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Abstract User-generated social media data tagged with geographic information present messages of dynamic spatio-

temporal trajectories. These increasing mobility data provide potential opportunities to enhance the understanding of human

mobility behaviors. Several trajectory data mining approaches have been proposed to benefit from these rich datasets, but

fail to incorporate aspatial semantics in mining. This study investigates mining frequent moving sequences of geographic

entities with transit time from geo-tagged data. Different from previous analysis of geographic feature only trajectories,

this work focuses on extracting patterns with rich context semantics. We extend raw geographic trajectories generated

from geo-tagged data with rich context semantic annotations, use regions-of-interest as stops to represent interesting places,

enrich them with multiple aspatial semantic annotations, and propose a semantic trajectory pattern mining algorithm that

returns basic and multidimensional semantic trajectory patterns. Experimental results demonstrate that semantic trajectory

patterns from our method present semantically meaningful patterns and display richer semantic knowledge.

Keywords semantic trajectory, spatio-temporal, geo-tagged data, trajectory pattern mining

1 Introduction

Increasing geo-tagged social media data provide a

valuable repository for geographic information data.

This volunteered geographic information[1] provides po-

tential opportunities for the understanding of the sur-

face of earth. People’s historic spatio-temporal dyna-

mics can be obtained from this geo-tagged content.

A social media content tagged with geographic infor-

mation and time presents a footprint of a user in the

real world, and chronologically connecting all the geo-

tagged entities of a user results in a series of move-

ments, called a trajectory. A trajectory is represented

as a sequence of geographic points where each indicates

a geo-tagged entity. These trajectories contain rich in-

formation about people’s mobility behaviors which are

potentially useful and valuable to domain experts. Re-

cently, various kinds of research have been conducted

to extract people’s mobility behavior patterns from geo-

tagged social data, tourists traffic flows[2], association

rules of points of interest[3], sequential patterns of fre-

quent moving sequences of places[4], and people’s tra-

jectory patterns from geo-tagged photos[5].

A trajectory pattern, introduced in [6], represents a

moving sequence of places associated with transit time

annotations. The transit time annotations indicate fre-

quent time intervals between adjacent places of the se-

quence. [5] finds out trajectory patterns of moving se-

quences of spatial regions of interest with time inter-

vals from geo-tagged photos. [5] reveals patterns about

people’s frequent movements among spatial regions and

annotated transit time information. However, previ-

ous studies[3-5] deal with geographic feature only tra-

jectories with temporal information. They use the geo-

graphic feature of trajectory as a principal element in

measurement, computation and analysis of trajectories.

Their results are about mobility patterns among places

with geographic information such as specific geographic

coordinates. These results reveal knowledge about peo-

ple’s spatial level trajectory patterns. However, this

geographic feature is insufficient for many applications

that require richer context semantic information. There

has been a great deal of research aimed at incorporat-

ing additional semantic information in trajectory data

mining[7-9]. The semantics is a combination of geo-

graphic information and additional aspatial contextual
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information. Semantics enriches trajectory patterns

with semantic meanings referred to as semantic tra-

jectory patterns. For example, a trajectory pattern of

movement among different place categories (such as ho-

tels and restaurants) can reveal people’s mobility beha-

viors with respect to place categories. For an appli-

cation where the type of place information plays an

important role, semantic trajectory patterns are more

relevant, focused, and valuable than those without se-

mantics. Previous studies[3-5] with geographic feature

only trajectories lacking semantics are unable to reveal

these semantically meaningful patterns for many ap-

plications. Our study investigates the extraction of se-

mantic level trajectory patterns. The following example

shows a semantic trajectory pattern that is a frequent

moving sequence of “going to a hotel and then going to

a park after two hours on a rainy weekday and visiting

a beach two days later on a clear weekend”. This is a

much more detailed and meaningful pattern than one

(place A to place B) with traditional geographic feature

only trajectories.

Hotel[weekday][rainy]
2 hours
−−−−−→ Park[weekday][rainy]

2 days
−−−−→ Beach[weekend][clear].

Geographic trajectories can be enriched with addi-

tional contextual semantics in which a movement takes

place, such as aspatial semantic information, tempo-

ral and weather condition semantics[8]. These seman-

tically enriched trajectories, semantic trajectories for

short, can be used to help find much richer, more de-

tailed, novel and unknown semantic trajectory beha-

viors that are valuable to various domains. Mining

semantic trajectory patterns requires a new technical

development to handle both spatial and aspatial infor-

mation, and traditional approaches are unable to un-

ravel these meaningful and useful semantic trajectory

patterns.

This paper introduces a systematic method for ex-

tracting semantic level trajectory patterns from geo-

tagged social media data. Raw geographic trajectories

representing people’s movements and trails are created

from geo-tagged social media data. We then trans-

form raw geographic feature only trajectories into se-

mantic trajectories where each semantic trajectory is

a sequence of stops enriched with basic geographic se-

mantic information and multiple additional aspatial se-

mantic annotations. We use Regions-of-Interest (RoIs)

as stops. An RoI is a region that a density of trajec-

tories passes through. Using additional semantic infor-

mation databases, we add geographic semantic anno-

tations to stops (RoIs), and further enrich these stops

with multiple other aspatial semantic annotations. Fi-

nally, a semantic trajectory is represented as a sequence

of geographic semantic annotation labels of the stops

associated with multiple other aspatial semantic anno-

tations. We also propose a semantic trajectory pat-

tern mining algorithm to generate semantic trajectory

patterns from these semantic trajectories. Our method

can find basic semantic patterns which are the sequence

of basic geographic semantics only. It is also able to

identify multidimensional semantic trajectory patterns

which are basic geographic semantic patterns with addi-

tional aspatial semantic annotations. These additional

annotations could be arbitrary combinations of the ini-

tial multiple semantics. We conduct experiments using

real geo-tagged photos to find semantic trajectory pat-

terns, and undertake comparative experiments with the

traditional geographic feature only trajectory pattern

mining method. The results show that our method can

find richer semantically meaningful and finer trajectory

patterns.

The main contributions of this paper are as follows:

• introduction of a semantic trajectory pattern min-

ing framework from geo-tagged data;

• building semantic trajectories by identifying RoIs

and annotating them with aspatial information;

• devising a semantic trajectory pattern mining al-

gorithm that is able to discover basic and multidimen-

sional semantic trajectory patterns;

• providing experimental results that demonstrate

the robustness and applicability of our framework.

The rest of this paper is structured as follows. Sec-

tion 2 covers background techniques for trajectory pat-

tern mining and semantic sequential pattern mining,

and reviews related work. Section 3 illustrates defini-

tions of our semantic trajectory pattern mining prob-

lem. In Section 4, we introduce our framework for ex-

tracting semantic trajectory patterns from geo-tagged

social media data and describe our proposed semantic

trajectory pattern mining algorithm in detail. Experi-

mental results are presented and discussed in Section 5.

We conclude our work and present future work in Sec-

tion 6.

2 Background and Related Work

In this section, we review background techniques in-

cluding trajectory pattern mining and semantic sequen-

tial pattern mining, and related terminologies. Some



Guochen Cai et al.: Mining Semantic Trajectory Patterns from Geo-Tagged Data 851

previous work related to trajectory pattern mining from

geo-tagged social media data is also presented here.

2.1 Trajectory Pattern Mining

Georeferenced social media data imply spatio-

temporal trajectories of people on the geographical sur-

face of earth. A social media entity tagged with geo-

graphic location and time information indicates where

and when a user is located on earth respectively. All

the geo-tagged data of a person connected chronologi-

cally represents a geographically moving trajectory. A

trajectory is a time-ordered sequence of locations rep-

resented by the geographic coordinates.

Trajectory pattern mining (TPM)[6] is to identify

frequent moving sequences of places with time inter-

val annotations. Specifically, the sequence of places

shows mobility, and the time interval annotations in-

dicate a typical transit time between adjacent places

of the mobility. Following the same spirit of tempo-

rally annotated sequence (TAS) introduced in [10], a

trajectory pattern (T-Pattern) is a sequence of spatial

points with typical transition time between elements,

and it has the following form: T -pattern = (x0, y0)
α1−→

(x1, y1)
α2−→ · · ·

αk−−→ (xk, yk). T-Pattern can be also

represented as a couple (S,A): S = < (x0, y0), · · · ,

(xk, yk) > with temporal annotations A = < α1, · · · ,

αk >. The notion of frequency in T-Pattern is based

on the notion of support in T-Pattern that is defined

as the number of trajectories containing the T-Pattern.

For this spatio-temporal trajectory, the containment of

a T-Pattern takes place when both spatial positions

and transition time of the pattern approximately cor-

respond to those found in an input sequence. This

spatio-temporal containment requires that the two spa-

tial locations are approximated within a given error

tolerance, namely, a pair of spatial positions are neigh-

boring, and also requires that the two time intervals

are similar, that is, the tolerance τ is within the tem-

poral constraint (please refer to [6, 10] for more de-

tails). Furthermore, [6] proposes a grid-based RoI min-

ing method to determine a spatial match for spatial

points. This method generates spatial RoIs, that a

density of trajectories passes through, from input tra-

jectories. Spatial points located in the same RoI are

considered as neighbors. These neighboring spatial re-

gions are represented as a RoI. A trajectory pattern is

consequently represented as a sequence of spatial re-

gions with time intervals. [5] extracts trajectory pat-

terns from geo-tagged photos by applying TPM[6] with

an improved RoI mining approach. The improved RoI

mining method generates finer and more accurate RoIs

with arbitrary shapes. Various interesting trajectory

patterns, moving among spatial regions with transit

time, are found. However, previous TPM work focuses

on geographic feature only trajectories. Specifically,

the analysis of trajectories is based on the measure-

ment of geographical information of entities, and the

trajectory patterns are about movements on the spa-

tial level. Recently, some research[11-12] attempts to ex-

tend PrefixSpan[13] to incorporate semantics and time

information by transforming trajectory sequences into

symbolised sequences before using PrefixSpan. How-

ever, the transformation of spatio-temporal trajecto-

ries into symbolised sequences can mask off important

spatio-temporal trajectory patterns, and these studies

do not consider various spatial and aspatial semantic

databases as we do in this paper.

Different from previous work, our study is to find

semantic trajectory patterns whose predicate bears on

both spatial and aspatial semantic contextual data.

One example of semantic trajectory pattern could be

mobility among some types of places in a certain

weather condition with frequent time intervals when

focusing on a place type and weather semantic con-

text. We attempt to find frequent trajectory patterns

on a contextual semantic level and obtain semantically

meaningful patterns on mobility.

2.2 Semantic Sequential Pattern

Semantic trajectories are raw geographic trajecto-

ries enriched with context-specific aspatial semantic an-

notations. The main aim of semantic trajectory min-

ing is to provide applications with semantic knowledge

about the movement compared to geographic feature

only trajectories. [14] defines a semantic trajectory as

a sequence of semantically annotated stops. A stop

represents a frequently visited entity in the movement.

Semantic trajectory mining generates semantic trajec-

tories from raw geographic trajectories by extracting

spatial stops from raw trajectories first and then en-

riching stops with semantic spatial and aspatial infor-

mation. [15] proposes a grid-based semantic RoI mining

method to generate these stops, RoIs with basic geo-

graphic semantic annotation labels. It defines a seman-

tic trajectory as a sequence of basic semantic annotated

RoIs tagged with multiple additional semantic annota-

tions. [15] extracts semantic sequential patterns from

geo-tagged photos. Semantic sequential pattern min-

ing is to find all the sequences of semantic RoIs that are
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contained in a great number of trajectories. A semantic

sequential pattern is represented as a sequence of geo-

graphic semantic annotation labels. Authors of [15] also

added some other semantics to the trajectories to find

richer information about mobility. Similar to TPM, the

determination of a semantic sequential pattern is based

on the frequency and support of the pattern through

which number of trajectories pass. For these multi-

dimensional semantic trajectories, the containment re-

quires that RoIs are matching in dimensions of seman-

tics that the set of additional semantics of an RoI fully

or partially matches with the set of semantics of the

other RoIs. With the feature of dimensional contain-

ment, the results of semantic sequential patterns in [15]

include two types of semantic sequential patterns, basic

semantic sequential pattern, and multidimensional se-

mantic sequential pattern. A basic semantic sequential

pattern is a sequence of basic geographic semantic an-

notation only. A multidimensional sequential pattern is

a sequence of basic semantically annotated RoIs with

a set of additional semantics. Moreover, such a set of

multiple additional semantics is an arbitrary combina-

tion of part or all of the initial multiple semantics.

However, traditional semantic sequential pattern

mining approaches do not take temporal annotations

into account, and fail to detect semantic sequential pat-

terns with temporal changes. Our study focuses on the

extraction of semantic trajectory patterns which are se-

mantic sequential patterns with time interval annota-

tions. These time interval annotations provide people

with understanding and knowledge of transit time be-

tween semantic trajectory stops.

There have been several approaches for mining

movement patterns from geo-tagged photos[16-18]. [16]

extracts popular routes and sequences of places using

clustering techniques while [17] attempts to discover

semantic clustering patterns from geo-tagged photos.

Both approaches are designed for clustered patterns,

but not designed to discover semantic sequential pat-

terns with temporal information. Recently, [18] at-

tempts to detect sequences of tourist locations but with-

out semantic and temporal information. Our proposed

method reveals semantic sequential patterns with in-

terval time and temporal information from geo-tagged

data.

3 Problem Statement and Definitions

We formulate problems and define some terminolo-

gies of our study in this section. This study explores

people’s semantic level trajectory patterns from geo-

tagged social media data. We create raw geographic

trajectories from people’s geo-tagged data by chrono-

logically connecting them, which indicates a series of

locations visited. We use the geographic coordinates

of a geo-tagged entity to represent its location. A geo-

graphic trajectory is represented as a sequence of geo-

graphic coordinates with a time stamp. In this paper,

we focus on semantically annotated trajectories. We en-

rich the raw trajectories with multiple context-specific

semantic annotations including the basic geographic se-

mantic annotation and other additional aspatial seman-

tic information such as place types and weather. We

define a semantic trajectory (SemT) as a sequence of

basic semantic spatial information with additional as-

patial semantic information. Hereby we present prelim-

inary definitions for our study.

Definition 1. A trajectory is a sequence of geo-

graphic coordinates with time information T =< (x1,

y1, t1), (x2, y2, t2), · · · , (xn, yn, tn)>, where xi and yi

(for 1 6 i 6 n) are attached geographical coordinates

of a geo-tagged entity, and ti is the corresponding time

stamp.

Definition 2 (Semantic Trajectory). SemT =

< (SemA0, t0), · · · , (SemAn, tn)>, where SemAi is a

set of semantic annotations of an RoI, and ti is the

corresponding time stamp for 1 6 i 6 n. A seman-

tic element SemAi is denoted by (ei, Vi), where ei is

a set of basic semantics, and Vi is a set of additional

semantic annotations.

From these semantic trajectories, we aim to find

frequent sequences of semantic elements with transit

time that are frequent from trajectories. These mo-

bility behaviors are named as semantic trajectory pat-

terns in this paper. A semantic trajectory pattern con-

tains a sequence of semantic elements and a sequence of

transit time where each demonstrates a frequent time

interval α between two consecutive elements. Adopt-

ing the spirit of trajectory patterns[6], we represent se-

mantic trajectory patterns (SemT-Pattern) as a pair

of sequences of semantic elements and time annotation

sequence. When an element is the basic geographic se-

mantic annotation only, SemT-Pattern is a basic SemT-

Pattern. When an element is associated with multiple

other semantics, SemT-Pattern is a multidimensional

SemT-Pattern.

Definition 3 (SemT-Pattern). A semantic tra-

jectory pattern is a pair (SemS,A), where SemS =

<(SemA0), · · · , (SemAn)> is a sequence of semantic
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elements, and A = <α1, · · · , αn> is the (temporal) an-

notations of the sequence.

Our task is to find out all frequent SemT-Patterns

that the number of occurrences in trajectories given

support of SemT-Pattern is greater than a pre-defined

minimum support threshold. An occurrence of SemT-

Pattern means that there is a trajectory containing the

SemT-Pattern. In this study, using multidimensional

semantic trajectories, a containment of a pattern oc-

curs when both semantic elements and time intervals

of the pattern approximately match with those found

in a trajectory. Specifically, we consider another seman-

tic element when the basic semantics of two elements

is the same and the additional semantics of an element

is partial or all matching the additional semantics of

the other element. This definition of match of elements

adopts the dimensional containment[15]. For the match

of two time intervals, the gap between two time inter-

vals is smaller than a given tolerance threshold.

Definition 4 (Dimensional and τ -Containment

(�d,τ )). Given a semantic trajectory SemT =

< (SemA0, t0), · · · , (SemAn, tn) >, time tolerance τ ,

and a SemT-Pattern (SemS,A) = SemA0
α1−→ · · ·

αn−−→

SemAk, we say that (SemS,A) is contained in SemT

((SemS,A) �d,τ SemT ), if and only if there exists a

subsequence SemT ′ of SemT , SemT ′ = <(SemA′

0, t
′

0),

· · · , (SemA′

k, t
′

k)> such that:

1) SemS �d SemT ′.sequence of SemA;

∀06j6k, ej = e′j, and Vj ⊆ V ′

j ;

2) ∀16j6k.|αj − α′

j | 6 τ , where ∀16k6n.α
′

j = t′j −

t′j−1.

In this study, the problem is to find all frequent

SemT-Patterns from trajectories which are generated

from a given database of geo-tagged social media data.

Definition 5 (Semantic Trajectory Pattern Min-

ing). Given a database of input trajectories D, a time

tolerance τ , and a minimum support threshold minSup,

the semantic trajectory pattern mining problem is to

find all frequent SemT-Patterns whose support is no

less than minSup. Support of a SemT-Pattern is the

number of trajectories T ∈ D such that SemT-Pattern

�d,τ T .

4 Framework and Methods

4.1 Framework

Our method contains three main steps: generation

of raw trajectories, generation of semantic trajectories

from raw trajectories, and extraction of semantic tra-

jectory patterns from those semantic trajectories. First,

we create raw trajectories from geo-tagged social me-

dia data by chronologically connecting entities. Second,

we generate semantic trajectories from raw trajectories

through two stages: semantic RoI mining and enrich-

ing additional semantic annotations. In the RoI mining

stage, we find RoIs with the basic geographic informa-

tion semantics. And, in the other stage, we enrich the

RoIs with several additional semantic annotations and

the raw trajectories are transformed into semantic tra-

jectories. At last, we apply our semantic trajectory

pattern mining algorithm to find frequent semantic pat-

terns.

4.2 Generating Semantic Trajectories

We create raw trajectories from people’s geo-tagged

social media data, before we adopt the semantic tra-

jectory generating method[15] to obtain semantic tra-

jectories from the raw trajectories. First, this method

finds RoIs with basic semantics through the seman-

tic RoI mining approach that is a grid-based method

considering contextual semantics. It produces geo-

graphically and semantically enriched RoIs from geo-

graphic trajectories using additional spatial and aspa-

tial databases. Fig.1 briefly illustrates the procedure of

semantic RoIs mining method. In the first step, this

method computes dense spatial grid cells that a high

density of trajectories passes through. These cells are

then enriched with a basic, geographic and semantic

annotation which describes a place type in the spatial

cell. At last, neighboring semantic cells exhibiting the

same basic semantic place type are merged to create

semantic RoIs. Each extracted semantic RoI, particu-

larly the geographic semantic annotation, is considered

to be an interesting stop of the trajectory.

2 2

2

HotelHotel Hotel

Park Park

(b)(a) (c) (d)

Fig.1. Process of grid-based semantic RoI mining approach
(minimum support is 2). (a) Geographic trajectories. (b) Dense
spatial cells. (c) Basic semantic cells. (d) Basic semantic RoIs.

In the second step, these basic semantic RoIs are

further enriched with multiple other semantic annota-

tions that provide richer information. At last, each

raw trajectory is transformed into a semantic trajectory

based on those detected semantic RoIs. Each seman-

tic trajectory is a sequence of geographic and semantic
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annotation labels with a set of multiple additional se-

mantics.

4.3 Semantic Trajectory Pattern Mining

We propose a semantic trajectory pattern min-

ing algorithm to find SemT-Patterns from the gene-

rated semantic trajectories. Our algorithm is deve-

loped based on TAS algorithm scheme[10] which ex-

tends the PrefixSpan[13] projection-based method. TAS

is not designed to handle semantic trajectories, and in

this paper it is extended to deal with additional as-

patial semantic annotations and to create multidimen-

sional prefixes to handle multiple aspatial annotations.

The algorithm computes frequent interval sequences for

SemT-Patterns in a progressively increasing way that

the length of frequent interval sequence is incremented

along the projection extension level (please refer to [10]

for detailed TAS).

Algorithm 1 provides the procedure of semantic tra-

jectory pattern mining algorithm. For an actual projec-

tion, we extract frequent time interval sequences in line

7, and generate semantic trajectory patterns by inte-

grating prefixes and frequent interval sequences in line

8. Line 10 removes the occurrences of prefixes that

do not contribute to the frequent interval sequences.

Lines 12∼16 extend actual projection that generates a

sub-projection for each newly extracted frequent item

of actual projection. This algorithm progressively finds

longer patterns.

Algorithm 1 . SemanticTrajectoryPatternMining

Input: a set of semantic trajectories T , a minimum support
minSup, a temporal threshold tau

Output: a set of semantic trajectory patterns (SemT-patterns)
1: L ← 0
2: P0 ← {T × {〈〉}}
3: while PL 6= ∅ do

4: PL+1 ← ∅
5: for all P ∈ PL do

6: if P.prefix ≥ 2 then

7: ExtractF requentIntervalAnnotations (P )
8: patterns ← GeneratingTrajectoryPatterns(P )
9: Output(patterns)
10: P ← PruneAnnotations(P, Intervals)
11: end if

12: for all element e ∈ P do

13: if support(e) > minSup then

14: PL+1 ← PL+1 ∪ {ExtendProjection(P, e)}
15: end if

16: end for

17: end for

18: L++
19: end while

4.3.1 Multidimensional Sequence Projection

Besides the generation of projected sequences and

up-to-date annotations in T-sequences, our method re-

quires extra steps to generate multidimensional pre-

fixes that will be used to make multidimensional SemT-

Patterns. Specifically, we extend the basic prefix, the

sequence of basic geographic semantic annotations, by

finding a frequent element and adding it to the pre-

fix of actual projection to make new longer prefixes.

Also, the projected sequences are generated by select-

ing the subsequence that starts at the next element

after the frequent element. For those updated anno-

tation sequences in T-sequence, each annotation will

be extended with an occurrence of the projected ele-

ment successive to the entry-point of the former, as

described in [10]. These basic prefixes will be used

to generate basic SemT-Patterns. In this study, we

also produce multidimensional SemT-Patterns that are

based on the multidimensional prefixes. In the next

step, our method also needs to extend each multidi-

mensional prefix which is a basic prefix with additional

frequent semantics. The key point is to find multidi-

mensional elements. This work becomes the task of

finding the combination of multiple additional seman-

tics that is frequent for each frequent basic element. To

do this, we apply the Bottom-up Computation (BUC)

algorithm[19] to all initial additional semantics for every

frequent element. The results are the arbitrary combi-

nations of part or all these multiple semantics that are

frequent. Frequent basic elements with these extracted

combinations (that are frequent) become multidimen-

sional elements. And, based on the consistent combina-

tions, these multidimensional elements are added to the

multidimensional prefixes of actual projection to make

new longer multidimensional prefixes.

Algorithm 2 illustrates a procedure for extending

the projection method. Particularly, for multidimen-

sional prefixes, we need to store values of dimensions

for every frequent item in line 8. The values of dimen-

sions are then calculated by the BUC algorithm as in

line 14. The results of the BUC algorithm are sets of

frequent values of arbitrary dimensional combinations.

This approach solves the issue of arbitrary combination

of dimensions. Similar to the extension of basic prefix,

we add frequent values of dimensions to existing mul-

tidimensional prefixes to create expected new multidi-

mensional prefixes in lines 17∼25. To keep consistent

combinations of dimensions, we connect new frequent

values to multidimensional prefixes that both have the

same dimensions in line 19. We also need to ensure that
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both frequent value and extended prefix belong to the

same sequence in line 21.

Algorithm 2 . ExtendProjection

Input: a projection P and an element ele

Output: a projection of P w.r.t ele

1: P ′ ← ∅
2: Ddims ← ∅
3: for all T-sequence t = (S,A) ∈ P, e ∈ t do

4: S′ ← S|ele and A′ ← 〈〉
5: for all annotation(a, e) ∈ A do

6: for all (s, t) ∈ Ss.t.ele ∈ s ∧ t > e do

7: A′ ← append(A′, (append(a, t),→ t))
8: Ddims.add(t.ele.dimV alues)
9: end for

10: end for

11: P ′ ← P ′ ∪ {(S′, A′)}
12: end for

13: ⊲ projection of multidimensional prefixes;
14: freV als ← computeFrequentV alues(Ddims)
15: Remove infrequent values based on number of unique se-

quences
16: ⊲ generate multidimensional prefixes;
17: for all mdPrefix ∈ P.mdPrefixes do

18: ⊲ keep consistency of dimensions;
19: fredimV alues ← freV als.values(mdPrefix.dimen-

sions)
20: for all freV al ∈ fredimV alues do

21: if (mdPrefix.sequences ∩ freV alue.sequences) >

minSup then

22: P ′.mdPrefixs ← P ′.mdPrefixs ∪ (dim, append-
(mdPrefix, freV alue))

23: end if

24: end for

25: end for

26: return P ′

4.3.2 Finding Frequent Time Interval

Another process is to calculate time interval anno-

tations for trajectory patterns.

In projections, the type of T-sequence is used as a

projected sequence. T-sequence contains an annotation

sequence which stores several records of occurrences of

prefix in the sequence. An occurrence includes a se-

quence of time stamps of each occurrence. The algo-

rithm uses these time stamps to find the time interval

between elements and calculates frequent intervals. We

generate frequent interval sequences in a progressively

increasing way. Specifically, we first calculate the fre-

quent intervals for the last two elements of the prefix,

and then add the frequent interval into the interval se-

quence to make a longer interval sequence for actual

projection. These new longer interval sequences will be

integrated to prefixes of actual projection to generate

SemT-Patterns.

The procedure of finding frequent interval anno-

tations is presented in Algorithm 3. For an actual

projection, the algorithm firstly collects all the time

blocks of two elements from occurrence sequences in

lines 1∼9. Then, lines 11∼20 calculate frequent time

intervals. At last, this algorithm generates new longer

interval annotations in lines 21∼30. In projection, a

prefix may occur several times at different positions in

a sequence where several occurrences are stored. To

find a frequent interval between the last element and

its former element of the basic prefix, we need to use

all transit time of all occurrences in line 5. A time

block, an interval, is then created for each time by

making a time range of 2τ in line 6. An interval has

two boundaries, the lowest time value and the high-

est value. Some intervals probably have intersecting

ranges. Areas of intersections are various. To make the

calculation of frequent intervals easier, we create some

basic interval cells based on unique values of bound-

aries of all intervals in lines 11∼14. Therefore, each

interval will appear in several basic interval cells and

conversely each basic interval cell is covered by some

intervals. The density of basic cell is the number of

intervals that covers the basic cell in lines 15∼20. We

remove invalid basic cells whose density is less than the

Algorithm 3 . ExtractFrequentIntervalAnnotations

Input: a Projection database P
Output: a set of extended frequent interval sequences
1: ⊲ extract time interval for each occurrence;
2: intervals ← ∅
3: for all T-sequence t = (S,A) ∈ P do
4: for all annotation(a, e) ∈ A do

5: time ← a.lastEle.time− a.SecondlastEle.time
6: interval with center time and edge 2τ
7: intervals.add(interval)
8: end for

9: end for

10: ⊲ compute density time interval;
11: basicIntervals ← ∅, timeBoundaries ← ∅
12: for all interval ∈ intervals do

13: timeBoundaries = timeBoundaries ∪ inter-
val.timeBoundaries

14: end for

15: Sort timeBoundaries
16: Build basicIntervals based on timeBoundaries
17: for all interval ∈ intervals do

18: involvedBasicIntervals ← interval ∩ basicIntervals
19: For each basicInterval in involvedBasicIntervals, incre-

ment basicInterval.density
20: end for

21: Remove sparse basic intervals from basicIntervals
22: frequentIntervals ← mergeNeighborhood(basicIntervals)
23: ⊲ extend interval sequence;
24: for all sequence ∈ P.lastLevelIntervalSequence do

25: for all interval ∈ frequentIntervals do

26: if (sequence.occurrences ∩ interval.occurrences) ←
minSup then

27: P.intervalSequences ← P.intervalSequences ∪
append(sequence, interval)

28: end if

29: end for

30: end for
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frequency threshold. In the next step, this algorithm

merges the neighboring basic interval cells to make final

frequent intervals in line 21. This strategy is to reduce

the number of SemT-Patterns. At last, we add frequent

intervals to interval sequences to make new longer in-

terval sequences according to both neighboring basic

interval cells belonging to the same occurrence in line

22. The new interval sequences which occur in a den-

sity of sequences are stored for actual projection in lines

24∼30 that will be used to produce semantic trajec-

tory patterns. Once frequent interval annotations have

been extracted, we generate semantic trajectory pat-

terns from actual projections in line 8 of Algorithm 1.

Frequent interval annotations are integrated to the ba-

sic prefix and multidimensional prefixes to make basic

SemT-Patterns and multidimensional SemT-Patterns,

respectively. During the process, we need to check the

number of unique sequences that contain the pattern

to determine if it is frequent.

Fig.2 displays an example to illustrate the working

principle of our algorithms. Algorithm 1 takes a set

of semantic trajectories as input and produces a set

of semantic trajectory patterns as output. Algorithm

2 generates a set of frequent sequences of RoIs whilst

Algorithm 3 computes interval time for those frequent

sequences of RoIs.

Input: Semantic trajectories

Algorithm 1: Finding semantic trajectory patterns:

Output: Semantic trajectory patterns

e.g.,

1) (( Beach[clear], t1),  (Park[rain], t2), Home[rain], t3))

2) (( Beach[clear],  t1’ ), Lake[clear], t2’ ),  (Park[rain], t3’), (Home[rain], t4’ ))

Frequent sequence (S):

e.g., ((Beach [clear]),  ( Park[rain]), Home[rain]))

Frequent interval time (Time):

e.g., (3 hours, 2 hours)

e.g., < Beach[clear] – 3 hours– Park[rain] –2 hours – Home[rain]>

Algorithm 2: 

a) Extending projection database

b) Generating frequent sequence of RoIs (S)

Algorithm 3:

Calculating frequent interval time (Time) for frequent sequence (S)

Fig.2. Illustration of our algorithms.

5 Experiments

We conducted experiments to show that our method

has the ability to find SemT-Patterns including basic

patterns and multidimensional patterns with an arbi-

trary combination of dimensions. We also executed

experiments to compare our method with the tradi-

tional geographic feature based TPM method[5]. Ex-

perimental results demonstrated that discovered SemT-

Patterns provide more semantically meaningful infor-

mation and show semantic people’s mobility behaviors.

Moreover, our method finds more SemT-Patterns than

the TPM method which extracts less geographic trajec-

tory patterns.

5.1 Dataset and Parameters

We used real geo-tagged photos collected from

Flickr 1○. Flickr is one of popular photo-sharing web-

sites where photo-takers share photos with their friends

and family. Flickr provides Flickr API with which

developers can collect and manage photos with ease

and many studies have been conducted with Flickr

photos[3,15,18]. Flickr photos contain various features

such as images, textual tags, temporal information, and

also geo-tagged information. In this study, we limit

our study to temporal and geo-tagged information as in

[15-18] to build spatio-temporal trajectories from geo-

tagged data since the main aim of this research is to

1○https://www.flickr.com/, Mar. 2017.
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detect spatio-temporal trajectory patterns. Please note

that spatio-temporal trajectories could be built from

other geo-tagged social media data such as Twitter 2○ or

Foursquare 3○ in the same way as we built from Flickr.

Also note that these social media data generated trajec-

tories, exhibiting data sparsity and low/irregular sam-

pling rate, are different from GPS trajectories. Our

proposed algorithms are to extract semantic sequential

patterns with interval time information; thus they in-

herently handle these special characteristics of trajec-

tories from geo-tagged data. We provide experimental

results with both trajectories from geo-tagged data and

GPS trajectories in order to demonstrate the robustness

and applicability of our algorithms.

We collected geo-tagged photographs taken in the

Queensland area, Australia, between April 2014 and

March 2015. After pre-processing, we had 64 733

cleaned photograph records, and obtained 1 404 valid

raw trajectories including 61 322 points in total. Most

of the trajectories lie on coastline areas where the ma-

jor cities of Queensland are located. We also used a

geographical information database from Geonames 4○

for the type of place semantics and the city semantics

and a weather information database from Bureau of

Meteorology 5○ for weather semantics. The Geonames

database consists of over 9 million unique features, and

all features are grouped into one of nine feature classes

and further sub-grouped into one of 645 feature codes.

This study uses these feature codes as the type-of-place

semantics information. The weather database contains

both observation stations database and daily weather

observations database. This study uses both databases

including stationID, stationName, latitude and longi-

tude, and weather observation attributes.

Our method requires three parameters which are

minimum support (minSup) for a cell to become an

RoI, the size of geographical grid cell (cellSize) which

is used to partition the study region, and time tole-

rance (tau) which is the acceptable range for a time

interval. In this study, our semantic trajectories having

less than 30 elements will be used because long trajecto-

ries, containing many identical place type elements, will

produce a huge number of occurrences requiring expen-

sive running time. Moreover, small values of parameter

minSup will lead to a high consumption of memory that

PrefixSpan algorithm quickly generates. As in [5], in-

creasing values of tau generate more frequent patterns,

a valid range of time intervals becomes wider, and more

intersections of time intervals occur. Additionally, an

increase of cellSize values will produce more RoIs. As a

result, more valid points and trajectories will be consi-

dered in the calculation of patterns, and thus will re-

sult in more potential patterns. In this experiment, we

select a value of 0.008 (0.8%) for parameter minSup,

a value of 0.001 5 (150 meters) for parameter cellSize,

and a value of 2 days for tau for experimental purposes.

5.2 Semantic Trajectory Patterns

We found 65 basic semantic trajectory patterns in-

cluding 29 2-length patterns, 28 3-length patterns, 7

4-length patterns, and 1 5-length pattern. We also ob-

tained 2 124 multidimensional semantic trajectory pat-

terns. We demonstrated several typical results includ-

ing basic place type semantic trajectory patterns, pat-

terns associated with multiple additional dimensions,

arbitrary combinations of dimensions, and patterns

with various frequent time intervals.

Table 1 lists some basic semantic trajectory pat-

terns of length from 2 to 5. Every pattern shows a fre-

quent trajectory moving from a type of place to some

others with frequent time interval information. Each

element of the pattern is a feature code from the Geo-

names database used to categorise places. These pat-

terns provide us with meaningful mobility information

among types of places and transit time. Specifically,

for 2-length patterns, one frequent pattern is “going to

a hotel and then going to a rail station with a time in-

terval range of 0 to 5 days”. Another 2-length pattern

is “from a park to a populated place with an interval

time of 2 days”. A third pattern is “moving from a

hotel to a bridge after 0 to 3 days”. For other patterns

with a longer length, they involve more types of places

that show diverse mobility. As shown in the example

patterns, the hotel type occurs in many patterns and

occupies most elements in long patterns, in particular,

the 5-length pattern indicates movement among hotels

only. This is because many initial semantic trajecto-

ries have several hotel elements. However, the SemT-

Patterns generated from our method help users under-

stand people’s frequent mobility behaviours on the geo-

graphic semantic level.

2○https://twitter.com, Mar. 2017.
3○https://foursquare.com/, Mar. 2017.
4○http://www.geonames.org/, Mar. 2017.
5○http://www.bom.gov.au/climate, Mar. 2017.
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Table 1. Examples of Basic SemT-Patterns

Length Basic SemT-Pattern

2 HTL
[0,5]
−−−→ RSTN,

PRK
[0,2]
−−−→ PPLX,

HTL
[0,3]
−−−→ BDG

3 HTL
[0,3]
−−−→ PPLA

[0,2]
−−−→ HTL,

HTL
[0,35]
−−−−→ HTL

[0,2]
−−−→ BDG,

RSTN
[0,8]
−−−→ HTL

[0,2]
−−−→ HTL

4 HTL
[0,35]
−−−−→ HTL

[0,15]
−−−−→ HTL

[0,2]
−−−→ PPLA

5 HTL
[0,35]
−−−−→ HTL

[0,15]
−−−−→ HTL

[0,4]
−−−→ HTL

[0,2]
−−−→ HTL

Note: HTL: hotel; PRK: park; BDG: bridge; PPLA: seat of
a first-order administrative division; RSTN: railroad station;
PPLX: section of populated place.

Our method also generates semantic trajectory pat-

terns with multiple additional semantics. Table 2 lists

some multidimensional semantic patterns belonging to

the group of basic pattern of hotels to populated places.

This additional semantics provides much richer infor-

mation about people’s frequent mobility. For a combi-

nation of day type and city dimensions, we find that a

pattern “visiting hotel on a weekday in Brisbane first

and then moving to a place in an administrative di-

vision on weekday after 0 to 3 days”. This pattern

indicates the day type and city information of the mo-

bility. For dimensions of day type, city and weather

together, a finer SemT-Pattern is found that frequent

mobility occurs on a clear day besides the day type and

city information.

Table 2. Examples of Multidimensional SemT-Patterns

from HTL to PPLA

Combination of
Dimensions

Semantic Pattern

Day type,
city

HTL[weekday][Brisbane]
[0,3]
−−−→

PPLA[weekday][Brisbane]

Day type,
weather

1) HTL[weekend][clear]
[0,3]
−−−→

PPLA[weekday][clear]

2) HTL[weekday][clear]
[0,3]
−−−→

PPLA[weekday][clear]

Day type, city,
weather

HTL[weekday][Brisbane][clear]
[0,3]
−−−→

PPLA[weekday][Brisbane][clear]

Note: HTL
[0,3]
−−−→ PPLA.

Another important feature of our results is in its

ability to have arbitrary combinations of multiple di-

mensions. We added four additional dimensions into

the semantic trajectories. The multidimensional SemT-

Patterns we obtained are basic patterns with different

combinations of part dimensions or all four additional

dimensions. As shown in Table 2, we find patterns with

a combination of day type and city dimensions, pat-

terns with a combination of day type and weather di-

mensions, and patterns with day type, city and weather

dimensions. The benefit of this feature is that we can

find some interesting semantic trajectory patterns with

partial additional dimensions when all four dimensions

together are calculated to be infrequent. Benefitting

from the TAS algorithm, the same sequence of place

types can have various time interval annotations that

can generate various SemT-Patterns. These various

time annotations provide people with more knowledge

about transit time between types of places. As shown

in Table 3, for the basic pattern of visiting two ho-

tels followed by a railroad station, there are two diffe-

rent frequent transit time intervals. One interval group

is spending a range of 0 to 35 days between the first

two hotels, and 0 to 3 days from the second hotel to a

railroad station. The other is 39∼59 days interval be-

tween two hotels. Two multidimensional patterns with

weather and city semantics have the same time interval

group.

Table 3. Examples of SemT-Patterns with

Various Time Intervals

Type of
Patterns

Combination
of Dimensions

Semantic Pattern

Basic
patterns

1) HTL
[0,35]
−−−−→ HTL

[0,3]
−−−→

RSTN

2) HTL
[39,59]
−−−−→ HTL

[0,3]
−−−→

RSTN

Multidimensional
patterns

Weather, city 1) HTL[clear][BNE]
[0,35]
−−−−→

HTL[clear][BNE]
[0,3]
−−−→

RSTN[clear][BNE]

2) HTL[clear][BNE]
[39,59]
−−−−→

HTL[clear][BNE]
[0,3]
−−−→

RSTN[clear][BNE]

Note: HTL→ HTL → RSTN (BNE: Brisbane).

5.3 Comparison with the TPM Method

5.3.1 T-Patterns from the TPM Method

In this subsection, we compare our method with

the traditional TPM method[5] that outperforms origi-

nal TPM[6]. We focus on comparisons between SemT-

Patterns and T-Patterns. Using the same values of

parameters with minSup = 0.008, cellsize = 0.001 5,

tau = 2, the TPM method generated 33 spatial RoIs

and found 25 patterns including 24 2-length patterns

and 1 3-length pattern.
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Table 4 lists four examples of T-Patterns. These

T-Patterns are sequences of spatial RoI labels with

time intervals. Each spatial RoI is composed of several

neighboring spatial cells represented as bounding boxes

of geographical coordinates. One 2-length T-Pattern

is “visiting region 1 first and then going to region 35

after 0 to 2 days”. By visualising these four spatial

T-Patterns on NASA earth shown in Fig.3, we can

see where the spatial RoIs and T-Patterns locate. In

Fig.3(a), we can find that this 2-length pattern locates

in Brisbane and its two spatial regions are geographi-

cally close. The other two 2-length patterns, Figs.3(b)

and 3(c), are located in Cairns city and Brisbane city,

respectively. The 3-length pattern in Fig.3(d) is in Bris-

bane moving two regions where one region has two diffe-

rent labels representing two different visits. One major

issue with the traditional approach is that we need a

map overlay or georeferencing to make sense of those

detected RoIs.

Table 4. Examples of T-Patterns

Length Trajectory Pattern

2 R1
[0,2]
−−−→ R35

R8
[0,4]
−−−→ R45,

R24
[11,12]
−−−−→ R67

3 R27
[0,2]
−−−→ R85

[0,2]
−−−→ R134

(b)(a)

(c) (d)

Fig.3. Examples of trajectory patterns plotted on NASA earth:
(a) R1 to R35; (b) R8 to R45; (c) R24 to R67; (d) R27 to R85
to R134.

5.3.2 SemT-Patterns

Semantic trajectory patterns provide richer seman-

tically meaningful information and semantic level beha-

viors than the geographic T-Patterns. Table 5 lists

some 2-length SemT-Patterns similar to the 2-length T-

Patterns shown in Table 4. Please note that the main

difference between SemT-Patterns and T-Patterns is

that SemT-Patterns present frequent movement pat-

terns between types of places while T-Patterns show

frequent movement patterns between spatial regions la-

beled with an ID. Obviously, the type of place pro-

vides more meaningful and readable semantic informa-

tion than the abstraction of spatial region with iden-

tification number. Moreover, there are several pieces

of additional semantic information added to the SemT-

Patterns. Though we can obtain the semantic know-

ledge of T-Patterns through post-processing methods

such as georeferencing or map overlap, there are still

some drawbacks. First, the post-processing is not a

natural way of producing semantic patterns. Second,

the TPM method misses some potential semantic level

patterns.

Table 5. Examples of 2-Length SemT-Patterns

Length Trajectory Pattern

2 HTL
[0,5]
−−−→ RSTN

PARK
[0,2]
−−−→ PPLX

HTL[Cairns]
[0,2days]
−−−−−−→ Pier

HTL[weekday][BNE][clear]
[0,3]
−−−→ PPLA[weekday][BNE][clear]

Fig.4 visualises a 2-length SemT-Pattern

(HTL[Cairns]
[0, 2days]
−−−−−−→ Pier) corresponding to the 2-

length T-Pattern (R8
[0,4]
−−−→ R45) shown in Fig.3(b).

Note that in Cairns, the Great Barrier Reef is one of

the most famous daily travel destinations which at-

tracts millions of people to visit. Obviously, Fig.4 is

easier to understand than Fig.3(b). This SemT-Pattern

shows a mobility behaviour of hotel to the fleet station.

In fact, there are some other reef tour routes from

spatially different piers to different islands or reef plat-

forms in Cairns. These routes fail to be triggered as

patterns because the number of involved trajectories is

less than the minimum support threshold.

Obviously, our SemT-Patterns provide richer infor-

mation and higher semantic-level behaviours in both

behaviour and information levels. Differences between

SemT-Patterns and spatial T-Patterns can be sum-

marised in Table 6.
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Fig.4. 2-length SemT-Pattern: Hotel[Cairns]
[0, 2days]
−−−−−−−→

Pier[Cairns].

Table 6. Differences Between SemT-Patterns and T-Patterns

Level SemT-Patterns T-Patterns

Behavior a) (Basic patterns) movement on
the type of place semantic level;
b) (finer patterns) movement on
the type of place + subset of ad-
ditional weather, temporal and
city dimensions

(Spatial
level) move-
ment on the
spatial level

Information a) (Place type) hotel, park, or rail
station; (weather) clear, rainy,
or overcast; b) (temporal) day,
weekday, weekend, morning, or
daytime; c) (city type): Brisbane,
Cairns or Sydney

Spatial RoIs
with ID

SemT-Patterns show people’s movement behaviours

on a high semantic level whilst spatial T-Patterns de-

pict those on a low geographic spatial level. SemT-

Patterns reveal how people move on the type of place se-

mantic level, whilst T-Patterns show spatial positions of

patterns. For applications that require advanced know-

ledge about people’s movement behaviours at the high

semantic level, SemT-Patterns are more understand-

able, readable, readily usable, useful, and valuable than

spatial T-Patterns.

In addition, our method finds more trajectory pat-

terns than the TPM method does. Fig.5 shows the

comparison of the number of basic patterns found by

our method, and patterns found by the TPM method.

As we mentioned that an increase in the value of para-

meter τ produces more patterns for both methods, we

use cellSize = 0.001 5 and τ = 2, and test values of

minSup from 0.007 to 0.014. Using bigger values, both

methods find fewer patterns, specifically, for a value

of 0.014, our method finds 5 basic patterns and TPM

finds 2 patterns. On contrast, using small values, our

method finds much more basic patterns than the TPM

method. As discussed above, more patterns are trigged

when using semantic features; however patterns become

infrequent with the geographic feature only approach.

Moreover, our method can find many multidimensional

semantic patterns which are also useful to the under-

standing of mobility. Note that this is not possible with

traditional TPM.
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Fig.5. Comparison of the number of patterns for SemT-Patterns
and T-Patterns.

Both methods have a similar memory requirement

due to the rapidly growing number of projections. Both

methods also have similar run time as the value of

minSup increases. Our method requires slightly more

time with smallerminSup values as our approach gene-

rates more patterns. Note that our method needs extra

steps to process additional projections for multidimen-

sional prefixes and extension of multidimensional pat-

terns.

5.4 Experiment with GPS Trajectories

In order to demonstrate the applicability of our

framework to GPS trajectories, we provide experimen-

tal results with GPS trajectories in this subsection.

Fig.6 shows a truck GPS dataset in Athens,

Greece[6]. The dataset is map-matched to the road net-

work, and it is for 273 trucks with a total of 112 203

points. Again we use Geonames database and weather

database as additional semantic information to be con-

sistent with Flickr datasets. We set minSup = 0.4,

cellSize = 0.1 (10 km) and τ = 1 day for this experi-

ment. Users are encouraged to explore more patterns

with different parameter values, and here we report

some interesting semantic patterns with this parame-

ter setting.

Our experiment reveals 9 RoIs and 51 semantic tra-

jectories with various lengths from 1 to 160. Table 7

displays two basic 2-length patterns and their corre-

sponding multidimensional patterns, and one 3-length

pattern (PPL
[0,5]
−−−→ HLL

[0,2]
−−−→ PPLA3) and its multidi-

mensional patterns. Please note that traditional TPM

is unable to reveal these semantic patterns. This also
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demonstrates that our approach could be applied to

different types of trajectories with regular and dense

sampling such as GPS trajectories.

Fig.6. GPS truck trajectories in Athens, Greece[6]: 273 trucks
with a total of 112 203 points.

Table 7. Examples of SemT-Patterns from

Truck GPS Trajectories

Length Trajectory Pattern

2 PPL
[0,5]
−−−→ HLL

PPL[clear][afternoon]
[0,5]
−−−→ HLL[clear][midnight]

PPL[clear][weekday]
[0,5]
−−−→ HLL[clear][weekend]

2 HLL
[0,4]
−−−→ PPLX

HLL[clear][weekday][Athens]
[0,4]
−−−→

PPLX[clear][weekday][Athens]

3 PPL
[0,5]
−−−→ HLL

[0,2]
−−−→ PPLA3

PPL[weekday][evening]
[0,5]
−−−→ HLL[weekday][midnight]

[0,2]
−−−→

PPLA3[weekday][evening]

Note: PLL: populated place; HLL: hill; PPLX: section of pop-
ulated place; PPLA3: seat of a third-order administrative divi-
sion.

5.5 Discussion

There are some obvious findings from the experi-

mental results. First, our method is able to generate se-

mantic level trajectory patterns which provide semanti-

cally meaningful information and knowledge about tra-

jectory patterns. We are able to find people’s frequent

mobility among different place types. Second, using

additional semantic dimensions, we are able to find

patterns associated with additional semantics which

provide richer information about mobility. The pat-

terns are associated with city, day type, day time, and

weather semantics. Third, our method finds more se-

mantic trajectory patterns that the previous method

using only geographic features is unable to find. Fourth,

another important benefit of our method is the auto-

matic extraction of various combinations of semantic

dimensions. These semantic trajectory patterns with

arbitrary combinations of dimensions also provide use-

ful insight into people’s mobility. Finally, experiments

with GPS trajectories demonstrate the robustness and

applicability of our framework to different types of tra-

jectories.

6 Conclusions

This study is an investigation into analysing georefe-

renced social media data to find people’s semantic tra-

jectory patterns in the semantic level that are frequent

moving sequences with transit time. We created raw

geographic trajectories from geo-tagged data by chrono-

logically connecting them. These raw trajectories were

then enriched with contextual spatial and aspatial se-

mantic information, and multiple additional semantics.

We also proposed a semantic trajectory pattern mining

method to find semantic trajectory patterns from se-

mantic trajectories. Using real geo-tagged photos, we

found many interesting semantic trajectory patterns.

These patterns showed frequent mobility among types

of places along with transit time between entities. Ex-

perimental results also showed that our method is able

to find trajectory patterns with various additional se-

mantics. These semantic trajectory patterns provided

richer semantic information about people’s mobility

behaviors. SemT-Patterns are more readable, poten-

tially useful, readily usable, interpretable, and valuable.

Future work is in two fields. First, more experi-

ments with various additional semantics and also di-

verse datasets could be undertaken to prove the validity

of our approach. Second, the current approach could be

used to develop an itinerary recommendation system.
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