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Abstract A point of interest (POI) is a specific point location that someone may find useful. With the development

of urban modernization, a large number of functional organized POI groups (FOPGs), such as shopping malls, electronic

malls, and snacks streets, are springing up in the city. They have a great influence on people’s lives. We aim to discover

functional organized POI groups for spatial keyword recommendation because FOPGs-based recommendation is superior

to POIs-based recommendation in efficiency and flexibility. To discover FOPGs, we design clustering algorithms to obtain

organized POI groups (OPGs) and utilize OPGs-LDA (Latent Dirichlet Allocation) model to reveal functions of OPGs for

further recommendation. To the best of our knowledge, we are the first to study functional organized POI groups which

have important applications in urban planning and social marketing.

Keywords functional organized point of interest (POI) group, POI clustering, OPG-LDA (organized point of interest

group-latent Dirichlet allocation) model, spatial keyword recommendation

1 Introduction

A point of interest (POI) is a uniquely identi-

fied specific site[1]. POIs, such as hotels, restaurants,

are very fundamental factors in recommendation. A

lot of work has been done to investigate POIs-based

recommendation[2-7]. However, POIs-based recommen-

dation has its limitations.

1) Due to the diversity of requirements, POIs-based

recommendation is not applicable in some cases. For

example, if a lady wants to buy clothes, POIs-based

recommendation usually recommends the best shop for

the lady. Cao et al.[3] recommended POIs based on

spatial distance. Chen et al.[5] recommended POIs on

the basis of the spatial distance and rating information.

Guo et al.[8] recommended POIs based on users’ bud-

gets. All of the work mentioned above just takes a few

requirements of users into consideration. However, the

lady may have a lot of other requirements on the styles,

brands, materials, sense of comfort and so on.

2) POIs-based recommendation does not consider

potential query keywords of users. For example, a user

probably wants to buy some accessories after buying a

laptop, such as a blue-tooth mouse, a megaphone, and

a printer. Recommending a computer store is far from

enough in this situation because the buyer probably has

to go far away for a mouse, megaphone and printer.

3) POIs-based recommendation is computationally

expensive. A lot of POIs-based recommendation proves

to be NP-hard[9-11].

In order to solve these issues, we propose the con-

cept of functional organized POI group (FOPG) which

contains a set of close POIs, such as shopping malls

and electronic malls. If a lady wants to buy clothes, a

shopping center can be recommended so that she can

shop around before buying. If a man wants to buy a
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laptop, an electronic mall can be recommended where

he can buy the laptop and some accessories simultane-

ously. Besides, FOPGs-based recommendation is more

efficient than POIs-based recommendation because the

number of FOPGs is much smaller than that of POIs.

To mine FOPGs from POIs datasets, we are facing

several challenges.

1) It is difficult to measure the real distance between

two POIs. Let us take Fig.1(a) as an example. Given

two POIs, i.e., A and B , the dotted line denotes the

spatial distance between two POIs and the solid line is

a path returned by BaiduMap. It is obvious that the

real distance is much longer than the spatial distance

between A and B because there is a river between them.

Besides, hierarchical distance can lead to the result that

the spatial distance is much shorter than the real dis-

tance. For example, in Fig.1(b), A is in the 15th floor

of building L1, B is in the 15th floor of building L2,

the dotted line represents the distance measured in the

traditional maps, and the solid line denotes the real dis-

tance for a user. To narrow the gap between the spatial

distance and the real distance, we need to consider both

coordinates and the addresses of POIs when computing

the distance between two POIs. Two POIs in Fig.1(a)

are located in different streets and two POIs in Fig.1(b)

are located in different buildings. Their addresses vary

from one another.

A A

B

B

L L

(b)(a)

Fig.1. Spatial distance vs real distance.

2) Semantic drift is another challenge. For exam-

ple, if there are three POIs, A, B and C close together.

A’s street address is “abcdef”, B’s street address is

“abcdkm”, and C’s street address is “hicdkm”. Due

to the similarity to some degree, A and B are put into

one FOPG, while B and C are put into another FOPG.

Finally, A and C are in the same FOPG although they

have different street addresses. To solve this issue, we

propose a grid-based method to reduce semantic drift.

3) Efficiency is the third challenge. This pa-

per utilizes density-based clustering algorithm, i.e.,

DBSCAN[12] to cluster POIs because the number of

FOPGs is unknown and the shapes of FOPGs are arbi-

trary. Gan and Tao[13] claimed that DBSCAN actually

requires O(n2) time. Besides, when clustering POIs, it

is necessary to compute addresses similarity which is

not efficient[14]. To improve the efficiency, three prun-

ing rules are proposed. Details are illustrated in Sec-

tion 4.

As far as we know, we are the first to study func-

tional organized POI groups. Regions of POIs have

been explored in previous work. Yuan et al.[15] seg-

mented a city into disjoint regions according to major

roads. Feng et al.[16] found the best region which the

sub-modular monotone aggregate score of the spatial

objects inside is maximized. The methods in previous

work cannot be used for discovering FOPGs because of

several limitations.

1) Most of defined regions in previous work have

fixed sizes and shapes, while the size and shape of an

FOPG are usually arbitrary.

2) In an FOPG, the spatial distance and real dis-

tance between POIs are both short. The previous work

only considers the spatial distance between POIs and

ignores the real distance between POIs, which results

in putting irrelevant POIs into FOPGs.

In general, the contributions in this paper are sum-

marized as follows.

• POIs-based recommendation cannot satisfy users’

various and variable requirements. To solve this issue,

this paper proposes the concept of functional organized

POI groups (FOPGs) for recommendation. FOPGs-

based recommendation can meet users’ demands better

than POIs-based recommendation.

• To solve semantic drift issue in discovering

FOPGs, this paper propose a novel approach, i.e., STC-

DG. To improve the efficiency of STC-DG, we design

three pruning rules.

• We carry out extensive experiments based on two

real-life datasets to compare POIs-based recommenda-

tion with FOPGs-based recommendation. Besides, we

evaluate effectiveness and efficiency of the method for

discovering FOPGs. The experiments demonstrate that

FOPGs-based recommendation is better than POIs-

based recommendation and the method for discovering

FOPGs has a good performance.

The rest of the paper is organized as follows. Sec-

tion 2 reviews related work. In Section 3, we define the

problem formally. Section 4 and Section 5 describe the
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method for discovering FOPGs. In Section 6, we show

a series of experiments. Finally, Section 7 concludes the

paper in brief.

2 Related Work

Our work is related to various topics including ur-

ban computing, region search, spatial clustering, spatial

keyword query, and location-based recommendation.

2.1 Urban Computing

The increasing availability of large-scale and real-

world datasets contributes to investigating about urban

computing. Yin et al.[17] modelled location-based user

rating profiles to produce high-quality recommenda-

tions. In addition, Yuan et al.[15] used both human mo-

bility and points of interests to discover regions of diffe-

rent functions. Zhu et al.[18] helped businesses promote

their locations by advertising wisely through the un-

derlying location based social networks (LBSNs). Yin

et al. inferred users’ social communities by incorporat-

ing spatio-temporal data and semantic information[19].

Tong et al. investigated crowdsourcing task decompo-

sition and allocation[20-21]. Different from the previous

work, our work aims to find FOPGs which are useful

for spatial keyword recommendation.

2.2 Region Search

Liu et al.[22] proposed a new problem of finding sub-

ject oriented top-k non-overlapping hot regions. Choi

et al.[23] focused on solving the maximizing range sum

problem in spatial databases. Cao et al.[24] retrieved

regions connected by road segments. All of them de-

fined regions as width- and height-fixed rectangles or

radius-fixed circles which are contrary to the fact that

regions are often arbitrarily shaped in reality. Besides,

they did not take the real distance between two POIs

into consideration which results in putting irrelevant

POIs into FOPGs.

2.3 Spatial Clustering

Han and Kamber[25] summarized clustering algo-

rithms, including partitioning clustering methods, hie-

rarchical clustering methods, density-based clustering

methods, grid-based clustering methods, etc. Density-

based methods are employed in this paper because

they can discover clusters of arbitrary shapes. Besides,

density-based clustering methods can be extended from

full space to subspace clustering. Grid-based methods

quantize the whole space into a number of cells. The

processing time does not depend on the dataset size,

but on the number of grids. Besides, grid-based clus-

tering methods not only have high efficiency, but also

can be integrated with other clustering methods.

2.4 Spatial Keyword Query

Chen et al.[26] summarized spatial keyword query

which is one of the most important queries in spatial

textual searching. Given a location and a set of key-

words, the spatial keyword query aims to find a single

object that is close to the location and covers the set

of keywords. Chen et al.[26] divided geo-textual indices

into three types: spatial indexing scheme, text index-

ing scheme, and combination scheme. Besides, there

are many important variants of spatial keyword query.

Some work aimed to discover groups of objects that

collectively meet the keywords[3,27]. Maria et al.[28]

took a region and a set of keywords as inputs and

found objects which are in that region and cover the

keywords. All the work mentioned above offers users

POIs. However, POIs-based recommendation hardly

satisfies users’ various and variable requirements. Be-

sides, POIs-based recommendation is computationally

expensive.

2.5 Location-Based Recommendation

An increasing number of location-based social net-

works (LBSNs) contribute to deep investigations on

location-based recommendation[29-34]. To improve the

location-based recommendation, a lot of researchers

have made great efforts. Xie et al. proposed a novel

method for dynamic user preferences modeling based

on the learnt embedding of POIs[33]. Zhang et al. ex-

ploited the sequential influence of locations on users’

check-in behaviors for location recommendations[29].

Gao et al. introduced a novel location recommenda-

tion framework based on the temporal properties of user

movement[30]. Wang et al. proposed a geographical

sparse additive generative model for spatial item recom-

mendation and the model considers both user personal

interest and the preference of the crowd in the target

region[31]. Yin et al. proposed a unified probabilistic

generative model to jointly model spatial, temporal and

semantic effect[34]. All of the work mentioned above

recommends POIs for users. In this paper, we propose

FOPGs to meet the various requirements from users.

For example, if a lady wants to go shopping, one shop
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is not enough for the lady because she needs to buy

shoes, clothes, jewelry, perfume, etc. The lady prefers

a shopping center (FOPG) rather than a shop (POI).

3 Problem Statement

In this section, we present problem statement and

give related definitions. At first, we show the notations

used throughout the paper in Table 1.

Table 1. Definitions of Notations

Notation Definition

ws Spatial similarity

ϕ Size of a cluster

wa Address similarity

g Grid granularity

ci A cluster

t Tag of POIs

a Address of POIs

f Function of OPGs

ds Spatial distance

Given a set of POIs O = {o1, o2, o3, ..., o|O|}, each

oiǫO is in the form of (oi.x, oi.y, oi.a, oi.t) where oi.x is

latitude, oi.y denotes longitude, oi.a represents street

address, and oi.t represents a set of tags. We aim to

find a set of clusters C = {c1, c2, c3, ..., c|C|} where ci is

an FOPG consisting of POIs and functions.

Definition 1 (Spatial Similarity). Given a set of

POIs O = {o1, o2, o3, ..., o|O|}, for any objects oi and

oj, the spatial distance is

ds(oi, oj) = |oi.x− oj .x|+ |oi.y − oj .y|,

and then spatial similarity between oi and oj is defined

as

ws(oi, oj) =
D − ds(oi, oj)

D
,

where D = max
om∈O,on∈O

ds(om, on) and 0 6 ws(oi, oj) 6

1.

Definition 2 (Address/Textual Similarity). Given

two POIs oi and oj, Tij denotes the longest common

subsequence[35] between oi.a and oj .a. There are three

metrics for textual similarity including Jaccard, Cosine

and Dice, defined in (1), (2) and (3) respectively.

Jaccard : wa(oi, oj) =
|Tij |

|oi.a|+ |oj .a| − |Tij |
, (1)

Cosine : wa(oi, oj) =
|Tij |√

|oi.a| × |oj .a|
, (2)

Dice : wa(oi, oj) =
2× |Tij |

|oi.a|+ |oj .a|
, (3)

where wa(oi, oj) denotes the textual similarity between

oi and oj .

Definition 3 (Organized POI Group (OPG)).

Given a set of POIs O, P is a sub-set of O. POIs

in P are close and similar in addresses. P is a com-

plete OPG only if |P| is larger than ϕ̂ and ∀oi ∈ P,

∄oj ∈ O − P satisfies all inequalities as follows.

ws(oi, oj) > ŵs,

wa(oi, oj) > ŵa,

where ϕ̂ is the threshold of cluster size, ŵs is the thresh-

old of spatial similarity, and ŵa is the threshold of tex-

tual similarity.

Definition 4 (Functional Organized POI Group

(FOPG)). An FOPG has not only a set of POIs but

also functions such as (Pf1 , Pf2 , · · · , Pfn) where Pfi is

the probabilistic of the i-th function. Each function is

in the form of (Pt1 , Pt2 , · · · , Ptm) where Pti is the prob-

abilistic of the i-th tag.

4 Discovering OPGs

We have shown the definition of functional orga-

nized POI groups (FOPGs) which can satisfy users’

various and variable requirements. To discover FOPGs,

there exist two steps. This section mainly describes

the first step, i.e., discovering organized POI groups

(OPGs) by clustering POIs. Two algorithms, i.e., STC-

D and STC-DG, are proposed for the first step. Be-

sides, three pruning rules are proposed to improve the

efficiency of STC-DG.

4.1 Algorithm STC-D

Algorithm STC-D (Spatio-Textual Clustering

Based on Density) is a variant of the DBSCAN[12]

algorithm. STC-D replaces spatial distance with spa-

tial similarity and street address similarity. Besides,

STC-D utilizes dynamic grid partitioning[36] to avoid

traversing the whole data space to find neighbors of a

point. Let us look at Fig.2. The granularity of the grid

is set to (1 − ŵs) ×D. To find neighbors of a point p

which is in the cell l, we only consider points inside cell

l and its eight adjacent cells. Points in the other cells

cannot be neighbors of p because if a point q is not in

cells 1∼9, the spatial distance between p and q must be

longer than (1 − ŵs)×D. Then, the spatial similarity

between p and q is smaller than the threshold of spatial

similarity ŵs.

Algorithm 1 is the pseudo-code of STC-D. Queue

que stores all potential core points of a cluster. ci stores
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all points of the i-th cluster, including core points and

border points (refer to the previous work [12] for defini-

tions of core points and border points). The algorithm

consists of three parts. Firstly, it selects an unclustered

point ok as a potential core point (lines 1∼3). Secondly,

it repeats lines 5∼16 until there is no potential core

point in que. When que is empty, a complete cluster

ci is obtained. Thirdly, if the size of cluster ci is larger

than the threshold of cluster size ϕ̂, ci is an OPG (lines

18 and 19). The second part is the most important

part in the algorithm. At first, it selects a potential

core point oj (line 5). Then, it searches the neighbors

of oj by using dynamic grid partitioning (line 6). If the

number of neighbors is larger than ϕ̂, oj becomes a core

point (lines 7 and 8) and all neighbors of oj become po-

tential core points (lines 9∼13). Otherwise, oj becomes

a border point (line 15).

↼֓ws↽ΤD

↼֓ws↽ΤD

  



  

 

Fig.2. Dynamic grid partitioning.

Algorithm 1 . STC-D

Require: a set of POIs O
Ensure: a set of OPGs C
1: for each unclustered object ok in O do

2: que ← empty , ci ← empty

3: que.push(ok)
4: while !que.isEmpty() do

5: oj = que.pop()
6: Nj = F indNeighbors(oj)
7: if |Nj | > ϕ̂ then

8: ci.push(oj)
9: for each n ǫ Nj do

10: if !ci.contain(n) then

11: que.push(n)
12: end if

13: end for

14: else

15: ci.push(oj)
16: end if

17: end while

18: if the size of ci larger than ϕ̂ then

19: Insert cluster ci into C
20: end if

21: end for

22: return C;

4.2 Algorithm STC-DG

However, there exist two issues in STC-D. Firstly,

some irrelevant POIs can be included in an OPG or

several OPGs are combined due to semantic drift of

street addresses. Let us look at Fig.3. o6 and o7 are

similar to o5 in street addresses. o5 and o3 are similar in

addresses. o3 is similar to o8 and o9 in addresses. STC-

D will put o3, o5, o6, o7, o8 and o9 together although

o5, o6, o7 belong to In City Mall and o3, o8, o9 belong

to Guidu Building. Secondly, STC-D cannot discover

OPGs efficiently. Gan and Tao[13] claimed that DB-

SCAN requires O(n2) time.

Motivated by issues mentioned above, STC-DG
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(Spatio-Textual Clustering Based on Density and Grid)

is proposed. Different from STC-D that uses density-

based clustering methods, STC-DG combines density-

based clustering method and grid-based clustering

method. Algorithm STC-DG takes two steps. At first,

it utilizes the traditional DBSCAN algorithm to cluster

POIs based on their addresses. The POIs clustering is

limited in one grid. Secondly, it combines clusters in

adjacent grids according to the keyword of the cluster.

The keyword of each cluster Cn is a street address of

an object oi in Cn and oi satisfies that

∀oj ∈ Cn,

|Cn|∑

k=1

wa(oj , ok) 6

|Cn|∑

k=1

wa(oi, ok).

To illustrate STC-DG, let us look at an example

in Fig.3 (ϕ̂ = 2, ŵa = 1
2 , Jaccard similarity). In

Fig.3(a), it utilizes the DBSCAN algorithm to cluster

POIs in each grid and it obtains three clusters, i.e., C1,

C2, and C3 (refer to previous work [12] for DBSCAN

and we replace spatial distance with address similarity).

Fig.3(b) shows clusters combination. Before combining

clusters, it needs to compute the keyword of each clus-

ter. In cluster C2, wa(o5, o6) =
3
7 , wa(o5, o7) =

1
2 and

wa(o6, o7) =
6
7 . Finally, the street address of o7 is the

keyword of cluster C2. The keywords of C1 and C3

are street addresses of o1 and o8 respectively. Due to

wa(o1, o7) =
6
7 > ŵa = 1

2 , it combines C1 and C2, which

is shown in Fig.3(b). In this example, all the address

similarities are computed based on the Jaccard metric

which is shown in (1).

Algorithm 2 is the pseudo-code of STC-DG. At first,

it limits POIs clustering in one grid (line 1). Then, it

extracts keyword for each cluster according to the ad-

dresses of objects in the cluster (lines 2∼4). Finally,

Algorithm 2 . STC-DG

Require: a set of POIs O
Ensure: a set of OPGs C
1: clusterlist ← ClusterBasedGrid()
2: for each cluster ci in clusterlist do

3: ci.keyword ← ExtractKeyword(ci)
4: Insert ci into C
5: end for

6: while existing combination do

7: for each pair clusters cj and ck in C do

8: if IsCombine(cj , ck) then

9: cm ← Combine(cj , ck)
10: Insert cm into C
11: Delete cj ,ck
12: end if

13: end for

14: end while

15: return C

it combines adjacent clusters on the basis of their key-

words to obtain the complete OPGs (lines 6∼14). The

function IsCombine (line 8) returns yes if keywords of

two clusters are similar and two clusters are adjacent.

The function Combine (line 9) generates a new cluster

which contains all POIs of two clusters. Besides, the

keyword and the location of the new cluster are recom-

puted. After generating a new cluster, the new cluster

replaces two old clusters (lines 10 and 11). If there ex-

ists no combination, we can come to the conclusion that

we have obtained all OPGs.

4.3 Algorithm STC-DG+

To improve the efficiency of STC-DG, we devise

three pruning rules, including length pruning, prefix

pruning, and bounds pruning.

4.3.1 Length Pruning

The basic concept of length pruning is that similar

strings cannot have a large length difference.

Theorem 1. Given two POIs oi and oj, if they

do not meet the inequalities as follows, this pair can be

pruned. For different metrics (shown in (1), (2) and

(3)), there exist different inequalities.

Jaccard : ŵa|oi.a| 6 |oj .a| 6
|oi.a|
ŵa

. (4)

Cosine : ŵa
2
|oi.a| 6 |oj .a| 6

|oi.a|
ŵ2

a
. (5)

Dice : ŵa|oi.a|
2−ŵa

6 |oj .a| 6
(2−ŵa)|oi.a|

ŵa
. (6)

Proof. If oi.a and oj .a are similar based on Jac-

card metric, we have
|Tij |

|oi.a|+|oj.a|−|Tij|
> ŵa accord-

ing to (1) and then ŵa(|oi.a| + |oj .a|) 6 (1 + ŵa)|Tij |.

Due to that |Tij | is not greater than |oj .a|, we have

ŵa(|oi.a| + |oj .a|) 6 (1 + ŵa)|oj .a|. Finally, we ob-

tain |oj .a| > ŵa|oi.a|. Due to |Tij | no greater than

|oi.a|, ŵa(|oi.a| + |oj .a|) 6 (1 + ŵa)|oi.a|, we have

|oj .a| 6
|oi.a|
ŵa

. Hence, we have proved (4). (5) and

(6) can be proved using the same method.

4.3.2 Prefix Pruning

We select two prefixes from two strings. If the two

prefixes have no overlaps, then the two strings are not

similar.

Theorem 2. If oi.a and oj .a are similar, the length

of the longest common subsequence |Tij | must exceed L.

For different metrics (shown in (1), (2) and (3)), L is

different.

Jaccard : L =
ŵa(|oi.a|+ |oj .a|)

(1 + ŵa)
.
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Cosine : L = ŵa

√
|oi.a| × |oj .a|.

Dice : L =
ŵa(|oi.a|+ |oj .a|)

2
.

Proof. If oi.a and oj .a are similar based on Jac-

card, we have
|Tij|

|oi.a|+|oj.a|−|Tij|
> ŵa according to (1).

Then, ŵa(|oi.a| + |oj .a|) 6 (1 + ŵa)|Tij |. Finally,

|Tij | >
ŵa(|oi.a|+|oj.a|)

1+ŵa
and L =

ŵa(|oi.a|+|oj.a|)
1+ŵa

. We

can obtain L based on Cosine and Dice in the same

way.

The length of the prefix equals the length of the

object minus L. For example, there are two strings

“ABCDE” and “HKDEM” and ŵa is 0.8. The lengths

of two prefixes are both ⌈5 − 0.8×(5+5)
1+0.8 ⌉ = 1 based on

Jaccard. As two selected prefixes “A” and “H” have no

overlaps, two strings are not similar.

4.3.3 Bounds Pruning

Given two POIs om, on, and a matrix M with

|om.a|+1 rows and |on.a|+1 columns, M [i, j] denotes

the length of the longest common subsequence between

om.ai1 and on.a
j
1 where ark represents the substring of

a starting from the k-th character to the r-th charac-

ter (according to the definition of M [i, j], we have 0 6

M [i, j]−M [i−1, j] 6 1 and 0 6 M [i, j]−M [i, j−1] 6 1

which will be used in the proof). Hence, we aim to ob-

tain M [|om.a|, |on.a|] which is the length of the longest

common subsequence between om.a and on.a. The

value M [i, j] can be computed as follows.

M [i, j] =





0, if (i = 0 or j = 0),

M [i− 1, j − 1] + 1,

if (om.aii = on.a
j
j),

max(M [i− 1, j],M [i, j − 1]),

otherwise.

The basic idea of bounds pruning is that we compute

a lower bound and an upper bound of wa in each step to

terminate the computation ahead of time. In each step

k, we compute a set of values S(k) = {M [i, j] | i+ j =

k + 1} (shown in Table 2).

Theorem 3. Consider a set of values S(k) =

{M [i, j] | i + j = k + 1 and 1 6 i 6 |om.a| and 1 6

j 6 |on.a|} which can be obtained in step k. Matrix M

has the property that max(S(k)) 6 max(S(k + 1)).

Proof. According to the definition of M [i, j], we

get M [i, j] 6 M [i + 1, j] and M [i, j] 6 M [i, j + 1].

For each value M [n, k + 1 − n] in S(k), there exists

M [n, k + 2 − n] or M [n + 1, k + 1 − n] in S(k + 1)

no less than M [n, k + 1 − n]. Hence, max(S(k)) 6

max(S(k + 1)).

Table 2. Illustration of Computation Process of M

Step Computed Value

1 {M [1, 1]}

2 {M [1, 2],M [2, 1]}

.

..
.
..

k {M [i, j]|i+ j = k + 1}

...
...

|om.a|+ |on.a| − 1 {M [|om.a|, |on.a|]}

Therefore, we can conclude that the maximal value

of S(i) (1 6 i 6 |om.a| + |on.a| − 1) is no larger than

M [|om.a|, |on.a|] which is the maximal value in the last

step. If we utilize the maximal value of S(i) to obtain

wa which exceeds ŵa, then on.a and om.a are similar

and we can terminate the computation.

Theorem 4. Given a set of values G(k) =

{M [i, j] + g(i, j) | i + j = k + 1} where g(i, j) =

min(|om.a| − i, |on.a| − j), matrix M has the property

that max(G(k)) 6 max(G(k − 1)) + 1 and max(G(k)) 6

max(G(k − 2)).

Proof. Let M [i, k + 1 − i] + g(i, k + 1 − i) be the

maximal value of G(k).

If M [i, k + 1 − i] = M [i − 1, k − i] + 1, since

g(i, k+ 1− i) = g(i− 1, k− i)− 1 and M [i, k+1− i] +

g(i, k+1− i) = M [i− 1, k− i]+ g(i− 1, k− i), we have

max(G(k)) 6 max(G(k− 2)). Besides, M [i, k+1− i] 6

M [i−1, k+1−i]+1 and g(i, k+1−i) 6 g(i−1, k+1−i).

Finally, we have max(G(k)) 6 max(G(k − 1)) + 1.

If M [i, k + 1 − i] equals 0 or max(M [i, k + 1 − i −

1],M [i− 1, k+ 1− i]), max(G(k)) 6 max(G(k − 1)) + 1

and max(G(k)) 6 max(G(k − 2)) can be proved in the

same way.

M [|om.a|, |on.a|] is a value of G(|om.a| + |on.a| −

1)(g(|om.a|, |on.a|) = 0). According to Theorem 4,

we obtain that max(G(|om.a| + |on.a| − 1)) is no

greater than max(G(|om.a| + |on.a| − 2)) + 1 and

max(G(|om.a|+ |on.a|−3))+1. Besides, we can also ob-

tain that max(G(|om.a|+ |on.a|− 1)) is no greater than

max(G(|om.a| + |on.a| − 4)) + 1 and max(G(|om.a| +

|on.a| − 5)) + 1 because max(G(|om.a| + |on.a| − 2)) 6

max(G(|om.a|+ |on.a|−4)) and max(G(|om.a|+ |on.a|−

3)) 6 max(G(|om.a|+ |on.a| − 5)). In the same way, we

can have max(G(|om.a| + |on.a| − 1)) 6 max(G(k)) +

1 where 1 6 k 6 |om.a| + |on.a| − 1. Finally,

M [|om.a|, |on.a|] 6 max(G(k)) + 1 where 1 6 k 6

|om.a|+ |on.a| − 1.

Therefore, we utilize the maximal value of G(k) + 1

to compute wa. If wa is smaller than ŵa, then the pair is
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dissimilar and we can terminate the computation ahead

of time.

All of the three rules are affected by ŵa. Different

rules are applicable in different situations. The details

will be further described in Section 6.

5 Extracting Functions of OPGs

We have introduced discovering OPGs. Then we

will describe the second step for discovering FOPGs,

i.e., extracting functions of each OPG for further rec-

ommendation.

5.1 Analogy

We find that discovering functions of OPGs is

similar to discovering topics of each document. Ta-

ble 3 makes an analogy between OPGs-functions and

documents-topics. There exist many solutions for dis-

covering topics in documents, such as TF-IDF[37], and

latent Dirichlet allocation (LDA)[38]. LDA has a better

performance than other methods in discovering func-

tions of regions[15] which is similar to our work. Hence,

OPGs-LDA is used to discover functions of OPGs.

Table 3. Analogy Between OPGs-Functions and

Documents-Topics

OPGs-Function Documents-Topic

A set of OPGs Corpus

Tags of POIs Words

An OPG A document

Functions of OPGs Topics of documents

5.2 Details of OPGs-LDA

OPGs-LDA is a generative process of all tags in

OPGs. The generative process is as follows:

1) choose a functions-tags distribution;

2) choose an OPGs-functions distribution;

3) for each tag in an OPG, there exist two steps:

a) choose a function from the OPGs-functions distri-

bution; b) according to selected function, choose a tag

from the functions-tags distribution,

Fig.4 shows the OPGs-LDA model. In Fig.4, nodes

represent variables, edges denote possible dependences,

and plates denote replicated structures. It should be

noted that shaded nodes represent observed variables.

tk,n represents the n-th tags of the k-th OPG which

depends on the parameter of functions-tags distribu-

tion β and the n-th function of the k-th OPG fk,n.

The N plates denote the collection tags within OPGs.

The n-th function of the k-th OPG depends on func-

tions proportion of the k-th OPG θk. θk depends on

the parameter of OPGs-functions distribution α. The

M plates denote the collection OPGs. Firstly, OPGs-

LDA chooses functions-tags and OPGs-functions distri-

butions. Dirichlet distribution is selected because it is

widely used[38-39]. Then, EM algorithm or Gibbs sam-

pling can be used for estimating parameters β and α

(see [38] for more details).

α βθk N

M

tk֒nfk֒n

Fig.4. OPGs-LDA model.

6 Experiments

In this section, we conduct extensive experiments on

real datasets to evaluate the performance of solutions.

All algorithms are written in C++ and results are gene-

rated in a computer with Intel 3.2 GHz Core CPU and

8 GB memory. We have two kinds of real datasets 1○.

The dataset of 2015 1○ contains 414 138 POIs in Beijing.

The dataset of 2005 1○ contains 152 807 POIs in Beijing.

Each POI consists of latitude, longitude, street address

and tags.

6.1 Effectiveness Evaluation

This section consists of two parts. We first evaluate

the accuracy of discovered FOPGs. Second, we com-

pare POIs-based recommendation with FOPGs-based

recommendation.

6.1.1 Accuracy Analysis

To evaluate the accuracy of discovered FOPGs, we

ask volunteers to manually label which FOPG each POI

belongs to. We focus on the following three perfor-

mance metrics to evaluate the accuracy of discovered

FOPGs.

• Textual/Address Dispersion. There exists seman-

tic drift in finding FOPGs. Textual dispersion is pro-

posed to evaluate textual quality. Given a set of FOPGs

C = {c1, c2, ..., cm} where ci = {o1, o2, ..., o|ci|}, let

1○http://lbsyun.baidu.com/, Aug. 2017.
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Dt(i, j) = 1 − wa(oi, oj) be the textual distance be-

tween oi and oj , and then the textual dispersion of C is

defined as

TD(C) =

|C|∑
k=1

(
2×

∑
i6=j,oi,ojǫck

Dt(i,j)

|ck|×(|ck|−1) )

|C|
.

The challenge is to keep textual dispersion as low as

possible.

• Precision Rate. Some irrelevant POIs could be

put into FOPGs. Hence, it is necessary to evaluate the

precision rate of discovered FOPGs. STC-D or STC-

DG discovers M POIs that belong to the FOPG ci.

However, only N POIs of M discovered POIs actually

belong to the FOPG ci, and then precision rate is de-

fined as follows.

PR =
N

M
.

The challenge is to keep precision rate as high as pos-

sible.

• Recall Rate. Some POIs in an FOPG could be

eliminated. Hence, recall rate is proposed to evaluate

discovered FOPGs. Given an FOPG ci containing K

POIs, STC-D or STC-DG only finds N POIs that ac-

tually belong to ci, and then recall rate is defined as

follows.

RR =
N

K
.

The challenge is to keep recall rate as high as possible.

We firstly evaluate the textual dispersion, precision

rate and recall rate of STC-D and STC-DG. Secondly,

we analyze the effect of parameters on textual disper-

sion, precision rate and recall rate.

As shown in Fig.5(a) and Fig.5(d), it is clear that

the textual dispersion of STC-DG is smaller than that

of STC-D because limiting POIs clustering in a grid re-

duces semantic drift greatly. Fig.5(b) and Fig.5(e) show

that the precision rate of STC-DG is higher than that

of STC-D. However, STC-DG has its drawback that

the recall rate of STC-DG is lower than that of STC-D

(shown in Fig.5(c) and Fig.5(f)) because border POIs

of an FOPG are easily eliminated when grid clustering

is applied.

Figs.5(a)∼5(c) show the impact of grid granularity

g on the textual dispersion, precision rate and recall

rate respectively. From Figs.5(a)∼5(c), we can clearly

see that the increasing of g leads to the increasing of the

textual dispersion and the decreasing of the precision

rate because the larger the grid is, the higher the pos-

sibility that irrelevant and dissimilar POIs are put into

FOPGs is. Besides, when the grid is small, the number

of POIs in the grid is possibly smaller than ϕ̂ which

results in elimination of POIs. Hence, the increasing of

g leads to the higher recall rate.

Fig.5(d) shows the impact of textual similarity
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Fig.5. Effectiveness evaluation.
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threshold ŵa on the textual dispersion. The increasing

of textual similarity threshold ŵa leads to the decreas-

ing of textual dispersion because the higher ŵa is, the

more similar the addresses are. Fig.5(e) shows that the

increasing of textual similarity threshold ŵa contributes

to the higher precision rate because when ŵa is larger,

more irrelevant POIs are eliminated. Besides, if ŵa is

very large, a part of relevant POIs will be eliminated as

well. Hence, as shown in Fig.5(f), recall rate decreases

when ŵa increases.

6.1.2 FOPGs Versus POIs Recommendation

FOPGs are proposed due to the limitations of POIs-

based recommendation. Compared with POIs-based

recommendation, FOPGs-based recommendation has

two advantages. 1) Recommending FOPGs offers users

more flexible choices than recommending POIs. 2) Rec-

ommending FOPGs is more efficient than recommend-

ing POIs because the number of FOPGs is much smaller

than that of POIs. Recommendation details can refer

to the previous work[27].

We compare FOPGs recommendation with POIs

recommendation based on recommendation time (RT)

and the variety of POIs (VoP). Given a set of query

keywords K = {k1, k2, . . . , k|K|} and a set of returned

POIs, for each keyword ki, there are Pi POIs covering

ki, and then VoP is

V oP =

|K|∑
i=1

Pi

|K|
.

The challenge is to make VoP as large as possible.

In Fig.6, we can see that the FOPGs recommenda-

tion is several orders of magnitude faster than the POIs

recommendation. This results from two factors. 1) The

number of POIs is much larger than that of FOPGs.

2) An FOPG offers more keywords than a POI. If a

user queries three keywords, e.g., gym, restaurant, and

cinema, POIs recommendation offers three POIs while

FOPGs recommendation offers only one FOPG.

From Fig.7, we can see that VoP of POIs recommen-

dation is almost 1 because most POIs have only one

keyword. Given n query keywords, POIs recommenda-

tion offers n POIs. It cannot offer more flexible choices

when users want to shop around before buying. FOPGs

recommendation can offer more choices for users. From

Fig.7, we can clearly see that VoP of FOPGs recom-

mendation ranges from 10 to 50. It means that if a user

wants to buy clothes, FOPGs recommendation can of-

fer at least 10 adjacent clothes shops, which is flexible

for users.
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6.2 Efficiency Evaluation

In this subsection, we evaluate the efficiency of three

methods, i.e., STC-D, STC-DG, and STC-DG+ based

on Jaccard metric, Cosine metric and Dice metric. Be-

sides, we will analyze impacts of grid granularity g, the

threshold of cluster size ϕ̂ and the threshold of textual

similarity ŵa on the efficiency.

From Figs.8(a)∼8(c) and Figs.9(a)∼9(c), we can see

that the rate of time growth of STC-D is obviously

higher than that of STC-DG because grid-based clus-

tering can greatly simplify the computation. Besides,

the running time of STC-DG+ is less than that of STC-

DG due to three pruning rules. Then, we analyze the

impact of grid granularity on running time. From Fig.8

and Fig.9, we can see that the increasing of g leads to

the increasing of time cost. When g is large, POIs in far-

ther distance can be clustered, which directly increases

the running time. Besides, we find a phenomenon that

when grid granularity is small, STC-D performs better
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Fig.8. Efficiency evaluation based on the dataset of 2015. (a) Jaccard metric. (b) Cosine metric. (c) Dice metric.
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Fig.9. Efficiency evaluation based on the dataset of 2005. (a) Jaccard metric. (b) Cosine metric. (c) Dice metric.

than STC-DG. The small grid granularity leads to the

increasing number of grids. A large number of grids

result in many cluster combinations in STC-DG. When

grid granularity is small, STC-D performs better than

STC-DG because of the large cost of clusters combina-

tions in STC-DG.

Next, we will evaluate impacts of other parameters

on the efficiency. Fig.10(a) shows that running time

decreases when ϕ̂ increases. When ϕ̂ is large, more

POI sets whose sizes are smaller than ϕ̂ will be ig-

nored, which directly affects the time cost. Fig.10(b)

shows that the running time decreases when ŵa in-

creases. When ŵa increases, each pair of POIs in an

FOPG must have more similar street addresses, which

leads to a smaller size of a cluster. The smaller clusters

contribute to reducing the time cost.

Finally, we evaluate the performance of three prun-

ing rules, i.e., length pruning, prefix pruning and

bounds pruning. Fig.10(c) shows the efficiency of three

pruning rules under different ŵa. When ŵa is small,

the length pruning and the prefix pruning rules are not

good and they even reduce the efficiency because of the

extra overhead. With the increasing of ŵa, more dis-

similar pairs can be pruned ahead of time. Hence, the

two rules perform well when ŵa is large. Contrary to

the length pruning and the prefix pruning, the bounds

pruning shows great performance when ŵa is low and

the bounds pruning is not good when ŵa increases due

to the extra computation of bounds.

7 Conclusions

This paper studied a new problem of discovering

FOPGs. To the best of our knowledge, we are the first

to discover FOPGs for spatial keyword recommenda-

tion. We proposed a two-step solution for discovering

FOPGs. In the first step, we designed two algorithms,

i.e., STC-D and STC-DG. Besides, we proposed three

pruning rules to improve the efficiency of STC-DG. In

the second step, we proposed OPGs-LDA model to dis-

cover functions of OPGs for further recommendation.

To evaluate the feasibility of our solutions, we

conducted extensive experiments on two real-world

datasets. The experimental results demonstrated the

effectiveness and efficiency of the proposed algorithms.

Besides, we analyzed the effect of parameters on effec-
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tiveness and efficiency of algorithms.

The information of POIs will change all the time.

Besides, new POIs will be added and old POIs will be

deleted. Once changes happen, it is expensive to dis-

cover FOPGs from the scratch. Hence, we will study

effective update algorithms in the future work.
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