq[ln qθ(θt|̺t)] +

T
∑

t=1

Eq[ln qλ(λt|ηt)] +

T
∑

t=1

Eq[ln qs(st|ωt)] +

T
∑

t=1

Nt
∑

n=1

Eq[ln qc(ct,n|ǫt,n)] +

T
∑

t=1

Nt
∑

n=1

Eq[ln qd(dt,n|ϑt,n)].

4.3 Parameter Estimation

We use a variational EM algorithm, which alterna-

tively performs an expectation (E) step and a maxi-

mization (M) step in each iteration, to estimate the

variational parameters and other model parameters.

Specifically, to compute the expectation of (1) in terms

of the variational distribution, we approximate (1) by

exp(ρT
u d̄t). In the E step, we fix the model parameters

and update the variational parameters by maximizing

the evidence lower bound. In the M step, we fix the

variational parameters and update the model parame-

ters. This process continues until convergence.

In the E step, the variational parameters are ob-

tained by maximizing L(̺,η,ω, ǫ,ϑ), and the solutions

are given as follows:

̺t,k = αk +

Nt
∑

n=1

∑

t′∈St

ϑt′,n,kǫt′,n,t, (4)

ηt,i = βt,i +

Nt
∑

n=1

ǫt,n,i, (5)

ǫt,n,i ∝ exp
(

Ψ(ηt,i)−Ψ(
∑

j∈St

ηt,j) +

K
∑

k=1

ϑt,n,k

(

Ψ(̺i,k)−Ψ(
K
∑

j=1

̺i,j)
)

)

, (6)

ϑt,n,k ∝ ϕk,ft,nexp
(

∑

i∈St

ǫt,n,i
(

Ψ(̺i,k)−Ψ(

K
∑

k=1

̺i,k)
)

+

1

Nt

Ut
∑

u=1

ρu,k

)

, (7)

where t′ ∈ St denotes that the index of maximum

element in ω′

t is equal to that in ωt. Here, ω′

t =

(ωt′,1, ωt′,2, · · · , ωt′,G) and ωt = (ωt,1, ωt,2, · · · , ωt,G).

There is no closed-form solution of ωt; therefore we

use the Newton-Raphson method[13] to compute the

value of ωt. From (6), we can see that ǫt,n,i, which

approximates the posterior probability of a task Ri in

the group of Rt used for generating ft,n, depends on

the posterior probability of sampling Ri, i.e., Ψ(ηt,i),

and the topic relatedness between Ri and ft,n, i.e.,

ϑt,n,k

(

Ψ(̺i,k)−Ψ(
∑K

j=1 ̺i,j)
)

.

By using the Bayes’ theorem, we can compute the

posterior probability of the task truth zt as follows:

P (zt|l,f ,Θ) ∝ P (zt)

Ut
∏

u=1

g(lt,u|zt, d̄t,ρu),

where P (zt) = π is the prior probability of zt.

In the M step, we optimize the model parameters

by maximizing the evidence lower bound:

ϕk,f ∝

T
∑

t=1

Nt
∑

n=1

ϑt,n,kI (ft,n = f),
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where I (·) is an indicator function, and its value equals

1 when ft,n = f . The derivate of L(̺,η,ω, ǫ,ϑ)

w.r.t. ρu is a constant value independent of ρu. To

solve this problem, we add an L2-norm regularizer.

Also, there is no closed-form solution of φt. There-

fore, we use the Newton-Raphson method to compute

the corresponding values. The overall time complexity

of each EM iteration (an E step and an M step) is

O(TK+TS+2TG+FS+FK+T +KV +KU), where

T,K,G,U denote the total number of tasks, topics, task

groups and humans, respectively, F denotes the total

number of features (words) in all the tasks, V denotes

the total number of distinct features in the vocabulary,

and S denotes the average number of tasks in a task

group. Each item in this time complexity corresponds

to a parameter’s computation.

In the TEST model, the cross sampling, i.e., sam-

pling from the task itself or its similar tasks in the same

task group, of a feature’s topic dt,n ensures that similar

tasks have similar topic mixtures and borrow strength

from each other. At the same time, the topic mixture

similarity of tasks would make these tasks belong to the

same topic group.

5 Evaluation

In this section, we show our experiments to evaluate

TEST, in addition to five comparative approaches, us-

ing three datasets of different characteristics. We im-

plemented TEST and comparative approaches in Java.

The experiments were carried out on a PC with an

Intelr Xeon 3.2 GHz CPU and 2 GB Java virtual ma-

chine.

5.1 Datasets

The statistical data of the three datasets are shown

in Table 2. We briefly describe them as follows.

• SView is a dataset obtained from a crowdsourcing

platform via a Semantic Web browser called SView[42].

The browser allows a human to view various entities

and identify its matched ones in his/her browsing acti-

vities. More specifically, when the human views an

entity, he/she is provided with a few candidate enti-

ties that are similar to the current focal one. For each

candidate, he/she can provide his/her judgment to the

platform. As a result, the judgments on various entity

pairs from different humans are collected by the plat-

form. We used the human judgment dataset collected

by the platform until May 1, 2017, and kept the en-

tity pairs that were judged by at least three humans.

Based on our observation, humans are prone to wrongly

resolving the entity pairs in this dataset, because there

exist plenty of inconsistencies among the human judg-

ments. The entities in the dataset belong to 14 different

domains, e.g., people, place and organization, showing

a variety of topics. Furthermore, the platform provided

the truth for each entity pair in the dataset.

Table 2. Dataset Statistics

Dataset Number Number of Number Number of

of ER Task of Human Judgments

Tasks Domains Workers

SView 4 124 14 52 18 679

BTC 4 324 8 33 15 996

Synthetic 120 000 3 200 600 000

• BTC is a dataset containing a number of human

judgments on the entity pairs in the Billion Triples

Challenge 2011 dataset 2○. The human judgments were

collected from a customized crowdsourcing platform[2].

A number of candidate entity pairs that were likely to

be matched were first computed using some machine

algorithms. Then, each candidate pair was provided

to three different humans for judgments. Each entity

pair’s truth was also offered by the platform. The en-

tities in these pairs belong to eight different domains,

e.g., people, places and publications, which also indi-

cate a variety of topics.

• The synthetic dataset is constructed by the

integration of entity pairs from the following four

datasets: Product[3,20], Restaurant[3], Cora[20], and

DBLP-Scholar[43]. Product is a public dataset of map-

pings from abt.com products to buy.com products.

Restaurant is a public dataset consisting of restau-

rants records from different real-world entities. Cora

and DBLP-Scholar are two public bibliography datasets

containing paper records from different real-world en-

tities. These four datasets provide truths for all of the

entity or record pairs. We converted them into the Se-

mantic Web data format.

To generate the synthetic dataset, we firstly com-

puted on each of the four datasets the candidate entity

pairs such that their similarity scores were larger than

0.3. The similarity score of an entity pair was com-

puted by the Jaccard similarity between the token sets

generated from the entity properties. Then, we sam-

pled from each dataset a number of candidate entity

2○http://km.aifb.kit.edu/projects/btc-2011/, May 2018.
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pairs according to its candidate pair proportion in to-

tal size. As a result, 120 000 entity pairs were collected.

Next, we artificially generated 200 simulated human

workers with different expertise on the three domains:

product, restaurant and bibliography. The topical ex-

pertise was drawn from the normal distribution. Each

human worker made judgments to 3 000 entity pairs,

and each entity pair was judged by five humans. Each

human judgment was generated by a Bernoulli distribu-

tion according to the corresponding topical expertise.

5.2 Comparative Approaches

We compared the proposed TEST model against

five representative methods that are used to infer truths

of crowd ER tasks from human judgments. These meth-

ods are Majority Voting (MV)[9], GLAD[10], ALM[8],

FaitCrowd[5], and DOCS[38]. MV uses the majority

of the human judgments to infer truths. GLAD ap-

plies unsupervised learning to simultaneously estimate

the task truth, the task difficulty, and the human ex-

pertise on the assumption that each human has con-

sistent expertise over all tasks. ALM first computes

a high-level feature representation for each task, and

then uses a probabilistic graphical model to learn the

task truths and human expertise where human exper-

tise is represented by a weighted linear combination

of a task’s high-level features. FaitCrowd leverages a

TwitterLDA-based topic model to estimate topic-based

human expertise and task truths simultaneously. It as-

signs a single topic to each task. DOCS first identi-

fies the knowledge-base entities that are mentioned in

a task’s text and uses their categories to detect the

domains of the task. After that, DOCS takes an ite-

rative procedure to infer task truths and domain-based

human expertise. In our experiments, we implemented

the module of modeling expertise of multiple labelers of

ALM, not using the active learning algorithm of it due

to the irrelevance. We generated the feature vector of

each entity pair for ALM using the method in [44]. We

implemented two modules of DOCS, i.e., domain vector

estimation and truth inference, due to their relevance

to our paper.

In the parameter settings for TEST, we used grid

search to select the topic number K on each dataset:

28 for the SView dataset, 16 for the BTC dataset, and

6 for the synthetic dataset. Parameter α of TEST was

set to 50/K. Since the truth of each task was unknown

at first, we set the prior probability of a task truth π to

0.5 to generate the task truth. We set the number of

similar task groups G in TEST to 10 for all the three

datasets. We will show the reason of our choices shortly

in Subsection 5.5. As described in Subsection 4.1, in

TEST, we generated the topics of each task by consi-

dering itself and its similar ones that are in the same

task group. In order to compute the task prior simi-

larity, the weights for property, URI pay-level-domain,

and value similarity in TEST were set to 0.65, 0.1, and

0.25, respectively. The values of task prior similarity

less than the threshold 0.8 were set to 0 so that in the

process of generating a task’s topics, only its similar

tasks that were in the same group and had task simi-

larity larger than the threshold could be used for cross

sampling (see Subsection 4.1). As a result, on average,

10, 11 and 16 completed similar tasks were used for

cross sampling for a task in the SView, BTC and syn-

thetic datasets, respectively.

We also used grid search to set the topic numbers

for ALM and FaitCrowd. For DOCS, we manually set

the number of topics K for the three datasets accord-

ing to the entity domains in the datasets. We initialized

human expertise on each domain to 0.5 in DOCS. For

other parameters, we followed the same setting strategy

in the corresponding references[5,8,10,38].

5.3 Experiment on Task Truth Inference

In this experiment, we evaluated the performance of

different approaches and the main components of our

model on task truth inference.

5.3.1 Procedure

To evaluate the performance of each approach, we

followed the work in [5, 8, 10, 38] and used accuracy

as the evaluation metric, which is defined as the num-

ber of entity pairs of which the truths are correctly

estimated (including matched and non-matched pairs),

divided by the total number of entity pairs. A higher

accuracy means that the estimation of the approach is

closer to the ground truth.

For each dataset, we reported the average accuracy

achieved w.r.t. different numbers of human judgments.

Starting by sampling 20% of the human judgments, we

increased the number of sampled judgments by adding

further randomly-selected judgments and re-ran all the

approaches. This process was repeated until all the

judgments had been used in the evaluation. As a re-

sult, we sampled 20%, 40%, 60%, 80% and 100% of

judgments respectively. For each percentage, we ran 20

times and calculated the average.
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We firstly compared the performance of TEST with

MV, GLAD, ALM, FaitCrowd, and DOCS. We then

compared two variants of TEST to show the benefit of

considering varied topical expertise and similar tasks.

W/O TE is a variant of TEST using the same expertise

for all topics. W/O ST is the other variant of TEST by

removing the modeling of similar task groups. We per-

formed an ablation study on the accuracy of TEST and

its two variants W/O TE and W/O ST w.r.t. varied

numbers of human judgments, in order to investigate

the effect of varied topical expertise and similar task

group modeling.

5.3.2 Results

For the first comparison, the average accuracy of

different approaches w.r.t. the varied percentage of hu-

man judgments on the three datasets is shown in Fig.3.

From this figure, we can see that the approaches consi-

dering human expertise generally achieve higher accu-

racy than MV, of which the ones using varied topical

expertise obtain higher accuracy than the one using

non-varied topical expertise (i.e., GLAD). The accu-

racy of TEST is the highest on all the three datasets,

while DOCS obtains higher accuracy than FaitCrowd

and ALM, and FaitCrowd is better than ALM. On

average, TEST outperforms DOCS, FaitCrowd, ALM,

GLAD, and MV by 1.1%, 2.2%, 3.3%, 4.7% and 5.5%

in the three datasets through different percentages of

judgments, respectively.

The average accuracy of TEST, W/O ST and W/O

TE w.r.t. the varied percentage of human judgments is

shown in Fig.4. From the figure, we can see that both

the two variants achieve lower accuracy than TEST on

the three datasets.

The first comparison results show that MV usually

has limited performance without considering human ex-

pertise when there exist a lot of inconsistencies among

human judgments or no sufficient human judgments.

Modeling varied human expertise on topics seems to be

beneficial for accurately inferring the task truths. Fur-

thermore, the performance of task truth inference tends

to be improved with a better estimation of task topics.

Both ALM and FaitCrowd have their limitations in

task topic estimation. ALM uses a sparse coding algo-

rithm to find topics, which may influence the accuracy

of modeling topics when human judgments are sparse.

FaitCrowd assumes that a task belongs to a single topic;

thus it is not suitable for modeling the tasks belonging

to multiple different topics. These may cause the rela-

tively low accuracy of the two approaches. DOCS can

provide a better estimation of task topics and achieve

higher accuracy by leveraging the topics of the know-

ledge base entities mentioned in the task. The accuracy

of the proposed TEST approach was consistently higher

than or equal to that of DOCS on the three datasets.

But due to the fact that the three datasets currently

used were not very hard for humans to resolve, there

was no significant difference between the accuracy of

TEST and DOCS in general. However, DOCS relies

on entity linking and Freebase’s entity categories for

identifying task topics, which may have limited accu-

racy on specific datasets, due to the reasons like that
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Fig.3. Accuracy comparison between TEST and comparative

approaches. (a) SView. (b) BTC. (c) Synthetic.
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Fig.4. Ablation study on TEST. (a) SView. (b) BTC. (c) Syn-

thetic.

named entity cannot be found in Freebase. Further-

more, when only a small number of human judgments

were provided, TEST may achieve considerable higher

accuracy than DOCS (e.g., 72.3 vs 70.5 using 40% judg-

ments in the SView dataset). It may be due to the rea-

son that TEST makes use of similar tasks to address

the data sparsity problem and perform better truth in-

ference.

As an example, only TEST correctly identified the

truth of the following entity pair in the SView dataset:

dbp:Sint Maarten 3○ and geo:3578422 (Saint Martin) 4○.

The entity pair has two topics, geography and admini-

strative district. In fact, the two entities represent two

parts of the same island but belong to two different

countries, and thus they are non-matched entities. The

humans who had high-level expertise (and perhaps had

more interest) on the two topics provided the correct

judgments. MV reported a wrong inference result since

the majority of the humans provided wrong judgments.

GLAD’s inference result was wrong because it failed to

take into account the variation of human expertise on

the two topics, which was different from the overall ex-

pertise over all tasks. The wrong inference of ALM

may be due to the fact that the sparsity of human

judgments made it difficult to compute the high-level

task features and thus the computed features may no

longer represent the task topics correctly. FaitCrowd

only identified the geography topic and thus could not

leverage the human expertise on the other topic for

making correct truth inference. DOCS did not fully

utilize the property information in the entity descrip-

tions except entity categories for truth inference, e.g.,

(country, “France”). TEST correctly identified these

two topics from the entity descriptions, distinguished

human workers of high reliability from the other ones,

and thus yielded the correct truth.

The result of the ablation study verifies that model-

ing varied expertise on different topics seems to greatly

improve the task truth inference. Furthermore, the es-

timation of task truths and topics can be significantly

improved by incorporating the similar task group mod-

eling.

5.4 Experiment on Human Expertise

Estimation

In this experiment, we evaluated the performance of

different approaches on human expertise estimation.

5.4.1 Procedure

TEST and the other four approaches, ALM,

FaitCrowd, DOCS and W/O ST, can learn hu-

mans’ varied expertise on different topics. To vali-

date the correctness of human expertise learned by

these approaches, two measures, Pearson and Kendall

coefficients[45], were used in the evaluation. Pearson

coefficient measures the degree of linear correlation be-

tween two variables while Kendall coefficient measures

the ordinal correlation. In this experiment, one of the

3○http://dbpedia.org/resource/Sint Maarten, Aug. 2018.

4○http://sws.geonames.org/3578422/, Aug. 2018.
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two variables was each human’s expertise learned by an

approach on a topic, and the other was each human’s

correctly judged percentage of the tasks in the same

topic, which was obtained from the ground truth. It is

worth noting that, on the synthetic dataset, the true

human expertise on various topics was provided before-

hand. Higher Pearson or Kendall values indicate better

performance in the topical expertise estimation.

We conducted five-fold cross-validation and sampled

80% of human judgments as training data. We com-

puted the values of Pearson and Kendall coefficients

for every topic modeled by an approach. Then, we re-

ported the average Pearson and Kendall values across

all the topics.

5.4.2 Results

Fig.5 shows the comparison results on human ex-

pertise estimation between TEST and the four com-

parative approaches. We can see that ALM obtains the

lowest Pearson and Kendall values on the three datasets

while TEST achieves the highest. DOCS has the sec-

ond best Pearson and Kendall values, and W/O ST

behaves worse than TEST. The comparison results on

human expertise estimation show a high correlation be-

tween the topical expertise learned by TEST and the

ground truth. On average, the Kendall value of TEST

is about 5.3%, 9.6% and 18.4% higher than those of

DOCS, FaitCrowd and ALM, respectively. The rea-

son why ALM and FaitCrowd obtain relatively lower

topical expertise estimation performance may be due

to the fact that they have some limitations of identify-

ing task topics as described in Subsection 5.3.2. DOCS

outperforms them since it models the task topics more

accurately. TEST does not rely on extra knowledge

bases to detect task topics. It can estimate topical ex-

pertise more effectively than the other approaches be-

cause it can capture the inherent correlations among

similar tasks to model the human expertise and task

truths more accurately. Without considering the corre-

lations among similar tasks, W/O ST performs worse

than TEST and DOCS in estimating topical expertise.

5.5 Analysis of Parameter Sensitivity

This experiment analyzed the sensitivity of topic

numbers and similar task group numbers in our model.

It also explained the reasons of our parameter selection.

Fig.6 shows the accuracy w.r.t. varied topic num-

bers using 80% of the sampled judgments. We can see

that, as the topic number increases, the accuracy firstly

rises to the peak, where the number of topics is about

twice as many as the entity domains in each dataset,

and then drops down if the topic number continues to

increase. This means that using too few topics can-

not sufficiently separate different topics, while using too

many topics may result in many detailed but highly-

similar topics, which both degrade the performance.
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Fig.5. Comparison on human expertise estimation between

TEST and comparative approaches. (a) SView. (b) BTC. (c)

Synthetic.

Fig.7 shows the accuracy w.r.t. varied number of

similar task groups using 80% of the sampled judgments

as well. We can see that choosing 10 similar task groups

achieves the highest accuracy on all the three datasets,

because using too few groups cannot effectively capture

the inherent correlations among similar tasks, while us-

ing too many groups may bring in noises in terms of

task similarity.
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6 Conclusions

We proposed TEST for crowd ER, which infers the

truth of each ER task according to the varied human

expertise on different task topics. We took advantage of

an adapted topic modeling to identify the multiple top-

ics of each task. To address the data sparsity problem,

we incorporated the similar task clustering in TEST

to better estimate the task truths and topic-based hu-

man expertise. A variational EM algorithm was de-

vised to learn the human varied expertise, compute the

task similarity, and infer the task truths integrally. The

experimental results showed that, compared with five

state-of-the-art methods, the accuracy of TEST is 1.1%

higher than the second best method. Furthermore, its

estimated expertise outperforms the second best result

by 5.3% in terms of correlation with human real exper-

tise.

In future work, more investigations will be needed

to deploy TEST on the public crowdsourcing plat-

forms, e.g., Amazon Mechanical Turk, CrowdFlower or

ChinaCrowd[16] and test its performance for crowd ER.

Particularly, we will study the problem of online task

assignment. Furthermore, our future research will con-

tinue exploring the correlations among humans apart

from tasks, since similar humans may have similar ex-

pertise. In addition, TEST is currently only used for

ER. We look forward to extending TEST to more diffe-

rent types of tasks, such as data quality assessment and

question answering.
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