
Reggio G, Leotta M, Ricca F et al. DUSM: A method for requirements specification and refinement based on disciplined use

cases and screen mockups. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(5): 918–939 Sept. 2018.

DOI 10.1007/s11390-018-1866-8

DUSM: A Method for Requirements Specification and Refinement

Based on Disciplined Use Cases and Screen Mockups

Gianna Reggio, Maurizio Leotta∗, Filippo Ricca, and Diego Clerissi

Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS)
University of Genova, Genova 16146, Italy

E-mail: {gianna.reggio, maurizio.leotta, filippo.ricca}@unige.it; diego.clerissi@dibris.unige.it

Received March 8, 2018; revised July 30, 2018.

Abstract In this work, we present DUSM (Disciplined Use Cases with Screen Mockups), a novel method for describing

and refining requirements specifications based on disciplined use cases and screen mockups. Disciplined use cases are

characterized by a quite stringent template to prevent common mistakes, and to increase the quality of the specifications.

Use cases descriptions are formulated in a structured natural language, which allows to reach a good level of precision,

avoiding the need for further notations and complex models. Screen mockups are precisely associated with the steps of

the use cases scenarios and they present the corresponding GUIs (graphical user interfaces) as seen by the human actors

before/after the steps executions, improving the comprehension and the expression of the non-functional requirements on

the user interface. DUSM has been proposed and fine-tuned during several editions of a software engineering course at the

University of Genova. Then, by means of a series of case studies and experiments, we validated the method and evaluated:

1) its effectiveness in improving the comprehension and, in general, the quality of the produced requirements specification,

and 2) its applicability in the industry, where the method has been found useful and not particularly onerous.

Keywords requirements specification, use case, screen mockup, empirical validation, graphical user interface (GUI), user

interface requirements

1 Introduction

Representing software requirements is a largely

treated topic in literature, and a variety of methods,

techniques and approaches have been proposed and ap-

plied in different domains. Among them, use cases are

a widely used technique to specify the purpose of a soft-

ware system, and to produce its description in terms of

interactions between actors and the subject system[1].

However, some common problems may emerge even

while trying to describe requirements by means of use

cases. Ambiguities, incompleteness, and inconsistencies

may in fact cause difficulty in requirements comprehen-

sion and, consequently, defects in the software system

under development.

Screen mockups (also known as user interface

sketches, user interface prototypes or wireframes) can

be instead used for improving the comprehension of

functional requirements, for prototyping the user in-

terface of a subject system[2-3], and for representing

the non-functional requirements concerning the user

interface[4].

However, a drawback in enriching the use cases with

the screen mockups is the burdensome task of guaran-

teeing the consistency between the graphical represen-

tation of the screen mockups and the textual descrip-

tions of the use cases.

As a matter of fact, the consistency between screen

mockups and use cases cannot be guaranteed if the for-

mer are not disciplined by a structure or some rules.

Requirements specifications based on use cases may in

fact be scarcely structured, (e.g., composed of lists of

freely formed natural language sentences), or they may

be presented as quite detailed and structured templates

(for example, Cockburn[1]), or even expressed through

UML models[5] or formal specifications[6].

Regular Paper

Special Section on Software System 2018
∗Corresponding Author

©2018 Springer Science +Business Media, LLC & Science Press, China

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 919

We believe that a good compromise can be repre-

sented by disciplined natural language specifications,

where the text must follow very detailed and stringent

patterns[7-8] and the screen mockups are used to clar-

ify the steps of the scenarios. For this reason, we have

conceived a method for describing and refining require-

ments specifications based on disciplined use cases and

screen mockups: DUSM (Disciplined Use Cases with

Screen Mockups). The term disciplined means that a

use case is: 1) characterized by a stringent template

and complemented with a glossary to reduce ambigui-

ties, 2) aligned with the screen mockups that will help

in functionalities understanding, and 3) able to help the

requirements analyst to detect errors, incompleteness,

bad smells (e.g., unused elements), and bad quality fac-

tors (e.g., too many extensions, and too many steps in

a scenario) in the requirements specification, thanks to

a list of well-formedness constraints.

Screen mockups are quite common in many IT (in-

formation technology) companies and several proposals

are emerging to integrate/use them in conjunction with

use cases (or, more in general, with requirements)[9-10].

To the best of our knowledge, DUSM is the first

method that fully and precisely integrates screen mock-

ups with textual requirements. Indeed, in our method

screen mockups are not only adornments for textual

requirements specifications, but artifacts 1) made con-

sistent with the specifications by following a set of well-

formedness constraints, and 2) checked against a list of

possible bad smells that can lead to the detection of

ambiguities, inconsistencies and incompleteness in the

specifications. Another important aspect is that the de-

sign of screen mockups is based on screen mockup tem-

plates, which uniquely represent all the different and

main aspects of a system GUI (graphical user inter-

face). Hence, there is a reduction in the effort needed

to produce the screen mockups, since it depends on the

number of the screen mockup templates instead on the

higher number of the use cases steps.

This paper extends and refines our previous prelim-

inary work[11-12] in several directions. Indeed, here we

add: 1) a comprehensive method for describing and re-

fining requirements specification, 2) the definition of the

form of DUSM requirements specifications by means of

a metamodel, 3) the list of well-formedness constraints

and bad smells for those specifications, and 4) the val-

idation of DUSM by means of a case study.

The paper is organized as follows. Section 2 de-

scribes the process adopted by DUSM for specifying and

refining requirements. Section 3 and Section 4 describe

our requirements specification based on disciplined use

cases, and how to integrate screen mockups, respec-

tively. Section 5 describes the ACME case study, while

Section 6 reports the empirical assessments of DUSM.

Finally, Section 7 presents the related work, followed

by conclusions and future work in Section 8.

2 Building Requirements Specification with

DUSM

The starting point of DUSM is what we call a free

use cases specification (see FUCspec in Fig.1), i.e., a

use cases specification based on whatever template (for

example, the one proposed by Cockburn[1]), in general

allowing a lot of freedom. In case not yet available, the

free specification may be easily produced by stakehold-

ers or domain experts with or without the assistance of

the analyst.

Once the free specification has reached a stable

form, the analyst may render the use cases disciplined

(see DUCspec in Fig.1), design the screen mockup

templates 1○, derive from them all the needed screen

mockups, and add them to the use cases (see DUSM-

spec in Fig.1). Finally, (s)he will verify that all the well-

formedness constraints advocated by DUSM are veri-

fied. The result of such activity is (often) the detection

of problems in the specification that can be classified in:

inconsistencies (i.e., two different points of the specifi-

cation express two contrasting statements about some-

thing), ambiguities (e.g., the specification uses words

without stating their precise meaning relying on some

common, but not always shared, understanding), and

incompleteness (i.e., it is not possible to have a clear

understanding of how the system should work because

some parts are not properly specified). Notice that even

the addition of the screen mockups may generate many

questions about the system under specification and re-

veal undetected problems. In all these cases, the ana-

lyst should ask the stakeholders and/or the domain ex-

perts additional details to obtain a better specification,

following a reworking phase of the previously produced

one, where all the relevant changes are implemented,

such as adding/removing/refining elements (e.g., some

steps may need to be restructured, hence requiring fur-

ther screen mockups).

1○A screen mockup template is a way for enforcing a standard layout and look and feel across multiple screen mockups generated
starting from it (see Subsection 4.3).

920 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Analyst Reworks DUSMspec

Analyst Makes FUCspec Disciplined

Analyst Designs Screen Mockup Templates

Analyst Derives Screen Mockups from
Templates and Adds Them to DUCspec Steps

DUSMspec: DUSM Specification

Stakeholders Examine DUSMspec

Final-DUSMspec: DUSM Specification

DUCspec: Disciplined UC Specification

Stakeholders Provide
Additional Details

Analyst Asks Stakeholders
Additional Details

[Ambiguity/Inconsistency/
Incompleteness Detected]

FUCspec: Free UC Specification

[Invalid Requirement Detected]

[else]

[else]

Fig.1. DUSM method as a UML activity diagram (actions are round-cornered rectangles, while object nodes are rectangles).

Once the analyst has terminated her/his work, the

resulting disciplined specification enriched by screen

mockups (i.e., DUSMspec) may be given to the stake-

holders to get the final approval. They will have no

problem in reading and understanding it, since it is es-

sentially structured natural language text. Moreover,

the presence of the screen mockups provides a kind of

paper prototyping, allowing them to validate also the

user interface. Any change request may be easily pro-

cessed by the analyst, because the strong structuring of

the DUSM specification offers a good support to propa-

gate the changes on the whole specification. This char-

acteristic combined with a better understanding of the

entire specification will be valuable also in case of future

evolution of the system requirements.

3 DUSM: Disciplined Use Cases Specification

Fig.2 shows the form of the DUSM requirements

specifications by means of a metamodel presented by a

UML class diagram. A requirements specification con-

sists of a UML use case diagram, a description of each

use case appearing in that diagram, and a glossary that

lists and makes precise all the terms used in the use

cases. We have included the use case diagram since it

is really valuable for summarizing use cases, actors and

their mutual relationships. Moreover, it is also quite

simple to be explained and produced. It is important

to highlight that the components of our requirements

specification are all well-known (e.g., use case diagram).

What is novel here is how they are combined together

(e.g., use cases and screen mockups) by means of rules

and constraints.

Even though some of the parts of a requirements

specification shown in Fig.2 are well-known, for the sake

of completeness, in the following subsections we briefly

sketch them, using the ACME case study (shortly de-

scribed below) as a running example. In this way, we

will be able to better show the novel aspects of DUSM,

and explain the meaning of the constraints given on

the components of the requirements specification. The

complete requirements specification can be found in

ACME documentation[13] and is reported as follows.

ACME is a multi-users resource management system

organized in functional areas, where users are assigned

to tasks called jobs and can perform some actions, based

on their access levels to the system functional areas, to

complete them. An access level (hidden for a not acces-

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 921

Fig.2. DUSM requirements specification metamodel.

sible functional area, view for a read-only one, and edit

for read-write permissions) is linked to a user through

the unique group (s)he is assigned to. ACME works on

two different levels of security: enabled and disabled.

When security is enabled, each user must authenticate

(with username and password) to perform any task. In

case security is disabled, logging is not needed. A group

in ACME can be thought of as a role which establishes

all possible operations that can be completed. ACME

presents two default groups: Administrator and External

User. Each of these groups has different access levels for

each of the ACME functional areas. An Administrator

can CRUD (create, read, update, delete) any group,

job and user and is responsible for the users assign-

ments to groups. Instead, an External User can perform

some actions depending on the access levels assigned to

him/her; different from the Administrator group, access

levels for External User are not given by default. Every

group and user is identified by a unique name. Among

its attributes, a job is characterized by: a short descrip-

tion, a creator, and a timestamp of creation/update.

An example of job may be the reservation of a room

or the reporting of a bug, depending on which context

ACME is applied. The user who owns the rights (i.e.,

the access level for a functional area) could act like an

Administrator for a specific job.

In this paper we use System to denote a generic soft-

ware system of whom we want to specify the require-

ments. In our running example, the system is referred

to as ACME.

3.1 Use Case Diagram

The use case diagram summarizes the System use

cases, making clear which actors take part in them. The

actors are distinguished in: primary, those having goals

on System, i.e., entities obtaining value from interact-

ing with the System, and secondary, those over which

the System has goals, i.e., entities supporting System

in creating value for primary actors. Sticky-man icons

922 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

are used for visually representing the primary actors,

and boxes are used instead for the secondary actors.

Use cases are classified with respect to their granu-

larity level: summary (representing a goal of the Sys-

tem), userGoal (representing functionalities from the

user perspective), and subfunction (moving out an iso-

lated part of a scenario to a separate use case). The

granularity of a use case is depicted in the use cases

icon (i.e., ellipses) of the UML use case diagram by

means of three corresponding stereotypes. However, to

improve readability, it can be omitted in case all the

use cases have the userGoal granularity level. Inclusion

and extension relationships between use cases 2○ may

appear in the use case diagram, as well as specializa-

tion relationships between actors 3○, represented by the

classic arrow with closed head.

A fragment of the use case diagram part of the

ACME requirements specification is shown in Fig.3 (the

complete version, amounting to 31 use cases, can be

found in the ACME specification[13]). In the case of

ACME, there are three primary actors (Administrator,

External User, and User), and no secondary actors; no-

tice that both Administrator and External User special-

ize User, thus both may take part in all the use cases

of User. The level of all the use cases is userGoal, but

for improving the readability of the diagram the corre-

sponding stereotype is omitted.

Fig.3. ACME requirements specification: use case diagram frag-
ment.

The list of well-formedness constraints and bad

smells related to use case diagrams is shown in Fig.4.

3.2 Glossary

The glossary is a list of entries, each one consisting

of the name of the defined term, and of a correspond-

ing short description. The glossary entries are distin-

guished in those relative to data entries (e.g., credit

card data, order information), and those about the at-

tributes abstractly describing the state of System, indi-

cated as system attributes (e.g., names of the registered

clients, items currently in the catalogue). The main ob-

jectives of the glossary are to: 1) shorten use cases, 2)

reduce ambiguities (e.g., to avoid using different ways to

refer to the same entity), and 3) clarify the meaning of

the steps of a scenario (e.g., a richer description of the

various entries could be given). The well-formedness

constraints and the bad smells that must be considered

for glossary are shown in Fig.5.

Fig.6 shows a fragment of the glossary part of

the ACME requirements specification, where the entry

names are written using a specific font (the complete

one, amounting to 28 entries, can be found in [13]).

References to a glossary entry, in the form of entry-

Name*, can be used in the definitions of other entries

(see, e.g., Job Info* in the definition of Jobs), in the

steps of the use cases scenarios, as well as in the other

parts of the use cases descriptions. References to glos-

sary entries are case-insensitive and can be replaced by

a declension in order to adapt them to the sentences.

3.3 Use Case Description

A use case description consists of general informa-

tion (e.g., name, level and goal), plus a set of scenarios

(see Fig.2). The main success scenario describes the

basic execution of the use case, whereas the extensions

(any number, also none) are scenarios defining all the

other possible executions of the use case.

The information about a use case description 4○ are

as follows.

• Name: a verbal phrase in the form of present in-

finite without “to”, that identifies the use case (e.g.,

Open Job). Sometimes it may be helpful to explicit the

2○Inclusion specifies that one use case includes the functionality of another use case mainly for reuse purposes, while the extension
relationship specifies that one use case (extension) extends the behaviour of another use case.

3○If actor A1 specializes actor A2, then A1 can take part also in all the use cases in which A2 takes part.
4○There are some differences between the disciplined use cases and the use cases proposed by Cockburn[1]. For example, we

adopt a glossary and precisely define use case steps format to permit consistency checks (see Section 3). However, the exact list of the
differences is not essential to understand the main contribution of the paper, consisting in a smooth and consistent integration among
use cases and screen mockups.

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 923

Well-Formedness Constraints
• A use case cannot be included in a lower granularity level use case.
WHY: Violation of the meaning of the levels

• A subfunction use case must be included at least in a userGoal use case.
WHY: Violation of the meaning of the subfunction level, since it cannot be a complete functionality

• There must be at least a userGoal use case.
WHY: System must offer at least a functionality

• The transitive closure of the inclusion relationship among use cases must be anti-reflexive.
WHY: There cannot be undefined use cases

• The transitive closure of the extension relationship among use cases must be anti-reflexive.
WHY: There cannot be undefined use cases

• The transitive closure of the specialization relationship among actors must be anti-reflexive.
WHY: There cannot be undefined actors

Bad Smells
• A subfunction use case included only once in another higher level use case is suspicious.
WHY: This case is sensible if it has been introduced only for shortening the scenarios of another use case

• A summary use case not including any other use case is suspicious.
WHY: If the use case is that simple, it should have the userGoal level

Fig.4. DUSM use case diagram: well-formedness constraints and bad smells.

Well-Formedness Constraints
• The name of an entry in the glossary must be unique.
WHY: It must be possible referring it in the use cases descriptions

• Each entry in the glossary must appear at least once in a use case description.
WHY: Otherwise, it is useless and should be eliminated

Bad Smells
• A glossary not containing system attributes is suspicious.
WHY: System not using any persistent data would provide only trivial functionalities, e.g., a converter from different measure

units
• A glossary not containing data entries is suspicious.
WHY: System using only basic data as numbers and strings would provide only trivial functionalities, e.g., a converter from decimal

to roman numbers

Fig.5. DUSM glossary: well-formedness constraints and bad smells.

Data Entries

• Access Level: defines the permissions to access the functional areas* of ACME. It can be: hidden for a non-accessible area, view for
a read-only one, and edit in case of read-write permissions.
• Group Name: unique identifier built out of up to 32 characters (letters, numbers, separators such as dash or underscore, and blank
spaces among them)
• Job Info: the data characterizing a job (short and long description, creator, title, issue, type, related module, creation/update
timestamps)
• Search Criteria: the information given by a user to find some jobs (short description, creator, creation/modification date range, type,
title, module, issue)

System Attributes

• Administrator Logged: a boolean value, true iff there is a logged administrator
• Jobs: all the existing jobs characterized by Job Info*

Fig.6. ACME requirements specification: glossary fragment.

primary actor in the use case name, especially when sev-

eral use cases share the same name but involve different

primary actors and scenarios (see for example Fig.3).

• Level: i.e., summary, userGoal, or subfunction as

introduced in Subsection 3.1.

• Goal: describes in a detailed way the aim of the

use case (optional).

• Priority: expresses the impact that an incorrect or

lacking implementation of the use case has on the Sys-

tem. We experimented that four values are sufficient,

and thus the allowed values range from 1 (higher) to 4

(lower). 1 = System is no longer operative and no other

ways to perform the supported activities exist; 2 = Sys-

tem is no longer operative, but the supported activities

can be manually performed; 3 = System is operative,

but one or more main functionalities are not available;

4 = System is operative, but one or more secondary

functionalities are not available.

• Frequency: expresses how much frequently the

functionality described by the use case will be used.

We decided that the possible values are: once, excep-

tionally, periodically, frequently, and continuously.

924 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

• Stakeholders: those having the right or the pos-

sibility to say something about the functionality de-

scribed by the use case (optional).

• Trigger: defines which event starts the use case

(optional).

• Primary and Secondary Actors: introduced in

Subsection 3.1.

• Pre/Post Condition: states what we assume about

the current state of the System before the execution/

after the successful execution of the use case (optional).

They should be expressed using the System attributes

introduced in the glossary.

• Notes: comments to the use case, usually to record

why something is made in some way (optional).

The list of well-formedness constraints on the use

case description is shown in Fig.7.

Fig.8 presents a simple use case description; it refers

to the use case Administrator Search/List Jobs of the

ACME system. Its level is userGoal, and its goal is to

allow the primary actor Administrator to examine the

existing jobs. The information part is quite standard

and does not need a detailed comment, and this use case

has just one extension. Underlined terms represent hy-

perlinks to screen mockups, while a term followed by

* refers to an item of the glossary, partially shown in

Fig.6. More complex use cases can be found in the

ACME requirements specification[13].

3.4 Scenarios

The abstract structure of the scenarios is presented

in Fig.2 (see Scenario class and associated classes). In

particular:

Scenario: a sequence of numbered and ordered lines,

where each line is either a step, an indication of a rep-

etition of some lines, an inclusion of another use case,

an extension point, or even null, which means a line

corresponding to doing nothing.

Line Number: allows to uniquely identify each line

of a scenario.

Step: describes an interaction between the System

and one of the actors of the use case. It has the form:

[If condition, then] subject interaction;

Well-Formedness Constraints
• There should be a description for each use case appearing in the use case diagram and vice versa.
WHY: To guarantee the consistency between the use case diagram and the other parts of the specification

• If a use case C is linked to actor A in the use case diagram, then A should appear in the actors part of the description of C (primary
if its icon is the sticky-man, secondary otherwise), and vice versa.
WHY: To guarantee the consistency between the use case diagram and the use cases descriptions

• Each term referenced in a use case description (i.e., term*) must appear in the glossary.
WHY: To guarantee that each term definition has not been forgotten and to prevent different wordings usages

• Each actor of a use case must appear at least once in its scenarios, and vice versa.
WHY: To guarantee the consistency between the use case information and its scenarios

Fig.7. DUSM use case description: well-formedness constraints.

Use Case Administrator Search/List Jobs

Level userGoal
Goal: The Administrator searches the jobs that are currently in the system.
Priority: 1
Frequency: frequently
Stakeholders: The company that intends to sell the software and the future users.
Primary Actor: Administrator
Preconditions: Administrator Logged* is true.
Main Success Scenario:
MainMockup

1. The Administrator requests to list the jobs.
2. ACME displays all Jobs* with their characterizing Job Info*.
JobsListMockup
3. The Administrator enters the desired Search Criteria*, then requests to search.
JobsListFilledMockup
4. If there is at least one job satisfying the Search Criteria*, then ACME lists all jobs matching it.
JobsFoundMockup
Extensions:

4a.1. If there is no job satisfying the Search Criteria*, then ACME informs the Administrator that no job is found. The use case fails.
NoJobsFoundMockup

Fig.8. ACME Administrator Search/List Jobs disciplined use case with linked screen mockups.

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 925

[effect] [continuation].

Here

• [. . .] means that . . . is optional.

• condition is a natural language fragment stating

the condition under which the step may be executed. It

is optional. If absent, it is intended as the always true

condition. It should concern the System attributes (i.e.,

the current state of System), and the data appearing in

the interaction and effect part of the current step or of

the previous ones; thus, it will be expressed using the

terms introduced by the glossary.

• subject may be either an actor (primary or sec-

ondary) of the use case or the System. The System

should be indicated with the same name used in the

system box in the use case diagram.

• interaction is a sentence describing either what

flows from the actor towards the System or vice versa.

It must have the form “verb complements”. The com-

plements may be System, an actor, System attributes,

and the data appearing in the previous steps.

• effect is a sentence written in the passive form

without explicit “by clause” (e.g., omit “by ACME” in

the effect “a new user characterized by User Info* is

added to Users* by ACME”) describing a transforma-

tion of the System attributes using the data appearing

in the interaction; thus, again it will be written using

the terminology introduced in the glossary. It is op-

tional. If absent, then the step does not influence the

System attributes.

• continuation defines how the use case flow contin-

ues after the end of the step. It may have one of the

following forms:

– “The use case continues to lnum”, where lnum is

the number of a line of the use case (see GoTo class in

Fig.2).

– “The use case fails.” and “The use case ends with

success.” for marking the end of the use case, distin-

guishing whether it is a success or a failure. For the

sake of readability, “The use case ends with success.”

is usually omitted.

The continuation is optional. If absent, then the use

case continues to the next line.

Repetition: a natural language fragment having

form: “The lines from lnum1 to lnum2 are repeated

until cond”, where lnum1 and lnum2 are the numbers

of two lines of the scenario including the repetition,

and cond is a condition like the one that is part of

a step. Repetitions allow to describe scenarios of un-

bound length.

Extension Point: denotes where the behaviour of

an extending use case (i.e., a use case related by the

extension relationship in the use case diagram) will be

inserted.

Inclusion: written by reporting the name of the in-

cluded use case, that should be linked to the described

use case by the inclusion relationship in the use case

diagram.

Null: a line where nothing is done (i.e., neither an

actor nor the System does something); it is needed for

representing particular flows of activities. For example,

in ACME a user could optionally choose to view some

details of a job while performing some other activities;

since both the alternatives of viewing job details and

not viewing them (i.e., do nothing) may affect ACME

response to the user in different ways, two scenarios

have been modelled.

Extensions: of a use case, see Fig.2, are scenarios

defined modifying an existing one, by giving a different

sequence of lines starting from a given line (the ext-

ended line), where the lines of a use case are identified

by line numbers. The lines of the main success scenario

are labelled by natural numbers (i.e., 1, 2, 3, . . .). The

lines of the first scenario extending a line whose number

is X are numbered with Xa.1, Xa.2, . . . , those of the

second scenario Xb.1, Xb.2, . . . and so on.

For what concerns scenarios well-formedness con-

straints and bad smells, please refer to Fig.9.

4 DUSM: Screen Mockups

4.1 Screen Mockups Associated with Use Case

Steps

Screen mockups are drawings that show how the

user interface of System is supposed to look during the

interaction between the System and the human actors.

They may be very simple, just to help the presenta-

tion of the user-system interactions, or more detailed,

with rich graphics, whenever specific constraints on the

graphical user interface need to be expressed (e.g., re-

quiring to use specific logos or brand related colours)[3].

Mockups can be used in conjunction with use cases,

associating them with the steps of the scenarios, to

improve the comprehension of functional requirements,

and to achieve a shared understanding on them.

At the same time, screen mockups allow to express

and improve the comprehension of the non-functional

requirements concerning the user interface[4], thanks to

the freedom in choosing the most effective way to rep-

resent them.

926 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Well-Formedness Constraints

• The subject of a step of a scenario different from System must appear among the use case actors.
WHY: To guarantee the consistency between the information part of a use case and its scenarios

• Each System attribute listed in the glossary must both:
– be updated in the effect part of at least a step of a use case scenario,
– be read either in the condition or in the interaction or in the effect of at least a step of a use case scenario.
WHY: To guarantee the minimality of the specification. If it is neither read nor updated it is useless, and thus it should be removed.

If it is updated and never read, it is either useless or the steps/use cases reading it are lacking. If it is read but never updated
the steps/use cases modifying it are lacking

• If a step has a condition cond different from true, then there should be some extensions starting from the same step with conditions
cond1, . . . , condn s.t. the logical disjunction of cond, cond1, . . . , condn is true. It is possible to use the Null line in the case nothing
is done for a certain condition.
WHY: To specify what System should do in all possible cases

• If a use case C includes C1 in the use case diagram, then at least a line corresponding to “include C1” must appear in the scenarios
of C, and vice versa
WHY: To guarantee the consistency between the use case diagram and the use cases descriptions

• If a use case C extends C1 in the use case diagram, then at least a line corresponding to an extension point for C must appear in
the scenarios of C1, and vice versa
WHY: To guarantee the consistency between the use case diagram and the use cases descriptions

• The line number appearing in a GoTo continuation of a step (see Fig.2) should refer to an existing line in the use case scenarios.
WHY: There cannot be dangling GoTo references

• The line numbers appearing in a repetition line should refer to existing lines in the same scenario.
WHY: There cannot be dangling repetition references

• The success and failure continuation may appear only at the end of complete scenarios.
WHY: To express the final outcome of the various use cases executions

• The failure continuation cannot appear in the main success scenario.
WHY: The main success scenario must describe a successful way to execute the use case

Bad Smells

• A complete scenario without at least a step where the subject is System is suspicious
WHY: The System must provide some feedback to a request of an actor, unless the actor is not human

• The case where the initial steps of a set of extensions to the same line do not have the same subject is suspicious.
WHY: Usually such cases correspond to awkward behaviours of the specified System.

• An extension of a step S starting with S1 s.t. the subject, the interaction and the effect of S1 coincide with those of S is suspicious
WHY: S and S1 must be joined in a unique step by combining their conditions

Fig.9. DUSM use case scenario: well-formedness constraints and bad smells.

DUSM suggests to associate one or two screen mock-

ups with each step of a scenario (see Fig.2), where a hu-

man actor is involved. Fig.10 shows two simple screen

mockups associated with some steps of the Administra-

tor Search/List Jobs use case (presented in Fig.8) of the

ACME application.

More precisely, let S be a step of a scenario:

• If the subject of S is System, then at most one

mockup (end mockup) may be associated with the end

of S ; it will show what can be seen on the System’s GUI

after the step execution.

• If the subject of S is a human actor, then at most

two mockups may be associated with S :

– one at the beginning of S (begin mockup), which

will show what the actor sees just immediately before

to execute the step;

– one at the end of S (end mockup), which will

show what the actor sees just immediately before to

complete S (e.g., before pressing the “send” button af-

ter having filled various fields/having ticked some check

boxes/opened some menus).

The begin mockups of the steps corresponding to ex-

tensions starting from the same step, obviously, must

coincide.

A single mockup may be associated with various

steps; examples are the begin mockup of different ex-

tensions, and the end mockup of a step coinciding with

the begin mockup of the next step. See, for instance,

JobsListMockup in Fig.8 that is shared between steps

2 (as end mockup of a system’s action), and 3 (as begin

mockup of an actor’s action). A single mockup can also

appear in different use cases, as in the case of the one

corresponding to the main window of a system.

Any screen mockup associated with a step must

be consistent with it, i.e., it should present the same

informative content, otherwise the introduction of the

mockups will be the cause of further ambiguities in the

requirements specifications, instead of improving their

quality. An example of inconsistency is the linkage of

a screen mockup containing exactly two text boxes to

a step having form “Insert name, birth date and sex”.

Similarly, the mockup associated with “System informs

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 927

(b)

(a)

Fig.10. ACME screen mockups. (a) JobsFoundMockup. (b) NoJobsFoundMockup.

that a username must contain capital letters and digits

only” cannot present a popup showing just a generic

“Error” message. DUSM provides detailed constraints

(see Fig.11) that guarantee the consistency between the

steps and the associated mockups. These constraints

may be also considered as guidelines to help the pro-

duction of the mockups.

However, the given constraints do not lead to a stan-

dard straightforward way to design the screen mockups

to add to the steps. Clearly, if three entities are men-

tioned in a step, e.g., name, birth day and sex, the asso-

ciated mockup should contain three widgets, which may

be textboxes, drop menus, checkboxes, buttons and so

on. Moreover, the layout and the aspect of the mockup

is entirely left to the analyst. This freedom in the de-

sign of the mockup(s) associated with a step allows to

express the non-functional requirements on the appli-

cation GUI.

For example, referring to the ACME case study,

Fig.12(a) shows the main window, i.e., the begin

mockup of many steps starting the main functionalities

of the application, as we designed it. It is quite simple

and offers buttons for calling all such functionalities.

If we require that, instead, the interface should adhere

to an existing theme, we could draw the mockup as

Fig.12(b), where functionalities are accessible through

menus, using a different colour theme and a different

font.

Placeholders for the begin/end mockups will be in-

serted before or after the steps in the use case scenarios

respectively. Obviously, whenever the begin mockup of

a step coincides with the end mockup of the previous

step, its placeholder will appear only once in the sce-

nario. Placeholders may be realized in different ways

depending on the technology used to write the use cases

(e.g., a link to a picture in a Word document, and a hy-

perlink in an HTML document). In Fig.8, for example

JobsFoundMockup and NoJobsFoundMockup are links

to the pictures reported in Fig.10.

The use of the placeholders allows the readers of the

928 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Well-Formedness Constraints

Steps with actor subject – Begin mockup

Let S1, . . . , Sn (n > 1) be all the steps in the specification having an actor as subject s.t. their begin mockup is M (S1, . . . , Sn may
appear in different scenarios of even different use cases).
• If the interaction part of some S i (1 6 i 6 n) refers to some communication from the actor to System, then M should show how it
has been realized.
e.g., n = 2, S1=“User confirms”, S2 =“User refuses”. Thus, “Confirm” and “Refuse” buttons appear in M ;

S i =“User enters email & password”. Thus, email & password fields and “Enter” button appear in M .
• If M contains some means for realizing some communication from the actor to the System, then there should exist 1 6 i 6 n s.t. S i

refers to such communication.
e.g., M contains a “Confirm” button. Thus, the interaction part of S i, for some i, should speak of confirmation;

M contains a “password” field. Thus, the interaction part of S i, for some i, should speak of a password.

Steps with actor subject – End mockup

Let S1, . . . , Sk (k > 1) be all the steps in the specification having an actor as subject s.t. their end mockup is M (S1, . . . , Sk must
be steps having the same interaction part appearing in different scenarios of even different use cases).
• If the interaction part of S1 (that is coincident with those of S2, . . . , Sk) refers to some communication from the actor to System,
then M should show how it has been realized.
e.g., S = “User selects advanced mode”. Thus, an open menu “advanced mode” is shown in M ;

S = “User selects the amount to deposit”. Thus, a text box filled with a given amount is shown in M ;
S = “User inserts the code received by SMS”. Thus, a text box about the code is shown filled in M .

• If the interaction part of S1 (that is coincident with those of S2, . . . , Sk) includes a reference to some specific information (flowing
from the actor to System), then such information must appear in M .
e.g., S = “User inserts the password”. Thus, the password appears in M ;

S = “User selects category and number of nights”. Thus, both the category and the number appear in M .
• If M shows how some communication is going to be realized (from the actor to System), then the interaction part of step S1 (that
is coincident with those of S2, . . . , Sk) should refer to it.
e.g., M contains a filled “password” field. Thus, the interaction part of S i, for some i, should describe the insertion of password.

Steps with System subject – (End) mockup

Let S1, . . . , Sm (m > 1) be some steps in the specification having System as subject s.t. their end mockup is M (S1, . . . , Sm should
be steps having the same interaction part appearing in different scenarios of even different use cases).
• If some information appears in M , then it should be derived by the interaction parts of the previous steps or by System attributes.
e.g., “You are logged as John Doe” message is shown in M . Thus, the name of “John Doe” is recoverable by System attributes or it
is provided by the user in some previous step.
• If the interaction part of S1 (that it is coincident with those of S2, . . . , Sm) refers to some communication from System to actor,
then M should show how it has been realized.
e.g., S = “System lists all the logged users”. Thus, “The current logged users are:” string appears in M together with a list of users;

S = “System confirms deletion”. Thus, a pop-up containing “deletion confirmed” appears in M .

WHY: To guarantee the consistency between the use cases descriptions and the screens mockups

Bad Smells

• Having several screen mockups in the extensions and none in the main success scenario is suspicious.
WHY: It does not present user interface requirements in a systematic way; it is acceptable only in the case the mockups for the

main scenario are obviously similar to those of another use case
• Having few mockups distributed in almost every use case with human actors is suspicious.
WHY: In this way it is difficult to grasp a coherent set of requirements on the GUI. It is better to concentrate the effort and thus

adding all the mockups to a small number of use cases

Fig.11. DUSM screen mockup: well-formedness constraints and bad smells.

use case to choose whether to examine the screen mock-

ups or ignore them, whenever they are interested only

in the flow of the various steps. Instead, by replacing all

the placeholders with the corresponding pictures we get

an alternative visualization of the use cases (see some

examples in ACME specification[13]) corresponding to

the so-called “paper prototype” of System.

4.2 How to Produce the Screen Mockups

Although a number of tools for drawing screen

mockups exist (see Table 1 for a partial list), sev-

eral professionals prefer to sketch screen mockups on

paper. This kind of approach has some drawbacks,

which are mainly related to the continuous evolution

of requirements[14]. Mockups created with computer

drawing tools mitigate this last concern, thus making

them a viable alternative.

Screen mockups could be also built using HTML,

a programming language (e.g., Java), or an IDE (e.g.,

NetBeans, VisualStudio). These last choices have the

benefit to reuse the source code of screen mockups later

in the development phase and to obtain quite realistic

mockups, while the main drawbacks concern the effort

and the skills needed to build and maintain them: any

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 929

kind of stakeholders (even without development expe-

rience) should be able to build mockups spending a few

minutes[15-16].

(b)

(a)

Fig.12. Two different screen mockups for ACME main window.

Therefore, the use of specific tools for drawing

screen mockups, e.g., Pencil, represents a viable trade-

off between sketching screen mockups on paper and im-

plementing them. The screen mockups shown in Fig.10

and Fig.12, and all the mockups appearing in the re-

quirements specifications of the ACME[13] and AL L (a

system that handles the ALgebraic Lotteries[11]) case

studies have been created using Pencil.

It is important to highlight that DUSM does not

force to add all the possible mockups to all steps of

the scenarios of all the use cases (see the multiplicities

on the associations linking the mockups to the steps in

Fig.2); it is left to the analyst the decision to omit those

not conveying any useful information (e.g., mockups as-

sociated with steps where the user interaction is trivial

or too similar to already inserted ones). Furthermore,

the relevance of the various use cases (expressed by the

priority and frequency attributes) helps to select which

ones should be enriched with screen mockups; for ex-

ample, it is of scarce utility to produce the mockups for

a use case whose frequency is “Once”, whereas it is al-

most mandatory in case of “Continuously”. Similarly,

it is obviously better to add mockups to use cases with

priority 1 than to add those with priority 4.

4.3 Relations Among Screen Mockups

The many mockups associated with use case scenar-

ios are not a bunch of totally unrelated items. Quite

naturally, they are organized in a forest-like structure

where there is an arc from M2 to M1 iff M2 is derived

from M1, i.e., it has been produced by modifying M1

(e.g., when a menu or an auxiliary window is opened, a

text-box is filled, or a button become dimmed). For

example, in use case Administrator Search/List Jobs

shown in Fig.8, the screen mockup named JobsList-

FilledMockup is derived from JobsListMockup by fill-

ing some text fields. Technically, we say that there is a

dependency relationship between the mockups, assum-

ing the classical definition: M2 depends on M1 iff a

modification in the latter leads to a modification in the

former (e.g., if the layout is modified in M1, then also

M2 should be modified).

To produce each tree in the mockups forest requires

Table 1. Partial List of Mockup Drawing Tools

Tool URL

Balsamiq Mockups https://balsamiq.com

Pencil Project https://pencil.evolus.vn

OverSite http://taubler.com/oversite

GUI Design Studio https://www.carettasoftware.com

Axure https://www.axure.com

Moqups https://moqups.com

MockFlow https://www.mockflow.com

Mockingbird https://gomockingbird.com/home

SketchFlow https://www.microsoft.com/silverlight/sketchflow

BlueGriffon http://www.bluegriffon.org

Visual Paradigm UeXceler https://www.visual-paradigm.com/training/agile-development-with-uexceler/

930 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

to express some (non-functional) requirements on GUI,

e.g., by deciding the layout and the colour theme of

a window. Thus, before to produce the mockups, all

the main requirements on GUI should be expressed by

providing a template for each type of GUI that will be

used, to later be able to produce the trees in the for-

est. Therefore, a template is just a screen mockup that

uniquely represents a portion of the system GUI; it can

be seen as a node of a tree where the children of that

node are all the variations of their parent. All the tem-

plates should be obviously coordinated: for example, it

is better to avoid to signal an error in a mockup using

a popup while in another one using a message bar at

the bottom of a window.

Therefore, to proceed to build the mockups, DUSM

suggests to:

• determine the needed screen mockup templates

and organize them with respect to the dependency re-

lationship;

• produce the needed mockups modifying either a

template or an already produced mockup.

The suggested way to produce and organize the

mockups will be obviously a big help in the case of

evolution of the requirements specification (e.g., depen-

dency will help to propagate any change in the require-

ments on the user interaction). Furthermore, we see

that the effort needed to produce the mockups is not

depending linearly on the number of the use cases and

on the number of their steps, but on the number of the

templates, i.e., on the variability of the System’s GUIs.

5 ACME Case Study

DUSM has been proposed and fine-tuned during sev-

eral editions of a software engineering course at the

University of Genova[17], where two of the authors of

the present paper were teaching. Each year, students

had to realize a Java desktop application, whose re-

quirements were given as a use case based specification.

First, students had to model a design by means of UML,

and then, they had to implement it in Java[17]. Initially,

no screen mockups were used, and even if standard re-

quirements on the GUIs were provided (i.e., usability

requirements), the use cases often resulted difficult to

understand and ambiguous. We discovered that, after

the introduction of screen mockups, the amount of mis-

understanding about the use cases decreased. Then, we

applied DUSM several times, also in real industrial con-

texts, to specify requirements from scratch and to refine

already existing use case specifications.

In this paper, we present the application of DUSM

to the already existing free requirements specification

of an application named ACME (the object of the

study). The goal here is restructuring the ACME

specification[18] (from free to disciplined) and, at the

same time, answering the following two research ques-

tions.

RQ1: is the application of DUSM able to re-

veal and remove inconsistencies/ambiguities/incomple-

teness from the original ACME free specification?

RQ2: is the application of DUSM able to produce a

specification that is simpler w.r.t. the original ACME

free specification?

The metric number of inconsistencies/ambiguities/

incompleteness revealed has been used to answer RQ1,

while the percentage of verbosity reduction, clearly pre-

serving the semantic content, has been used to address

RQ2. We decided to measure the verbosity reduction

in terms of words saved in the disciplined version w.r.t.

the free version.

It is important to highlight that RQ1 concerns qua-

lity of the entire specification and comprehensibility

factors. Indeed, removing inconsistencies/ambiguities/

incompleteness from the specification should improve

the comprehension as well as the quality of the en-

tire document. Instead, simplicity mentioned in RQ2

mainly correlates with comprehensibility: a short

specification is much more comprehensible than a

long/verbose one. For the computation of this last

measure, we have not considered the introduced novel

screen mockups and their content.

5.1 ACME Free Specification: Object of the

Study

We believe that the ACME specification is suitable

to be used as a case study for the following reasons.

• It has been produced by a professional developer

(therefore it does not originate from the academia).

• It is not trivial (the documentation is around

17 000 words and 22 use cases[18]).

• It has been produced following a quite formal tem-

plate and revised many times (last version is 6.1), also

after discussing with the client. Therefore, this free

specification should be already of a good quality, and

thus a good test for seeing if DUSM helps to improve it;

otherwise, the validation may be biased (e.g., starting

from a very informal and never revised specification).

• The domain of ACME is easy to grasp, thereby

there is no need of know-how of specialized domains to

apply the method.

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 931

• The use cases steps are complemented with the

textual description of GUI; thus ACME is an appli-

cation where expressing the requirements on the user

interactions is relevant.

The use cases in the ACME requirements specifica-

tion are quite complex, with verbose and tricky scenar-

ios built up by many alternative paths, long steps and

references among them (i.e., GoTo continuation jumps).

In many cases, the steps of the scenarios are made heav-

ier due to the inclusion of detailed textual descriptions

of the associated GUI (see, e.g., Fig.13(a)), and of the

data shared among actors and ACME.

Since the approach followed by the author of ACME

specification does not consider the specialization be-

tween actors, when a use case has two primary actors,

it may be either that they cooperate to realize the func-

tionality described in the use case or that they both

separately (thus, not simultaneously) take part in the

use case. This feature clearly has worsened use cases

understandability. Moreover, no use case diagram has

been adopted to represent the use cases and their re-

lationships, while only an incomplete and inconsistent

use cases list has been provided.

5.2 Application of DUSM to ACME: The

Procedure

In accordance with DUSM activities of Fig.1, ACME

specification was restructured/refined by performing

the following tasks: 1) glossary definition, 2) use cases

description refactoring, and 3) screen mockups integra-

tion. Moreover, during this restructuring task, the use

case diagram was also inferred (as DUSM requires it),

partially shown in Fig.3.

The entries in the glossary were recovered from the

existing use cases descriptions, focusing on Notes, Pre

conditions, Post conditions, and scenarios steps. Each

term was classified as Data Entry or System Attribute; a

definition was formulated by looking in many different

(b)(a)

Fig.13. Comparison between (a) free[18] and (b) the corresponding disciplined[13] specifications shown on a simplified fragment of the
Search/List ACME Jobs use case (for the actor Administrator in the disciplined case).

932 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

points of the original document, and then references to

the glossary entries were used in any place such entries

were mentioned (see Fig.8 in Subsection 3.3 for an ex-

ample of glossary usage).

For what concerns use cases descriptions, their steps

and scenarios were completely restructured because

of their complexity. In some circumstances, new use

cases emerged due to the separation of actors that

were wrongly linked to a single use case. For exam-

ple, Search/List ACME Jobs from original ACME speci-

fication shows both Administrator and External User as

actors, thus it was split into Administrator Search/List

Jobs (see Fig.8) and External User Search/List Jobs (see

also complete ACME specification[13] for further exam-

ples). Moreover, the steps were shortened by using the

proposed form (i.e., [if condition, then] subject inte-

raction; [effect] [continuation].), along with the usage

of the terms from the glossary. To further reduce the

granularity of a step, a split into more steps was applied

when needed (e.g., when a step includes more than one

unique interaction).

At last, screen mockups were added in order to

simplify those steps expressing a non-trivial user inte-

raction (e.g., a step where a user has to fill a form),

reducing verbosity and expressing a prototypical GUI.

For drawing the screen mockups we used the Pencil

tool. We started by identifying and representing the

basic templates (amounting to 15) from which we could

produce, once needed, some variations that differed in

some details, by extending, changing or removing the

visual parts of the original ones. Fig.14 shows an ex-

ample of the dependency relation that exists between a

template and some possible variations. In this example,

the template is the first mockup that was encountered

during the restructuring process. The mockups suc-

cessively encountered that were similar to the first one

(e.g., same functionality of ACME, but different permis-

sions/state) were associated with it in a dependency

relationship. It is interesting to notice that, in some

cases, this relationship may involve a “downgrade” of

(b)(a)

Fig.14. Screen mockups dependency: (b) an ACME template and (a) some of its children.

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 933

the original template (i.e., something is removed), an

“upgrade” (i.e., something is added) or both.

We took note of problems in the original ACME

requirements specification (i.e., ambiguities, inconsis-

tencies, and incompleteness) any time we encountered

them; and when a question for the stakeholders had to

be answered to solve the problem, we played their role

to produce a possible answer.

As an example, we provide a simplified fragment of

the Search/List Jobs use case (Fig.13(a)) adapted from

the ACME free specification[18] and the correspond-

ing Administrator Search/List Jobs use case (Fig.13(b))

adapted from ACME disciplined specification, where the

latter is obtained from the former. To make the free use

case disciplined, a split of the two involved actors (Ad-

ministrator and External User) was needed.

The complete refined ACME specification can be

viewed in [13].

5.3 Results: Research Questions RQ1 and

RQ2

During the application of DUSM to our case study,

a set of assumptions have been made and a number

of inconsistencies, ambiguities and incompleteness have

been detected, classified and noted down for answer-

ing RQ1. Fig.15 lists all the various kinds of inconsis-

tencies, ambiguities and incompleteness that we have

found, along with the number of their occurrences. This

list has been generated thoroughly inspecting the orig-

inal ACME specification.

For example, there are three occurrences of Same

error signaled/handled differently in alternatives of the

same use case inconsistency entry, which means that

the original specification signals or handles errors in

different ways among the various alternatives of a given

use case (e.g., sometimes an error message is shown and

sometimes is not; moreover, the content of that mes-

sage is not always the same). As another example, in

the ambiguities category, Same name for two different

things has been detected four times during our analysis

(e.g., both External User and User terms were used to

indicate the former actor). One of the biggest problems

that we faced to make ACME disciplined is the lack of

information to clarify the terminology; in fact, Lacking

information about features/terms incompleteness error

has been detected 15 times. Incompleteness, in particu-

lar, left us with open questions that we had to answer

in order to make the ACME specification disciplined,

since the stakeholders cited in Fig.1 were not available.

For this reason, we generated a list of open questions

(turned, then, into found problems) and possible an-

swers (turned into possible solutions), presented in Ta-

ble 2. For instance, Unclear core functionalities means

that some main tasks, in particular the job-related ones,

were left unspecified. We proposed our simplified solu-

tion trying to understand and define the term “job”,

in accordance with the information gathered through

the documentation. Similarly, the Unclear actors in

use cases entry means that we found some use cases

where it was not clear about which actor could interact

with ACME and which functionalities were enabled; in

these cases, we let all the actors complete any kind of

interaction with no restrictions.

For answering RQ2, we compared the originalACME

specification with the final one. Summarizing, the num-

ber of disciplined use cases has increased to 31 (+9),

since some original use cases have been split between

Fig.15. Inconsistencies/ambiguities/incompleteness found in ACME free specification (RQ1).

934 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Table 2. Found Problems and Adopted Solutions to Discipline ACME Free Specification

Number Found Problem Possible Solution

1 Unclear actors in use cases We decided to use both actors (Administrator and External User)
sharing the same scenario, when it is not clear who is acting or what
the differences among scenarios are. In these cases, User, which
generalizes Administrator and External User, is the main actor

2 Unclear permissions in use cases interactions We decided to let the actors to complete any kind of interaction if
no restriction is made explicit

3 Unclear core functionalities We decided to model the functionalities in accordance with the in-
formation gathered through the documentation, following the steps
interactions and notes from the use cases description

4 Terminology abuse We decided to adopt just one term among those which share the
same semantics

5 Terminology incompleteness We decided to remove or to simplify the interpretation of the terms
that were referenced but never described

6 Lacking of alternatives in use cases scenarios We decided to add further steps to complete all possible alternatives

the involved actors (see [13]), whereas the total amount

of entries in the glossary is 28. We also produced a to-

tal of 114 screen mockups, starting from a baseline of

15 templates. Considering only the textual part of the

specification, the DUSM adoption downsized the orig-

inal ACME free specification by about 63%, from ap-

proximately 17 000 (exactly 16 917) to less than seven-

thousand words (6 221).

6 DUSM Empirical Assessment

During the years, we have conducted several diffe-

rent empirical works to study the impact of introduc-

ing screen mockups (a key ingredient of DUSM) in

a development process. Moreover, we studied DUSM

in a real industrial context. In particular, we empir-

ically assessed: 1) the effectiveness of screen mock-

ups in improving the comprehension of functional

requirements[19-20], and 2) the effort required to build

the screen mockups[15-16]. We have also evaluated

the applicability of DUSM in the industry by means

of a case study. This section is left intentionally

short; the reader can find more information in other

work[12,15-17,19-20].

6.1 Screen Mockups Effect on the

Comprehension

To assess whether screen mockups help in the com-

prehension of functional requirements represented with

use cases, we conducted a family of four experiments

with students having different profiles (e.g., undergrad-

uate computer science students and graduate computer

engineering students)[19-20]. The goal of each experi-

ment in the family was evaluating the screen mockups

effect on the comprehension of functional requirements

in terms of effectiveness, efficiency and time to accom-

plish comprehension tasks. Effectiveness was measured

in terms of comprehension level, i.e., the comprehension

a participant achieved on the functional requirements of

a system, while efficiency was defined as the ratio be-

tween comprehension level and task completion time.

The experiments were conducted providing to the stu-

dents two semantically equivalent requirements specifi-

cation: use cases “as is” (control group) and use cases

enriched by screen mockups (treatment group). The re-

sults showed that the use of screen mockups had a sta-

tistically significant large effect on both the functional

requirements comprehension effectiveness (+69% im-

provement on average) and the efficiency to accomplish

comprehension tasks (+89% improvement on average).

The effect on the time to accomplish a comprehension

task was not statistically significant. Such results were

consistently observed in all of the four experiments in

the family. As a consequence, we can state that one of

the ingredients of DUSM is able to improve the com-

prehension of a requirements specification.

6.2 Cost Needed to Develop Screen Mockups

The adoption of screen mockups should also con-

sider the cost for producing screen mockups in the re-

quirements engineering process. In fact, it is crucial

knowing whether (or not) the additional cost needed

to develop screen mockups is adequately paid back

by the improved comprehension of functional require-

ments. In that direction, we conducted a preliminary

empirical investigation[15]. In the investigation we in-

volved: Bachelor and Master students and several soft-

ware professionals. We gathered information about the

time to define and design screen mockups with the Pen-

cil tool and then we collected the participants’ percep-

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 935

tions about the effort to build screen mockups. The

main finding of that study indicated that: the par-

ticipants perceived screen mockups construction as a

non-onerous activity that requires a low effort as com-

pared with the effort needed to develop use cases. In

a companion paper of [15], we presented an empirical

study conducted to build estimation models for the ef-

fort needed to develop screen mockups starting from use

cases[16]. We asked the participants to develop screen

mockups from the use cases of four different software

systems. Then, we built the estimation models on in-

formation about use case size measures (e.g., the num-

ber of steps or characters). Finally, we assessed the

accuracy of our models. The main result of that study

showed that it is possible to predict the effort to develop

screen mockups starting from the textual description

of the use cases. The aforementioned papers concern

the production of screen mockups from scratch, on the

contrary DUSM (see Subsection 4.3) produces the ma-

jority of the mockups by modifying some existing ones.

Thus the above results could be considered as an upper

bound of the total effort for producing the mockups.

As a consequence, we can assume that the effort for

adding the mockups to the use cases is not hindering

the applicability of DUSM.

6.3 Industrial Case Study

DUSM has been applied with success by three of the

authors during a joint project involving the University

of Genova, Italy, and two local companies, having the

goal of developing the EC2M system. Such system con-

sists in an improved ECM 5○ making use of ontologies to

better classify, retrieve and share documentation among

different branches of the companies. The functionalities

offered by EC2M can be classified as interactive and

non-interactive: the first ones allow the user(s) to inter-

act with EC2M using GUIs (e.g., logging in and insert-

ing/retrieving documents), while the others focus on

the interactions between software systems using specific

protocols (e.g., exchanging information or documenta-

tion using SOAP, Simple Object Access Protocol, and

REST, Representational State Transfer). Since DUSM

has been devised for describing the requirements specifi-

cation of interactive software systems, in this project we

applied the method only for the portion of requirements

describing the interaction between the EC2M system

and the user(s).

As described in Section 2, DUSM asks a free UC

specification as input. Using the information gained

in the course of the first two meetings with our indus-

trial partners, we developed a preliminary version of

the UC specification. The free UC specification reflects

the requirements as informally expressed by the indus-

trial partners (i.e., the two local companies) during the

meetings. For this reasons, later, we discovered that

there were several problems, for instance: 1) the mean-

ing of the terms reported in the use cases was not always

agreed by all the partners (the glossary is missing in

this phase); 2) the granularity of the actions described

in the use cases steps was not uniform (some of them

were too abstract and some other were too detailed);

3) only a few extensions to the main success scenarios

were reported.

Starting from the free UC (use cases) specification,

we first developed a “disciplined UC specification” (i.e.,

complying with the well-formedness constraints listed

in Figs.4, 5, 7, and 9) asking, when needed, the in-

dustrial partners some clarifications. In this way, we

greatly improved the quality of the requirements spec-

ification, for example, by adding the glossary, levelling

out the granularity of the steps (e.g., subdividing a sin-

gle step in more steps), redefining some actors, and

considering new scenarios. Once the “disciplined UC

specification” was settled, we added the screen mock-

ups, verifying that they were complying to the well-

formedness constraints (see Fig.11). We chose to asso-

ciate the mockups with the most relevant steps whose

subject was EC2M. In this phase, the Pencil tool was

used; it proved to have the capability to quickly create

realistic screen mockups.

Finally, we organized a meeting where the “dis-

ciplined UC with screen mockups specification” was

shown to the industrial partners. That occasion was

very useful for identifying some misunderstandings be-

tween our understanding of the EC2M system and what

the industrial partners really desired. Moreover, the

screen mockups allowed to perform a sort of proto-

type verification helping the industrial partners to de-

tect problems that were difficult to find by inspecting

textual use cases only. After the meeting we fixed the

identified problems.

The professionals involved in the creation of the

functional requirements specification for EC2M were

satisfied of DUSM. In particular, they found the screen

mockups and the glossary very effective to improve the

comprehensibility of the use cases, and useful to find

the ambiguities in the requirements specification. From

5○An enterprise content management (ECM) is a system used to capture, manage, store, and deliver enterprise content.

936 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

the analyst point of view, i.e., the role we played in this

collaboration, we remark that the burden of applying

DUSM was acceptable and comparable to the one we ex-

perimented in previous industrial projects, where other

development processes and notations were used.

7 Related Work

Several studies having as subject use cases and

screen mockups have been proposed in the literature. In

the following, we present the work and tools found, clas-

sified, for the sake of simplicity, in only two categories:

1) use cases and screen mockups, and 2) constraints

definition and quality evaluation of the produced re-

quirements specification. We anticipate and highlight

that no work in literature: 1) provides a systematic

way to create and link screen mockups to use cases,

and 2) provides a complete set of constraints over use

cases, screen mockups, and their mutual relationships

as DUSM does.

7.1 Use Cases and Screen Mockups

Nawrocki et al.[21-22] proposed the UC Workbench

tool to support the activities concerning the use

cases development, including the ability to use screen

sketches in a web-based context. UCWorkbench adopts

well-known patterns[23] and uses the Formal USE Case

Language (FUSE) to describe the scenarios by means of

constructs (e.g., either-or). Then, users can associate

externally produced low fidelity sketches to use cases

steps. The tool supports additional features, such as

automatic detection of bad smells in use cases and effort

evaluation through use case points. The main difference

with DUSM is that the tool does not enforce constraints

on the connection among screen sketches and use cases

steps, since there are neither hints nor rules to check the

linkage. Moreover, their work focuses on web applica-

tion requirements engineering only, while our method

is independent from the system domain.

The majority of tools for managing requirements

enriched with mockups are commercial. For instance,

PowerStory 6○ helps in keeping use cases based specifi-

cation and wireframes synchronized. The user is able

to formulate structured use cases, where actors are

explicitly defined, and link low or high fidelity wire-

frames to use cases steps. The given wireframes can

also be used to simulate the application execution (as

in DUSM). Another requirements management tool is

CaseComplete 7○, which provides an environment to de-

fine consistent and accurate use cases based require-

ments specification. Use cases descriptions follow a

well-structured template, where each step can be linked

to a low fidelity interactive screen mockup. Similar to

DUSM, the tool allows to precisely describe the used

terminology in a glossary that can be referred in use

cases steps. UeXceler 8○ is a requirement gathering ex-

tension for Visual Paradigm that takes place in agile

development. The user has the possibility to enter use

cases statements (in the well-known As a/I want/so

that template), to generate associated use cases that

will include some user stories deducted from the meet-

ing with the stakeholders. User stories can be de-

tailed by adding interaction steps and GUI elements

leading to wireframes design. Each wireframe can be

attached to a specific interaction step and the whole

flow of wireframes can be executed to simulate the user

interaction. Those commercial tools subsume methods

close to DUSM, since they adopt a sort of glossary to

explain the terminology and link GUI representations

to steps. However, they do not provide a systematic

way to create and link screen mockups to use cases.

Furthermore, they miss a complete set of constraints

over use cases, screen mockups, and their mutual rela-

tionships, to guarantee a good quality of the resulting

specification, as DUSM does.

There is also a category of work pointing to (man-

ually, semi-automatically or automatically) generate

screen mockups from use case specifications.

In his book, Maciaszek[24] offered some principles

and guidelines to define interface images of desktop and

web applications, starting from use cases specifications.

The book also provides examples of user experience

(UX) storyboards, where UX elements (GUI compo-

nents) are identified and, consequently, UML diagrams

are derived, in order to represent the use cases scenar-

ios through UX elements interactions (using sequence

diagrams) and the content of the attached screen win-

dows (using a class diagram). Different from DUSM, the

book does not explicit any precise constraint that a GUI

has to follow according to related use cases steps. Olek

et al.[25] proposed a screen specifications tool, Screen-

Spec, which is based on a language to textually de-

scribe screen specifications during web applications re-

6○http://power-story.com/, July 2018.
7○http://casecomplete.com, July 2018.
8○https://www.visual-paradigm.com/training/agile-development-with-uexceler/, July 2018.

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 937

quirements elicitation. The textual representation of a

screen is basically a screen identifier followed by a list

of web elements names and types (e.g., a button or a

link) adherent to a grammar. The textual description

is then translated into interactive HTML low fidelity

visual representations and connected to use cases steps

through the external aid of UC Workbench tool[21-22].

Here, the main difference with DUSM concerns the fact

that screen mockups are described by means of an ad-

hoc language and then generated, while in DUSM screen

mockups are produced using a GUI prototyping tool. In

addition, the part related to use case steps linkage and

constraints checking is lacking.

Jiménez et al.[26] presented a model-driven develop-

ment approach to extend UML use case, activity and

class diagrams for describing and implementing generic

system interfaces. Similarly to DUSM, the basis for sys-

tem interface definition are the use cases, from which

the system’s main GUI windows are derived. The users’

interactions are extracted from use cases and repre-

sented through activity diagrams, which are then con-

nected to the relative use cases. Actions and transitions

are marked with stereotypes that represent GUI com-

ponents and interactions (e.g., clicking on a button).

From these extended diagrams, a GUI-class diagram is

modelled and used to generate interfaces in Java code

(i.e., a use case is a Java class). The main difference

with respect to DUSM is that this approach translates

a whole use case as a unique GUI window, thereby the

connection between system interfaces and use cases is

not at step level.

7.2 Constraints Definition and Quality

Evaluation of the Produced Requirements

Specification

Ciemniewska et al.[27] proposed a mechanism for

supporting use cases reviews, based on natural language

processing techniques. Its aim is finding automatically

easy-to-detect defects, including, for instance, use cases

duplications, inconsistent style in use cases naming, and

too complex sentence structure. In this way, reviewers

can focus on detecting more complex defects. This ap-

proach is very different from DUSM, since the authors

tried to detect simple bad smells by automatically an-

alyzing the textual content of the use cases, while we

propose a way to present disciplined use case satisfying

quite complex well-formedness constraints.

Kamalrudin and Grundy[28] presented an exten-

sion to their extraction and modelling tool, Mara-

maAI, which captures requirements as essential use

cases (semi-formal models validated against some pat-

terns) from a natural language specification and maps

them into abstract (and later concrete) form-based in-

terfaces. Similar to DUSM, one of the goals is the re-

duction of misleading information that may originate

from an unstructured natural language. However, the

goal is completely different: generating simple mock-

ups starting from textual information versus proposing

a method for creating (or restructuring existing) high-

quality use cases linked with screen mockups.

In the context of agile methodologies, requirements

are usually expressed in sketched and informal formats,

resulting in possible issues concerning, among all, am-

biguities, incompleteness and inconsistencies. Start-

ing from both the traditional and agile methodolo-

gies quality frameworks and from the criteria found

in literature, Heck and Zaidman[29] proposed a quality

framework for agile requirements, instantiated on fea-

tures requests in open source projects and on user sto-

ries. Different from their proposal, our well-formedness

constraints work at a lower level perspective (i.e., in-

teractions described in use cases) and involve all the

produced artifacts composing a requirements specifica-

tion and how they are made mutually consistent. Our

method is also based on iterations between the analysts

and the stakeholders, in order to produce a require-

ments specification complete, consistent, and free from

any ambiguity, thanks to the introduction of screen

mockups to enrich the textual descriptions.

8 Conclusions

In this paper we proposed DUSM, a method for spec-

ifying the requirements of a generic software system.

The main novelty is given by the precise linkage be-

tween screen mockups and use cases and by the large

amount of well-formedness constraints to detect prob-

lems among the produced artifacts. The disciplined use

cases are in fact consistently enriched by screen mock-

ups fully integrated in the development process. In this

way, requirements specifications produced with DUSM

are:

• easier to comprehend (see RQ2 of the ACME case

study, Section 5), thanks to the screen mockups[19-20],

• less prone to inconsistencies, ambiguities, and in-

completeness (see RQ1 of the ACME case study, Sec-

tion 5), thanks to the glossary and the large amount of

well-formedness constraints,

• in general of “good quality” (see RQ1 of the ACME

case study, Section 5), since checking the many well-

938 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

formedness constraints associated with our template re-

sults in a deep and strongly structured inspection, and

• not burdensome in its application (indeed the

screen mockup generation, one of the most onerous acti-

vities, has been considered not too heavy[15]).

Moreover, DUSM has been successfully applied in

an industrial project and used for many years in soft-

ware engineering students’ projects at the University of

Genova, which improves the confidence in favour of its

applicability.

Differently from other work based on formal lan-

guages or modelling notations, our specification may

be read, understood, and produced also by non-experts,

with the extra (but not burdensome) effort to make use

cases disciplined.

As future work, we intend to implement a tool guid-

ing the user in the application of DUSM to produce re-

quirements specifications based on disciplined use cases

and screen mockups. The tool will also automatically

validate the produced artifacts with respect to the set

of well-formedness constraints and bad smells we de-

scribed in the paper, concerning glossary, use case di-

agram, use cases descriptions, and use cases scenarios,

that will be implemented in the tool in a more formal

way (e.g., OCL) in order to make the automated vali-

dation possible. The validation of screen mockups with

respect to the associated well-formedness constraints

and bad smells will be made automated after having

abstractly represented screen mockups with a proper

metamodel. We also intend to apply our method on fur-

ther business domains and case studies, involving both

students and industrial partners to gather any useful

feedback to be used for future improvements. Finally,

we will investigate existing user stories quality assur-

ance proposals in order to understand whether some

principles could be also adopted to improve our method.

References

[1] Cockburn A. Writing Effective Use Cases (1st edition).

Addison-Wesley Professional, 2000.

[2] Hartson H R, Smith E C. Rapid prototyping in human-

computer interface development. Interacting with Compu-

ters, 1991, 3(1): 51-91.

[3] O’Docherty M. Object-Oriented Analysis and Design: Un-

derstanding System Development with UML 2 (1st edition).

Wiley, 2005.

[4] Ferreira J, Noble J, Biddle R. Agile development iterations

and UI design. In Proc. Agile 2017, Aug. 2007, pp.50-58.

[5] Astesiano E, Reggio G. Knowledge structuring and repre-

sentation in requirement specification. In Proc. the 14th

SEKE, Jul. 2002, pp.143-150.

[6] Choppy C, Reggio G. Improving use case based require-

ments using formally grounded specifications. In Proc. the

7th International Conference on Fundamental Approaches

to Software Engineering, Mar. 2004, pp.244-260.

[7] Reggio G, Leotta M, Ricca F et al. Business process mod-

elling: Five styles and a method to choose the most suitable

one. In Proc. the 2nd Int. Workshop. Experiences and Em-

pirical Studies in Software Modelling, Oct. 2012, Article

No. 8.

[8] Leotta M, Reggio G, Ricca F, Astesiano E. Towards a

lightweight model driven method for developing SOA sys-

tems using existing assets. In Proc. the 14th Int. Symp. Web

Systems Evolution, Sept. 2012, pp.51-60.

[9] Rivero J M, Grigera J, Rossi G, Luna E R, Montero F,

Gaedke M. Mockup-driven development: Providing agile

support for model-driven web engineering. Information and

Software Technology, 2014, 56(6): 670-687.

[10] Zhang J, Chang C, Chung J Y. Mockup-driven fast-

prototyping methodology for web requirements engineering.

In Proc. the 27th Annual International Computer Software

and Applications Conference, Nov. 2003, pp.263-268.

[11] Reggio G, Ricca F, Leotta M. Improving the quality and the

comprehension of requirements: Disciplined use cases and

mockups. In Proc. the 40th Euromicro Conf. Software Engi-

neering and Advanced Applications, Aug. 2014, pp.262-266.

[12] Reggio G, Leotta M, Ricca F. A method for requirements

capture and specification based on disciplined use cases

and screen mockups. In Proc. the 16th Int. Conf. Product-

Focused Software Process Improvement, Dec. 2015, pp.105-

113.

[13] Reggio G, Clerissi D. ACME: Complete require-

ments specification: A case study. http://sepl.dibr-

is.unige.it/TR/ACME-Complete.pdf, Aug. 2018.

[14] Landay J A, Myers B A. Interactive sketching for the early

stages of user interface design. In Proc. the SIGCHI Confe-

rence on Human Factors in Computing Systems, May 1995,

pp.43-50.

[15] Ricca F, Scanniello G, Torchiano M, Reggio G, Astesiano

E. On the effort of augmenting use cases with screen mock-

ups: Results from a preliminary empirical study. In Proc.

the 2010 ACM/IEEE Int. Symp. Empirical Software Engi-

neering and Measurement, Sept. 2010, Article No. 40.

[16] Scanniello G, Ricca F, Torchiano M, Gravino C, Reggio G.

Estimating the effort to develop screen mockups. In Proc.

the 39th Euromicro Conference on Software Engineering

and Advanced Applications, Sept. 2013, pp.341-348.

[17] Astesiano E, Cerioli M, Reggio G, Ricca F. A phased

highly-interactive approach to teaching UML-based soft-

ware development. In Proc. the 3rd Educators Symposium

of the 10th ACM/IEEE Int. Conf. Model Driven Engineer-

ing Languages and Systems, Sept. 2007, pp.9-18.

[18] Alexander A. ACME phase 2(c) requirements spec-

ification enabling external user functionality (version

6. 1). http://alvinalexander.com/java/misc/ReEnableExte-

rnalUser/, July 2018.

[19] Ricca F, Scanniello G, Torchiano M, Reggio G, Astesiano

E. On the effectiveness of screen mockups in requirements

engineering: Results from an internal replication. In Proc.

the 2010 ACM/IEEE Int. Symp. Empirical Software Engi-

neering and Measurement, Sept. 2010, Article No. 17.

Gianna Reggio et al.: DUSM: A Method for Requirements Specification and Refinement 939

[20] Ricca F, Scanniello G, Torchiano M et al. Assessing the

effect of screen mockups on the comprehension of func-

tional requirements. ACM Trans. Software Engineering and

Methodology, 2014, 24(1): Article No. 1.

[21] Nawrocki J, Olek L. Use-cases engineering with UC Work-

bench. In Software Engineering: Evolution and Emerging

Technologies, Zielinski K, Szmuc T (eds.), IOS Press, 2005,

pp.319-329.

[22] Nawrocki J R, Olek L. UC Workbench — A tool for writing

use cases and generating mockups. In Proc. the 6th Inter-

national Conference on Extreme Programming and Agile

Processes in Software Engineering, June 2005, pp.230-234.

[23] Adolph S, Bramble P, Cockburn A, Pols A. Patterns for Ef-

fective Use Cases (The Agile Software Development Series)

(1st edition). Addison-Wesley Professional, 2002.

[24] Maciaszek L A. Requirements Analysis and System Design

(3rd edition). Pearson Education Canada, 2007.

[25] Olek L, Ochodek M, Nawrocki J. Enhancing use cases with

screen designs. A comparison of two approaches. Computing

and Informatics, 2010, 29: 3-25.

[26] Almendros-Jimenez J M, Iribarne L. Designing GUI com-

ponents for UML use cases. In Proc. the 12th IEEE Inter-

national Conference and Workshops on the Engineering of

Computer-Based Systems, Apr. 2005, pp.210-217.

[27] Ciemniewska A, Jurkiewicz J, Olek L, Nawrocki J. Support-

ing use-case reviews. In Proc. the 10th Int. Conf. Business

Information Systems, Apr. 2007, pp.424-437.

[28] Kamalrudin M, Grundy J. Generating essential user inter-

face prototypes to validate requirements. In Proc. the 26th

ASE, Nov. 2011, pp. 564-567.

[29] Heck P, Zaidman A. A quality framework for agile require-

ments: A practitioner’s perspective. arXiv: 1406. 4692,

2014. http://arxiv.org/abs/1406. 4692, July 2018.

Gianna Reggio has been an asso-

ciate professor at University of Genova,

Genova, since 1992. Previously she

was an assistant professor at the same

university. She received her Ph.D.

degree in informatics in 1988. She

took part in several research projects,

and co-organized several international conferences and

workshops, the most relevant being ETAPS 2001 and

MODELS 2006. She has been a member of the program

committee of several international conferences and in

particular MODELS. Her research activity started in the

field of formal methods (algebraic specifications, specifi-

cation languages for concurrent systems and semantics

of programming languages). Later her interests moved

to the field of software engineering, proposing modelling

methods based on UML for requirement and design

specifications validated empirically, and recently she has

started working on development methods for service-based

and IoT systems. She is an author of several national and

international conferences and journals papers and books.

Maurizio Leotta is a postdoctoral

researcher at the University of Genova,

Genova. He received his Ph.D. degree

in computer science from the same

university, in 2015, with the thesis

“Automated Web Testing: Analysis

and Maintenance Effort Reduction”.

He is the author or co-author of more than 50 research

papers published in international journals and conferences.

His current research interests are in software engineer-

ing, with a particular focus on the following themes:

web/mobile/IoT application testing, functional testing

automation, business process modelling, empirical software

engineering, and model-driven software engineering.

Filippo Ricca is an associate pro-

fessor at the University of Genova,

Genova. He received his Ph.D. degree

in computer science from the same

university, in 2003, with the thesis

“Analysis, Testing and Re-structuring

of Web Applications”. In 2011 he was

awarded the ICSE 2001 MIP (Most Influential Paper)

Award, for his paper: “Analysis and Testing of Web

Applications”. He is an author or co-author of more than

100 research papers published in international journals and

conferences/workshops. Filippo Ricca was the Program

Chair of CSMR/WCRE 2014, CSMR 2013, ICPC 2011 and

WSE 2008. Among the others, he served in the program

committees of the following conferences: ICSM, ICST,

SCAM, CSMR, WCRE and ESEM. From 1999 to 2006, he

worked with the Software Engineering group at ITC-irst

(now FBK-irst), Trento, Italy. During that time he was

part of the team that worked on reverse engineering,

re-engineering and software testing. His current research

interests include: software modeling, reverse engineering,

empirical studies in software engineering, Web applications

and software testing. The research is mainly conducted

through empirical methods such as case studies, controlled

experiments, and surveys.

Diego Clerissi is a Ph.D. student in

computer science at the University of

Genova, Genova. In 2015, he received

his Master degree from the Depart-

ment of Informatics, Bioengineering,

Robotics, and Systems Engineering

(DIBRIS) of the University of Genova,

with the thesis “Test Cases Generation for Web Appli-

cations from Requirements Specification: Preliminary

Results”. His research interests include systems modeling,

requirements-based testing, web applications and IoT

systems testing.

