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Abstract Quantized neural networks (QNNs), which use low bitwidth numbers for representing parameters and perform-

ing computations, have been proposed to reduce the computation complexity, storage size and memory usage. In QNNs,

parameters and activations are uniformly quantized, such that the multiplications and additions can be accelerated by

bitwise operations. However, distributions of parameters in neural networks are often imbalanced, such that the uniform

quantization determined from extremal values may underutilize available bitwidth. In this paper, we propose a novel quan-

tization method that can ensure the balance of distributions of quantized values. Our method first recursively partitions the

parameters by percentiles into balanced bins, and then applies uniform quantization. We also introduce computationally

cheaper approximations of percentiles to reduce the computation overhead introduced. Overall, our method improves the

prediction accuracies of QNNs without introducing extra computation during inference, has negligible impact on training

speed, and is applicable to both convolutional neural networks and recurrent neural networks. Experiments on standard

datasets including ImageNet and Penn Treebank confirm the effectiveness of our method. On ImageNet, the top-5 error

rate of our 4-bit quantized GoogLeNet model is 12.7%, which is superior to the state-of-the-arts of QNNs.

Keywords quantized neural network, percentile, histogram equalization, uniform quantization

1 Introduction

Deep neural networks (DNNs) have attracted

considerable research interests over the past decade.

In various applications, including computer vision[1-4],

speech recognition[5-6], natural language processing[7-9],

and computer games[10-11], DNNs have demonstrated

their ability to model nonlinear relationships in mas-

sive amount of data and their robustness to real-world

noise. However, the modeling capacities of DNNs are

roughly proportional to their computational complexity

and number of parameters[12]. Hence many DNNs, like

VGGNet[13], GoogLeNet[14] and ResNet[15], which are

widely used in computer vision applications, require bil-

lions of multiply-accumulate operations (MACs) even

for an input image of width and height of 224. More-

over, as these DNN models use many channels of activa-

tions (feature maps) for intermediate representations,

they have a large runtime memory footprint and sto-

rage size. Such vast amount of resource requirement

impedes the adoption of DNNs on devices with lim-

ited computation resource and power supply[16], and in

user-interactive scenarios where instant responses are

expected. A similar argument also applies to recur-
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rent neural networks (RNNs). In particular, the tran-

sition and embedding matrices in a long short time

memory (LSTM)[17] or a gated recurrent unit (GRU)[18]

model have dense connections that make them particu-

larly demanding in both computation and storage.

Many approaches have been proposed to accele-

rate the computation or reduce the memory footprint

and storage size of DNNs. One approach from the

hardware perspective is designing hardware accelera-

tors for the computationally expensive operations in

DNNs[19-21]. From the algorithmic perspective, a popu-

lar route to faster and smaller models is to impose

constraints on the parameters of a DNN to reduce the

number of free parameters and computational comple-

xity, like low-rankness[22-27], sparsity[28-31], circulant

property[32], and sharing of weights[33-34]. However,

these methods use high bitwidth numbers for computa-

tions in general, which requires the availability of high

precision MAC instructions that incur high hardware

complexity[35]. In contrast, several previous studies

have demonstrated that low bitwidth numbers may be

sufficient for performing inferences with DNNs. For

example, in [36-38], trained DNNs are quantized to

use 8-bit numbers for storing parameters and perform-

ing computations, without incurring significant degra-

dation of prediction quality. Gong et al.[39] also ap-

plied vector quantization to speed up inferences of

DNNs. However, these studies[36-39] do not integrate

the quantization operations into the training process

of a DNN, as the discrete quantized values necessarily

would have zero gradients, which would break the Back-

Propagation (BP) algorithm. Applying quantization as

a post-processing step is far from satisfactory as the

quantized DNNs do not have a chance to adapt to the

quantization errors[40]. Consequently, 8-bit was gene-

rally taken to be a limit for post-training quantization

of DNNs[41].

Recently, quantized neural networks (QNNs)[42-46]

have been proposed to further reduce the bitwidths of

DNNs, by incorporating quantization into the training

process. The key enabling technique is a trick called

straight through estimator (STE)[47-49], which is based

on the following observation: as the quantized value is

an approximation of the original value, we can substi-

tute the gradient with respect to the quantized value

for the gradient of original value. Simple as it is, the

trick allows the inclusion of quantization into the com-

putation graph of BP and allows QNNs to represent

parameters, activations and gradients with low bitwidth

numbers. The QNN technique has been successfully

applied to both CNNs and RNNs[50-51], to successfully

produce lower bitwidth versions of AlexNet, ResNet-18

and GoogLeNet that have comparable prediction accu-

racies as their floating point counterparts. However,

the degradation of prediction accuracy is still signifi-

cant for most QNNs, especially when quantizing to less

than 4-bit[52-53].

In this paper, we propose a balanced quantiza-

tion method that improves the prediction accuracies

of QNNs. In general, QNNs employ uniform quan-

tization to eliminate floating point operations during

the inference process by exploiting the bitwise ope-

rations. However, the parameters of neural networks

often have a bell-shaped distribution and sporadic large

outliers, making the quantized values not evenly dis-

tributed among possible values when uniform quanti-

zation is applied. In the extreme case, some of the pos-

sible quantized values are never used. To remedy this,

we propose to use a novel quantization method that

ensures the balanced distribution of quantized values.

This paper makes the following contributions.

1) We propose a balanced quantization method

for the quantization of parameters of QNNs. The

method emphasizes on producing balanced distribu-

tions of quantized values rather than preserving ex-

tremal values, by using percentiles as quantization

thresholds. As a result, effective bitwidths of quantized

models are increased. (See Subsection 3.2.)

2) To reduce the computation overhead introduced

by computing percentiles, we approximate medians by

means, which are computationally more efficient on ex-

isting hardware. The efficacy of the approximation is

empirically validated. (See Subsection 3.3.)

3) Experiments confirm that our method signifi-

cantly improves the prediction accuracies of CNNs and

RNNs on standard datasets like ImageNet and Penn

Treebank. (See Section 4.)

4) The implementation of balanced quantization will

be available on-line, in TensorFlow[54] framework.

2 Quantized Neural Networks

In this section we introduce the notations and algo-

rithms of QNNs. We also show how QNNs can exploit

bitwise operations for speeding up computations and

how to incorporate quantization steps into computa-

tion graphs of QNNs during training.
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2.1 Notations

We will use the rounding operation intensively in

this paper. For tie-breaking, we apply the “round half

towards zero” rule, which rounds positive numbers with

fraction 1
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In the above equation, the computation complexity

is O(MK), i.e., directly proportional to the product of

bitwidths of x and y. Hence it is beneficial to reduce

the bitwidth of a QNN as long as the prediction accu-

racy is kept at the same level. It has been demonstrated

that exploiting dot-product kernels allows for efficient

software[51] and hardware implementations[55-56].

In (2), the matrix multiplication happens between

the quantized values W q
i and X

q
i−1. When the activa-

tion function is monotone, the computation of Xq
i can

all be performed by operations on fixed-point numbers,

even when the bias parameters bi are floating point

numbers. The method is detailed in Appendix A.1.

2.4 Training Quantized Neural Networks by

Straight-Through Estimator

Having quantization steps in computation prevents

the direct training of QNNs with the BP algorithm,

as mathematically any quantization function will have

zero derivatives. To remedy this, Courbariaux et al.[57]

proposed to use STE to assign non-zero gradients for

quantization functions. As the discrete parameters can-

not be used to accumulate the high precision gradients,

they kept two copies of parameters, one consisting of

quantized values Wq and the other consisting of real

values W . The real value version W is used for accu-

mulation, while Wq is used for computation in forward

and backward passes. We will refer to Wq as quan-

tized parameters, or simply parameters, of QNNs, and

reserve W for the “floating point copy” in the rest of

this paper.

As STE introduces approximation noises into com-

putations of gradients, we would like to limit it to

places where necessary. It can be observed that the

only function in (1) that has the zero gradients is the

rounding function. Hence we construct its STE version,

round-to-zeroste, as follows:

forward: W̃ ← round-to-zero(W ),

backward:
∂C
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Fig.2. Results of imbalanced quantization (no equalization).
After the uniform quantization of weight values to 2-bit num-
bers, the quantized values concentrate on the central two out of
four possible quantized values.

A QNN with parameters following imbalanced dis-

tributions may be suboptimal. For example, the 2-bit

weight model in Fig.2 fails to exploit available value

range, and may be well approximated with a 1-bit

weight model.

Hence the “real” bitwidth of a QNN may be well

below its specified bitwidth. To quantitatively measure

the “effective” bitwidth, we propose to use the mean

of entropy of parameters of each layer in a QNN as an

indicator as follows.

Definition 2.

effective-bitwidth(X)
def
== entropy(Pr(X))

= bitwidth ×
entropy(Pr(X))
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the quantization step maps intervals into discrete val-

ues and transforms the value range to be approximately

the same with the input. There will be exactly the same

number of quantized values assigned to possible choices

when percentiles are used as thresholds.

Algorithm 1 gives a more rigorous description of the

whole process.

81. k-Bit Balanced Quantization Algo-

rithm of Matrix W
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median, while the 25-th percentile (25% of values are

below this number) is the median of those values that

are below the median of the original distribution. Hence

we can replace the computation of percentiles with re-

cursive applications of partitioning by medians.

82. Histogram Equalization of Matrix W

by Recursive Partitioning
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4 Experiments

In this section we empirically validate the effective-

ness of the balanced quantization through experiments

on quantized convolutional neural networks and recur-

rent neural networks.

In our implementations of QNNs, we convert para-

meters and input activations of all layers in the network

to low bitwidth numbers, which is in line with the prac-

tice of Hubara et al.[51] The CNN models used in this

section are all equipped with batch normalization[62] to

speed up convergence. Experiments are done on Linux

machines with Intelr Xeonr CPUs and NVidia Titan

X graphic processing units.

4.1 Experiments on Convolutional Neural

Networks

4.1.1 Datasets

For the evaluation on CNNs, we conduct experi-

ments on two datasets used for the image classification

task.

The SVHN dataset[63] is a real-world digit recogni-

tion dataset consisting of photos of house numbers in

Google Street View images. We consider the “cropped”

format of the dataset: 32-by-32 colored images centered

around a single character. We also include the “extra”

part of labeled data in training.

The ImageNet dataset contains 1.2M images for

training and 50k images for validation. Each image in

the dataset is assigned a label in one of the 1 000 cate-

gories. While testing, images are first resized such that

the shortest edge is 256 pixels, and then the center 224-

by-224 crops are fed into models. Following the conven-

tions, we report results in two measures: single-crop

top-1 error rate and top-5 error rate over ILSVRC12

validation sets[64]. For brevity, we will denote the top-1

and top-5 error rates as “top-1” and “top-5”, respec-

tively.

4.1.2 Effective Bitwdiths and Prediction Accuracies of

Converged Models

In Fig.6 and Fig.7, we plot the prediction accura-

cies of several converged QNNs against their effective

bitwidths as defined in Definition 2. QNNs are trained

on the SVHN dataset and have the same 7-layer CNN

model architecture; hyper-parameters like learning rate

schedule, numbers of epochs are kept the same, such

that the differences between these models are only the

specified bitwidths of parameters and the quantization

methods. In this way, we can evaluate the impact of

effective bitwidths on the prediction accuracies of con-

verged models.

It can be observed from Fig.6 that in general, pre-

diction accuracy grows with the increase of effective

bitwidths. However, the growth of the accuracy grad-

ually slows down to the right half of the diagram,

when the prediction accuracy of a quantized model ap-

proaches the upper bound set by floating point models.
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Fig.6. Relationship between effective bitwidths and prediction
accuracies of several converged QNNs on the SVHN dataset.
The models are produced by different specified bitwidths (rang-
ing from 1-bit to 8-bit) and quantization methods (balanced or
not), but they all have the same architecture and training set-
tings.
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Fig.7. Relationship between effective bitwidth and specified
bitwidth. In general, the effective bitwidth grows with the
bitwidth. But the effective bitwidths of most of the models are
significantly less than their specified bitwidths.

4.1.3 Evaluation of Approximation of Medians

In this subsection we validate the effectiveness of

approximation of the median by the mean, as pro-
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posed in Subsection 3.3. As computing the median re-

quires doing sorting of weight parameters of a layer,

experiments on DNNs with many parameters will be

very slow. Hence we perform experiments on the

GoogLeNet, which contains fewer than 7M parameters.

From Table 1, it can be seen that replacing medians by

means does not degrade prediction accuracies. In fact,

the method using means as thresholds is even slightly

better than the method using medians, both in terms

of top-1 and top-5 error rates.

Table 1. Evaluation of Using Means Instead of Medians When

Performing Balanced Quantization, on GoogLeNet with 4-Bit

Weights and 4-Bit Activations
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Table 3. Comparison of Classification Error Rates with the
State of the Arts on Quantized GoogLeNet Model with

4-Bit Weights and 4-Bit Activations
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cursive application of means as approximations of per-

centiles (see Subsection 3.3). We also applied the Bal-

anced Quantization method to several popular neu-

ral network architectures like AlexNet, GoogLeNet and

ResNet, and found that our method outperforms the

state-of-the-arts of QNN, in terms of prediction accu-

racy (see Subsection 4.1.4). Experiments on LSTM and

GRU are also encouraging (see Subsection 4.2).

As future work, it would be interesting to use the

histogram transformation technique to induce distribu-

tions that have other benefits, like a high ratio of zeros

in quantized values. It would also be interesting to

investigate whether inducing activations of neural net-

works to have balanced distributions could improve the

prediction accuracies of QNNs.
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Appendix

A.1 Eliminating All Floating Point Operations

During Inference

Recall that the i-th layer of a QNN is like:

X
q
i = QA(σi(W

q
i X

q
i−1 + bi)),

W
q
i = QW(Wi),

where σi is the activation function, and QA and QW

are quantization functions of activations and weights

respectively.

Below we assume the following conditions:

1) W
q
i can be represented as fixed point numbers

scaled by a floating point scalar α, i.e., W q
i = αWf ,

where Wf is fixed point numbers;

2) Xq
i−1 contains only fixed point numbers;

3) σi is a monotone function.

We next show that under these assumptions, the com-

putation ofXq
i can be done by operations between fixed

point numbers.

First, by replacing the variables we have:

X
q
i = QA(σi(αWfX

q
i−1 + bi)).

As QA is a uniform quantization function, it can be

computed by comparing values of σi(αWfX
q
i−1 + bi)

with a sequence of thresholds h1, h2, · · · , hn. As σi is

monotone, and w.l.o.g. assume α > 0, the comparison

can equivalently be done between WfX
q
i−1 and

1

8A1. Training an L-Layer CNN with W -

Bit Weights and A-Bit Activations Using G-Bit Gra-

dients
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Hence it is sufficient to prove the counting state-

ments for these intervals after the application of Algo-

rithm 2.

First of all, as each call of HistogramEqualize ei-

ther produces two recursive calls or terminates depend-

ing on level variable, the call relation of any invoca-

tion of HistogramEqualizewill form a balanced binary

tree. For clarity, we note as M l
k, M

g
k the corresponding

M l, Mg, respectively, used for a depth k node of the

binary tree.

By the assumption of M l, Mg, we have 1
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Ct = ft ◦Ct−1 + it ◦ C̃t,

ot = σ(Wo · [ht−1,xt] + bo),

ht = ot ◦ tanh(Ct).

Different from GRU, Ct cannot be easily quantized,

since the value has not been bounded by activation

functions like tanh. This difficulty comes from structure

design and cannot be alleviated without introducing ex-

tra facility to clip value ranges. But it can be noted that

the computations involvingCt are all element-wise mul-

tiplications and additions, which may take much less

time than computing matrix products. For this reason,

we leave Ct to be floating point numbers.

To simplify implementation, tanh activation for out-

put may be changed to the sigmoid function.

Summarizing above changes, the formula for quan-

tized LSTM can be:

ft = σ(Wf · [ht−1,xt] + bf),

it = σ(Wi · [ht−1,xt] + bi),

C̃t = tanh(WC · [ht−1,xt] + bi),

Ct = ft ◦Ct−1 + it ◦ C̃t,

ot = σ(Wo · [ht−1,xt] + bo),

ht = Qk(ot ◦ σ(Ct)),

where we assume the weights Wf ,Wi,WC,Wo have al-

ready been quantized to [−1, 1], and input xt have al-

ready been quantized to [0, 1].


