
Wu YX, Liu D, Jiang H. Length-changeable incremental extreme learning machine. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 32(3): 630–643 May 2017. DOI 10.1007/s11390-017-1746-7

Length-Changeable Incremental Extreme Learning Machine

You-Xi Wu 1,2,3 , Senior Member, CCF, Dong Liu 1,3,4, and He Jiang 4,∗, Senior Member, CCF

1School of Computer Science and Software, Hebei University of Technology, Tianjin 300130, China

2School of Economics and Management, Hebei University of Technology, Tianjin 300130, China

3Hebei Province Key Laboratory of Big Data Calculation, Tianjin 300401, China

4School of Software, Dalian University of Technology, Dalian 116621, China

E-mail: wuc@scse.hebut.edu.cn; dongliu05@gmail.com; jianghe@dlut.edu.cn

Received November 29, 2015; revised March 8, 2017.

Abstract Extreme learning machine (ELM) is a learning algorithm for generalized single-hidden-layer feed-forward

networks (SLFNs). In order to obtain a suitable network architecture, Incremental Extreme Learning Machine (I-ELM) is

a sort of ELM constructing SLFNs by adding hidden nodes one by one. Although kinds of I-ELM-class algorithms were

proposed to improve the convergence rate or to obtain minimal training error, they do not change the construction way of

I-ELM or face the over-fitting risk. Making the testing error converge quickly and stably therefore becomes an important

issue. In this paper, we proposed a new incremental ELM which is referred to as Length-Changeable Incremental Extreme

Learning Machine (LCI-ELM). It allows more than one hidden node to be added to the network and the existing network

will be regarded as a whole in output weights tuning. The output weights of newly added hidden nodes are determined using

a partial error-minimizing method. We prove that an SLFN constructed using LCI-ELM has approximation capability on

a universal compact input set as well as on a finite training set. Experimental results demonstrate that LCI-ELM achieves

higher convergence rate as well as lower over-fitting risk than some competitive I-ELM-class algorithms.

Keywords single-hidden-layer feed-forward network (SLFN), incremental extreme learning machine (I-ELM), random

hidden node, convergence rate, universal approximation

1 Introduction

Among various kinds of neural networks, single-

hidden-layer feed-forward networks (SLFNs) are exten-

sively investigated in both theoretical and applied fields

due to their simplicity and approximation capability.

The output function of a single-output SLFN with d

input nodes and L hidden nodes can be represented by

f(x) =

L
∑

j=1

βjG(x,aj , bj),

x ∈ R
d,aj ∈ R

d, bj ∈ R,

where βj is the output weight of the connection between

the j-th hidden node and the output node, G(x,aj, bj)

denotes the j-th hidden node output function, x is the

input of the SLFN, aj is the weight vector of the con-

nection between the input layer and the j-th hidden

node, and bj is the bias of the j-th hidden node. The

hidden nodes of SLFNs can be traditional additive hid-

den nodes and radial basis function (RBF) nodes[1-2].

Or they can be generalized to be non-neuron alike, such

as support vector machines (SVMs)[3], ridge polynomial

networks[4], polynomial fuzzy rules[5], and Fourier and

wavelet networks[6-8]. Among them, two kinds of hid-

den nodes are usually mentioned.

1) Additive hidden nodes with activation function

g:

G(x,aj , bj) = g(aj · x+ bj),aj ∈ R
d, bj ∈ R.

2) RBF hidden nodes with activation function g:

G(x,aj , bj) = g(‖x− aj‖2/bj),aj ∈ R
d, bj ∈ R

+.



You-Xi Wu et al.: Length-Changeable Incremental Extreme Learning Machine 631

Theoretical studies show that any continuous func-

tion can be approximated by SLFN if all the parameters

of SLFN are allowed to be tuned during learning[9-11].

However, the traditional gradient descent-based tuning

methods are generally time consuming and easily con-

verge to local minima. Different from the conventional

neural network theories, Huang et al. proposed a new

learning scheme for SLFNs: Extreme Learning Machine

(ELM)[12-13]. In ELM, all the hidden node parameters

(aj and bj) are randomly chosen, and only the weights

connecting the hidden layer to the output node (βj)

need to be determined in training. What is more, the

ELM learning algorithm could be used to train SLFNs

with non-differentiable and even discontinuous activa-

tion functions. Its simplicity and efficiency has also

been shown in many applications[14-20].

In order to obtain a suitable network architecture,

many algorithms were proposed to adjust the hid-

den nodes of an ELM[21-30]. Some of them can be

summarized as constructive algorithms, which start

with a small network and then gradually add new

hidden nodes, such as Incremental Extreme Learning

Machine (I-ELM)[21], Constructive Multi-output Ex-

treme Learning Machine (CM-ELM)[22], Error Mini-

mized Extreme Learning Machine (EM-ELM)[23] and

Constructive Parsimonious Extreme Learning Machine

(CP-ELM)[24]. Some belong to destructive algorithms,

which initiate a large network at beginning and then re-

move the redundant nodes, such as Optimally Pruned

Extreme Learning Machine (OP-ELM)[25], Destruc-

tive Parsimonious Extreme Learning Machine (DP-

ELM)[24] and Sparse Semi-Supervised Extreme Learn-

ing Machine (S3ELM)[26]. And some use an integration

of the two methods[27-28].

Among them, I-ELM is a sort of ELM constructing

SLFNs by adding hidden nodes one by one. In particu-

lar, Huang et al.[21] proved that SLFNs constructed by

I-ELM can approximate any continuous target function

under the meaning of L2 on any compact input set.

In I-ELM, the activation function of the hidden nodes

can be any bounded non-constant piecewise continu-

ous function (additive node) or any integrable piece-

wise continuous function (RBF node). Convex Incre-

mental Extreme Learning Machine (CI-ELM)[31] and

Enhanced random search based Incremental Extreme

Learning Machine (EI-ELM)[32] are two improved al-

gorithms based on the original I-ELM and they can

achieve faster convergence rates and more compact net-

work architectures. The approximation capability of

CI-ELM and EI-ELM can be illustrated by the same

theory as that of I-ELM with a slight modification.

However, many learning steps are usually still needed

for both CI-ELM and EI-ELM to converge. Feng et

al. proposed another type of incremental ELM: EM-

ELM[23]. In EM-ELM, one or more hidden nodes are

allowed to be added into the network at a learning step

and all the output weights are recalculated at each step.

This means that the newly added hidden nodes exert a

relatively large influence on the current network. Xu et

al.[33] proposed Enhancement of Incremental Regula-

rized Extreme Learning Machine (EIR-ELM) to im-

prove the generalization performance of EM-ELM and

EIR-ELM has the similar training time to EM-ELM.

Different from them, we did not try to find any bet-

ter hidden nodes and did not replace any added hidden

nodes during learning in LCI-ELM. We focus on how

to find a simple constructive way to make the testing

errors converge quickly and stably.

In order to achieve further improvement in the con-

vergence rate as well as keeping the testing error con-

vergence stable, this paper proposes an improved form

of I-ELM: Length-Changeable Incremental ELM (LCI-

ELM). LCI-ELM allows several hidden nodes to be

added to the network at a time and its requirements

for hidden nodes are the same with those of I-ELM.

The method of calculating the output weights is con-

cise but does not meet the conditions for convergence

in [31]. By modifying some procedures of the proof

in [21], the universal approximation capability of LCI-

ELM can be proved. Furthermore, the approximation

of the training set can also be shown using a similar

method.

This paper is organized as follows. Section 2 gives a

description of the newly proposed LCI-ELM and looks

at the ways to determine the output weights. Section 3

rigorously proves that LCI-ELM can work as a univer-

sal approximator for any continuous function under the

meaning of L2 in any compact set. Section 4 explains

how to use LCI-ELM in practice and the LCI-ELM al-

gorithm is given. This section also shows why the tar-

get output can be approximated using the proposed

algorithm. A performance comparison of LCI-ELM, I-

ELM, CI-ELM, EI-ELM (k = 10, 20), EM-ELM, and

EIR-ELM is presented in Section 5. The discussions

and conclusions are given in Section 6.

2 Proposed LCI-ELM

Without loss of generality, we assume that the net-

work has only one output node. The analysis in this



632 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

paper can easily be extended to multiple output node

cases. We choose fn as the network output function af-

ter n (n > 0) learning steps and gj = G(x,aj, bj) as the

output function of the j-th (j > 1) hidden node. We

can simply initialize fn with f0 = 0. Let en = f − fn
denote the residual error function for the current net-

work output function fn where f is the target function.

Similar to [21, 31-32], all the functions mentioned above

are discussed in space L2(X). The definition of L2(X)

is given as follows.

Definition 1. Space L2(X) = {f |f : X →
R,

∫

X |f(x)|2dx < ∞}, where X is a compact subset

of R
d. For f, g ∈ L2(X), the inner product 〈f, g〉 is

defined by 〈f, g〉 =
∫

X f(x)g(x)dx, and the norm of f

in L2(X) space is denoted as ‖f‖ = (
∫

X |f(x)|2dx)1/2.
In I-ELM, only one hidden node is added into the

network in a learning step. The method of constructing

SLFNs is

fn+1 = fn + βn+1gn+1, (1)

βn+1 = 〈f − fn, gn+1〉/‖gn+1‖2,

where βn+1 is just the output weight of the newly added

hidden node.

In this way, the output weights of the existing nodes

remain unchanged when a new node is added. This

means that adding a new node has minor impact on

the current network output especially when the error

en is small. The advantage of this method is that the

network will exhibit reasonable performance when im-

proper nodes are added. This point can also be verified

by experiments[21]: the testing error usually has a de-

creasing trend while adding the hidden nodes. But the

disadvantage is that it usually needs too many hidden

nodes to reach a certain training accuracy. Some im-

provement algorithms of I-ELM, such as CI-ELM[31]

and EI-ELM[32], improve the convergence rate. How-

ever, these algorithms do not give obviously better per-

formance due to the similar way in which the I-ELM

network is constructed.

Compared with this method, another ELM incre-

mental constructive model called EM-ELM[23] uses an

error minimization based method: once the hidden

node output functions are given, the output weights

of the hidden nodes are determined to make the norm

of the training error vector reach the minimum. This

means that all the former node output weights should

be recalculated after adding a new hidden node to the

network. EM-ELM has a higher convergence rate than

I-ELM, and thus it usually needs fewer hidden nodes to

reach a certain training accuracy. But a smaller train-

ing error does not always mean better generalization

performance. Along with the increase in the number

of hidden nodes, the training error decreases. But the

testing error may increase or oscillate, thereby over-

fitting may happen sometimes[33].

In order to improve the convergence rate as well as

keeping the network output stable during training, we

consider a compromise of the above two models. We

allow adding more than one hidden node to the net-

work at a time. Assuming that the number of newly

added nodes at step i is ti, then the total number of

hidden nodes after n steps is Sn =
n
∑

i=1

ti. In order

to make the network output stable, the sequence {ti}
should decrease and the lower bound of ti is 1. In our

experiments, we simply set the sequence to be a nega-

tive exponential form.

Then the hidden nodes of the existing network will

be regarded as a whole in subsequent learning, that

is, the relative ratio of the output weights remains un-

changed while the output weights from then on are re-

calculated. The output function updates as follows.

fn+1 = w
(n+1)
0 fn +

tn+1
∑

j=1

w
(n+1)
j gSn+j (n > 0), (2)

where w(n+1) = (w
(n+1)
0 , w

(n+1)
1 , . . . , w

(n+1)
tn+1

)T is cho-

sen to minimize the new error ‖en+1‖, equivalently, to
minimize the function

Jn+1(x) = ‖f − x · (fn, gSn+1, . . . , gSn+1
)‖2,

x ∈ R
1+tn+1 . (3)

Obviously, function J(x) has a minimum, but its mini-

mum value point may not be unique. According to the

proof in Section 3, the universal approximation capabi-

lity of SLFN always holds regardless of whichever mini-

mum value point we choose as w is. We can choose any

of the minimum value points and it can also be written

as

(w
(n+1)
0 , w

(n+1)
1 , . . . , w

(n+1)
tn+1

)T

= arg min
x∈R

1+tn+1

‖f − x · (fn, gSn+1, . . . , gSn+1
)‖.

Comparing (2) with (1), I-ELM would be a special

case of LCI-ELM by setting both the coefficient w
(n+1)
0

and the number of the newly added hidden nodes tn+1

to 1. Generally, to add tn+1 (tn+1 > 1) hidden nodes

into the network, I-ELM calculates the output weight

of each new node one by one. But the weights are



You-Xi Wu et al.: Length-Changeable Incremental Extreme Learning Machine 633

calculated at one time to minimize the total error in

LCI-ELM. LCI-ELM usually achieves lower training er-

ror at this phase. Therefore, allowing the addition of

several nodes at a time, as well as using the partial

error minimization method, can help to improve the

convergence rate. The network output can be stable as

the newly added nodes have a relatively small impact

on it and the number of newly added nodes decreases

each time. The output function of every hidden node

is randomly generated like other ELMs. This way of

constructing SLFNs can be regarded as a new improve-

ment algorithm of I-ELM based on length-changeable

incremental method. In this way, the output weights of

the network are updated as

β
(n+1)
j =







w
(n+1)
0 β

(n)
j , if 1 6 j 6 Sn,

w
(n+1)
j−Sn

, if Sn < j 6 Sn+1,

where β(n) = (β
(n)
1 , β

(n)
2 , . . . , β

(n)
Sn

)T is the output

weights after n learning steps.

3 Universal Approximation Capability of

LCI-ELM

For the sake of readability, we provide the following

definitions.

Definition 2. A function g : R → R is said to

be piecewise continuous if it has only a finite number

of discontinuities in any interval and its left and right

limits are defined (not necessarily equal) at each discon-

tinuity.

Definition 3. Function spaces based on function

g : R → R are such that G′(g) = {g(a · x+ b)|(a, b) ∈
R

d×R} and G′′(g) = {g(‖x−a‖2/b)|(a, b) ∈ R
d×R

+}.
The output functions of the hidden layer nodes are

from these two spaces. They are additive functions and

RBFs, respectively.

Definition 4. The random variables (a, b) are said

to be positive continuous random variables if they are

continuous random variables and their probability den-

sity function p(x) is positive on R
d × R or R

d × R
+

almost everywhere.

Definition 5. The function sequence {gn = g(an ·
x + bn)} or {gn = g(‖x − an‖2/bn)} is said to be a

random function sequence if the corresponding parame-

ters (an, bn) are positive random variables on R
d×R or

R
d×R

+. We assume the variables (aj , bj)(j = 1, 2, . . . )

are mutually independent.

From the proof of I-ELM[21], the sequence {‖en‖}
converges to 0 with probability of 1 when some con-

ditions are fulfilled. One of the sufficient conditions

is en ⊥ (en−1 − en)
[31], but it does not hold for LCI-

ELM. However, the universal approximation capability

of LCI-ELM can be proved by using the original proof

with some steps modified.

Some necessary lemmas are used in our proof.

Lemma 1[34]. For any f ∈ L2(X) and g ∈ L2(X),

f + g ∈ L2(X) holds.

Lemma 2[10]. Assuming function g is continuous

almost everywhere and µ is a non-negative finite mea-

sure on R
d with compact support, then spanG′(g) is

dense in Lp(µ) for 1 6 p < ∞ if and only if g is not a

polynomial.

We can simply choose Lebesgue measure as µ with

support X and p = 2. Then Lemma 2 is related to the

circumstance we are concerned with.

Lemma 3[11,21]. Let K : Rd → R be an integrable

bounded function such that K is continuous almost ev-

erywhere and
∫

Rd K(x)dx 6= 0. Then span{K((x −
a)/b)|(a, b) ∈ R

d × R
+} is dense in Lp(Rd) for every

p ∈ [1,∞).

Lemma 4[21]. Given a bounded non-constant piece-

wise continuous function g : R → R, we have 1○

lim
(a,b)→(a0,b0)

‖g(a · x+ b)− g(a0 · x+ b0)‖ = 0,

(a0, b0) ∈ R
d × R,

and

lim
(a,b)→(a0,b0)

‖g(‖x− a‖2/b)− g(‖x− a0‖2/b0)‖ = 0,

(a0, b0) ∈ R
d × R

+.

Lemma 5. Given a bounded non-constant piecewise

continuous function g : R → R, any given positive value

θ̂ < π/2 and any subsequence {nk} of nature number

sequence, for any random function sequence {gn} and

any g0 ∈ G′(g)\{g(b)|b is a discontinuity of g} or

g0 ∈ G′′(g), a gni
(i ∈ N+) exists satisfying θ(gni

, g0) <

θ̂ with probability of 1, where θ(gni
, g0) is the angle

formed by gni
and g0.

Proof. With the proof of Lemma 6 in [21], according

to Lemma 4, δ > 0 exists such that any (a, b) ∈ Q =

{(a, b)|‖(a, b)− (a0, b0)‖2 < δ}, ‖g − g0‖ < ‖g0‖ sin(θ̂).
Supposing that p(x) is the probability density func-

tion of (a, b) where x ∈ R
d × R for additive node case

and x ∈ R
d × R

+ for RBF node case, as a and b



634 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

are positive random variables, p0 = P{(a, b) ∈ Q} =
∫

Q
p(x)dx > 0 holds.

The probability that an element in {gn1
, gn2

, . . . , gnM
}

belonging to Q exists is that PM = 1 −
M
∏

i=1

(1 − p0) =

1− (1−p0)
M , then P∞ = 1. Thus a gni

(i ∈ N+) exists

such that gni
∈ Q with probability of 1. Meanwhile,

we can see that 2〈gni
, g0〉 > ‖gni

‖2 + ‖g0‖2 cos2(θ̂) >

2‖gni
‖‖g0‖ cos(θ̂), that is, cos(θ(gni

, g0)) > cos(θ̂)

where 0 6 θ(gni
, g0) 6 π, thereby θ(gni

, g0) < θ̂ holds

with probability of 1. �

Then we can declare the universal approximation

capability of LCI-ELM. It shows as follows.

Theorem 1. Given any bounded non-constant

piecewise continuous function g : R → R for additive

nodes or any integrable piecewise continuous function

g : R → R and
∫

R
g(x)dx 6= 0 for RBF nodes, for any

continuous target function f and any random function

sequence {gn}, then lim
n→∞

‖f−fn‖ = 0 holds with proba-

bility of 1 if the function sequence {fn} generates as

follows.

1) f0 = 0;

2) fn+1 = w
(n+1)
0 fn +

tn+1
∑

j=1

w
(n+1)
j gSn+j

,

where tn ∈ N+ (non-zero natural numbers), Sn =
n
∑

i=1

ti, n > 1 and (w
(n+1)
0 , w

(n+1)
1 , . . . , w

(n+1)
tn+1

)T =

argmin
x∈R

1+tn+1 ‖f − x · (fn, gSn+1, . . . , gSn+1
)‖.

Proof. Since g is piecewise continuous, f0 = 0 and f

are continuous, we can easily have f0, f, g0 ∈ L2(X).

And {fn} is constructed by addition, according to

Lemma 1, ∀n ∈ N+, fn ∈ L2(X) and en ∈ L2(X).

We should note

‖en‖
= ‖f − fn‖
= ‖f − (1, 0, . . . , 0) · (fn, gSn+1

, . . . , gSn+1
)‖

> min
x∈R

1+tn+1

‖f − x · (fn, gSn+1, . . . , gSn+1
)‖

= ‖f − fn+1‖
= ‖en+1‖,

which means that the error sequence {‖en‖} is decreas-

ing with lower bound being 0. Thus it has a limit which

is not negative. Similar to [21], we will prove the limit

is 0 by contradiction method.

Supposing that lim
n→∞

‖en‖ = r > 0, we have ∀n ∈
N+, ‖e0‖ > ‖en‖ > r. This implies that the sequence

{en} is covered by a compact set; thus, there exists a

convergent sub-sequence {enk
} such that lim

k→∞

enk
= e∗

and ‖e∗‖ = r. And L2(X) is complete, thereby e∗ ∈
L2(X). Similar to the proof b.1) in [21], g∗ ∈ G′(g) or

g∗ ∈ G′′(g) exists such that g∗ is not orthogonal to e∗.

Otherwise, e∗ is orthogonal to spanG′(g) or spanG′′(g).

As spanG′(g) or spanG′′(g) is dense in L2(X) according

to Lemma 2 and Lemma 3, there exists e∗∗ ∈ spanG′(g)

or spanG′′(g) that ‖e∗∗ − e∗‖ < r/2. Thus 〈e∗, e∗∗〉 =
‖e∗‖2 + 〈e∗, e∗∗ − e∗〉 > ‖e∗‖2 − ‖e∗‖‖e∗∗ − e∗‖ >

r2/2 > 0, which is contradictory to the above con-

clusion that e∗ is orthogonal to e∗∗, meaning that

0 6 sin(θ(g∗, e∗)) < 1. If g∗ = g(b∗) and g is discon-

tinuous at x = b∗, we can simply choose g∗∗ = g(b∗∗),

where g is continuous at x = b∗∗, instead of g∗. This is

because θ(g∗, e∗) = θ(1, e∗) = θ(g∗∗, e∗).

Then cos(θ(enk
, e∗)) = (‖enk

‖2 + ‖e∗‖2 − ‖enk
−

e∗‖2)/2‖enk
‖‖e∗‖ → 1, that is, θ(enk

, e∗) → 0

and we can choose a positive number ξ = (1 −
sin(θ(g∗, e∗)))/2 < 1. According to the properties

of limit, ‖enk
‖ < r/(1 − ξ) holds while k > N1

and sin(θ(enk
, e∗)) < ξ/2 holds while k > N2. Let

N = max{N1, N2}, and we have a sub-sequence of

the nature number sequence by ranking the numbers

in {i|Snk
+ 1 6 i 6 Snk+1, k > N + 1} in order

from small to large. We call it {n∗

k}. For any random

function sequence {gn}, gn∗

i
(i ∈ N+) exists satisfying

θ(gn∗

i
, g∗) < arcsin(ξ/2) with probability of 1, accord-

ing to Lemma 5, that is, sin(θ(gn∗

i
, g∗)) < ξ/2. We

assume that Snp
+ 1 6 n∗

i 6 Snp+1 where p > N + 1,

then

‖enp+1‖
= min

x∈R
1+tnp+1

‖f − x · (fnp
, gSnp+1, . . . , gSnp+1

)‖

6 ‖f − fnp
− 〈enp

, gn∗

i
〉gn∗

i
/‖gn∗

i
‖2‖

= ‖enp
‖ sin(θ(enp

, gn∗

i
))

6 ‖enp
‖(sin(θ(enp

, e∗)) + sin(θ(e∗, g∗)) +

sin(θ(g∗, gn∗

i
)))

< r(ξ/2 + 1− 2ξ + ξ/2)/(1− ξ)

= r,

which is contradictory to ∀n ∈ N+, ‖en‖ > r. Thereby

lim
n→∞

‖f − fn‖ = lim
n→∞

‖en‖ = 0. �

4 LCI-ELM in Real Applications

4.1 Algorithm Based on the Training Set

In LCI-ELM, the output weights are determined

based on the target function f . However, the target

function f is unavailable in practice and the training



You-Xi Wu et al.: Length-Changeable Incremental Extreme Learning Machine 635

samples cannot cover all the information. Similar to

[21] and [35], we can use some vectors based on the

training set instead of functions. We should make a

transform from L2(X) to R
N . For the training set

{(xj, yj)|1 6 j 6 N}, let y = (y1, y2, . . . , yN)T, gn =

(gn(x1), gn(x2), . . . , gn(xN ))T and f0 = (0, 0, . . . , 0)T.

The vector norm ‖x‖ =
√



636 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

and then
∑

i∈I(1,xs1)∩I(2,xs2)
cig

(2(N−1))(a ·xi + b) = 0.

Conducting this process d times, we have
∑

i∈
d⋂

j=1

I(j,xsj)
cig

(d(N−1))(a ·xi+ b) = 0. For every ele-

ment on the left of the equality, its subscript i satisfies

xij = xsj(j = 1, 2, . . . , d), that is, xi = xs. Therefore

i = s as x1,x2, . . . ,xN are distinct vectors. Accord-

ing to our assumption, g(d(N−1))(x) 6= 0 in some in-

terval. We can easily find (a, b) ∈ R
d × R such that

g(d(N−1))(a · xs + b) 6= 0. Thus cs = 0 holds for

s = 1, 2, . . . , N . This means that c = 0 which is con-

tradictory to c being non-zero. Thus dimS = N . �

Note that the sigmoid function y = 1/(1+ e−x) sat-

isfies the conditions of Lemma 6.

Lemma 7[36]. Suppose F ′ is completely mono-

tonic (that is (−1)kF (k+1) > 0 on (0,+∞) for any

k ∈ N+) but not constant on (0,+∞), F is continu-

ous on [0,+∞) and positive on (0,+∞). Then for any

distinct vectors x1,x2, . . . ,xN ∈ R
d (d arbitrary)

(−1)N−1 det[F (‖xi − xj‖ 2
2 )]N×N > 0.

Lemma 8. Given a function g : R → R, let

f(x) = g(
√



You-Xi Wu et al.: Length-Changeable Incremental Extreme Learning Machine 637

from Statlib 3○ while other datasets are taken from the

UCI database 4○ 5○. The training samples and the test-

ing samples of each case are randomly selected from the

original dataset. In the experiments, all the inputs are

normalized into the range [−1, 1] and the outputs are

normalized into [0, 1].

As in our previous analysis, additive hidden nodes

and RBF hidden nodes are used to construct networks

in the experiments. Sigmoid function G(x,a, b) =

1/(1 + exp(a · x − b)) is used as the activation func-

tion for additive nodes; the input weight a and the hid-

den bias b are randomly chosen from the range [−1, 1].

For RBF nodes, the activation function is the Gaussian

function G(x,a, b) = exp(−b‖x − a‖22). The centre a

is randomly chosen from the range [−1, 1], whereas the

impact factor b is randomly chosen from [0, 0.5].

Two parameters (k, λ) are to be specified by the

users. Generally speaking, we can choose a larger k

and a smaller λ to achieve a higher convergence rate,

but the testing error may be more likely to oscillate.

Thus the parameters need to be chosen appropriately.

Instead of trying a wide range of k and λ, we propose a

heuristic strategy to give the values of these parameters.

The parameter k determines the number of the hidden

nodes of the initial network. To start learning with a

relatively small size network, the initial hidden layer is

restricted to have no more than 15 nodes. To make it

simpler, we construct the initial network with only 5,

10 or 15 hidden nodes. That is to say, the value of k

is chosen from {4, 9, 14}. The parameter λ determines

how fast the number of newly added hidden nodes de-

creases. We choose λ = 0.02 so that the network would

have approximately 150 to 1 000 hidden nodes before

the incremental number of hidden nodes decreases to 1

when k = 4, 9 or 14. The experimental results shown

below are all on condition that the number of hidden

nodes is in the range [150, 1 000]. In summary, we set

λ = 0.02 for all cases, we try k = 4, 9, 14 for each case,

and then the best one in {4, 9, 14} is chosen as k. Such

a simple strategy can work well, too. Table 1 shows

key information on the datasets and the user-specified

parameters for LCI-ELM.

All the simulations are carried out in MATLAB 7.0

environment on the same PC with a Core2 2.39 GHz

CPU and 2G RAM. Twenty trials have been conducted

for each problem; the simulation results include the

mean testing root mean square error (mean RMSE),

the corresponding standard deviation (Dev.) and the

average training time.

5.2 Comparison Among I-ELM, CI-ELM and

LCI-ELM

We first compare the generalization performance of

LCI-ELM with that of I-ELM and CI-ELM. In the sim-

ulation, the expected learning accuracy ǫ is set to be 0

for all three algorithms, thereby the number of hidden

nodes reaches the maximum. In order to illustrate that

LCI-ELM can obtain better generalization performance

with fewer hidden nodes, we set Lmax = 150 for LCI-

ELM and Lmax = 300 for I-ELM and CI-ELM. The

performance of LCI-ELM, I-ELM and CI-ELMwith ad-

ditive and RBF nodes is shown in Table 2 and Table 3

respectively. The best results (testing RMSE) among

all algorithms are shown in boldface.

Table 1. Key Information on the Datasets and the User-Specified Parameters for LCI-ELM



638 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

Table 2. Performance Comparison of LCI-ELM, I-ELM and CI-ELM with Additive Nodes



You-Xi Wu et al.: Length-Changeable Incremental Extreme Learning Machine 639

0 200 400 600 800 1000
0.10

0.15

0.20

0.25

Number of Hidden Nodes

T
e
st

in
g
 R

M
S
E

I-ELM (Additive Nodes)

CI-ELM (Additive Nodes)
LCI-ELM (Additive Nodes)
I-ELM (RBF Nodes)
CI-ELM (RBF Nodes)

LCI-ELM (RBF Nodes)

Fig.2. Testing error updating curves of I-ELM, CI-ELM and
LCI-ELM for the Concrete Strength case.

5.3 Comparison Between LCI-ELM and

EI-ELM

EI-ELM is an enhanced algorithm for I-ELM and it

can achieve a faster convergence rate[32]. But its time

cost is relatively large: the training time of EI-ELM

with parameter k is around k times that of I-ELM when

the same number of hidden nodes is added[32]. How-

ever, the training time of LCI-ELM is slightly longer

than that of I-ELM with the same number of hidden

nodes since LCI-ELM has a more complex weights cal-

culating method. In order to compare the training time

as well as the generalization performance between LCI-

ELM and EI-ELM with the same number of hidden

nodes, we set the same expected learning accuracy ǫ

= 0 and the same maximum number of hidden nodes

Nmax = 300 for both LCI-ELM and EI-ELM. Table 4

and Table 5 show the performance of LCI-ELM and EI-

ELM (k = 10, k = 20) with additive and RBF nodes,

respectively. The apparently better results are shown

in boldface.

It can be seen that the training time of LCI-ELM

is much shorter than that of EI-ELM (k = 10, k = 20)

for all the tested cases. Meanwhile, LCI-ELM achieves

better generalization performance in all the datasets

except the Bodyfat and Space-ga cases with RBF hid-

den nodes. In the Yacht case in Table 5, for exam-

ple, the testing RMSE of LCI-ELM, which is 0.146 2, is

much smaller than that of EI-ELM (k = 10) which is

0.252 8 and that of EI-ELM (k = 20) which is 0.242 9.

In addition, the training speed of LCI-ELM is almost

8 and 12 times higher than that of EI-ELM (k = 10)

and EI-ELM (k = 20), respectively. This means that

LCI-ELM can achieve similar or better generalization

performance with the same number of hidden nodes

compared with EI-ELM (k = 10, k = 20). But the

training process of LCI-ELM is much shorter. We also

present the testing error updating curves of LCI-ELM

and EI-ELM (k = 10, k = 20) for the Abalone and

Concrete Strength cases in Fig.3 and Fig.4 respectively.

We can see that LCI-ELMwith additive nodes and RBF

nodes obviously converges faster than EI-ELM (k = 10,

k = 20) with additive nodes and RBF nodes, respec-

tively.

5.4 Comparison Among EM-ELM, EIR-ELM

and LCI-ELM

Similar to the proposed algorithm, LCI-ELM, EM-

ELM allows adding one or more hidden nodes into the

network at one time. EM-ELM aims to obtain mini-

mal training error at each training step, which makes it

different from LCI-ELM. EIR-ELM[33] is an improved

Table 4. Performance Comparison of LCI-ELM and EI-ELM (k = 10, k = 20) with Additive Nodes



640 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

Table 5. Performance Comparison of LCI-ELM and EI-ELM (k = 10, k = 20) with RBF Nodes



You-Xi Wu et al.: Length-Changeable Incremental Extreme Learning Machine 641

in the whole training process. This means EM-ELM en-

counters the over-fitting problem. EIR-ELM shows bet-

ter performance than EM-ELM and its RMSE curves

keep smooth in a wider range. However, the generali-

zation error of EIR-ELM has an upward swing when

there are more hidden nodes (approximately 60 hidden

nodes for the Abalone case and 120 hidden nodes for the

Concrete Strength case). Although EIR-ELM can re-

lieve the over-fitting problem in some degree, the prob-

lem is not well solved. Especially, EM-ELM and EIR-

ELM will have unacceptably bad performance when the

number of the hidden nodes exceeds a certain range.

However, LCI-ELM does not suffer from this problem

in these cases. That is to say, over-fitting does not hap-

pen easily for LCI-ELM while adding hidden nodes.

0 50 100 150

0.075

0.080

0.085

0.090

0.095

0.100

T
e
st

in
g
 R

M
S
E

EM-ELM (Additive Nodes)
EIR-ELM (k=5, Additive Nodes)
LCI-ELM (Additive Nodes)
EM-ELM (RBF Nodes)
EIR-ELM (k=5, RBF Nodes)
LCI-ELM (RBF Nodes)

Number of Hidden Nodes

Fig.5. Testing error updating curves of EM-ELM, EIR-ELM
(k = 5) and LCI-ELM for the Abalone case.

0 50 100 150 200 250 300
0.08

0.10

0.12

0.14

0.16

0.18

0.20

T
e
st

in
g
 R

M
S
E

Number of Hidden Nodes

EM-ELM (Additive Nodes)
EIR-ELM (k=5, Additive Nodes)
LCI-ELM (Additive Nodes)
EM-ELM (RBF Nodes)
EIR-ELM (k=5, RBF Nodes)
LCI-ELM (RBF Nodes)

Fig.6. Testing error updating curves of EM-ELM, EIR-ELM
(k = 5) and LCI-ELM for the Concrete Strength case.

6 Conclusions

This paper proposed a length-changeable incremen-

tal ELM (LCI-ELM) based on I-ELM for regression

tasks. Different from other incremental extreme learn-

ing machines, such as I-ELM, CI-ELM and EI-ELM,

LCI-ELM allows more than one hidden node to be

added into the network at a time and the number of

newly added nodes each time is changeable. Meanwhile,

LCI-ELM retains the I-ELM’s simplicity in calculating

the output weights.

Like the theoretical analysis in [21], this paper

proved the universal approximation capability under

the meaning of L2 norm. The proof is similar to that

in [21] and the requirements for the activation func-

tions are the same with those in [21]. The condition

en ⊥ (en−1−en) which is important in the proof in [21],

however, is not required in our proof. It is worth men-

tioning that the same method can be used to demon-

strate the approximation in the training set. The main

difference between these two types of approximation

is the discourse domain: one is function space L2(X)

and the other is Euclidean space R
N . What is more,

there are no restrictions on the number of newly added

hidden nodes, thereby the proof is still valid when the

hidden-node-adding strategy alters.

Experimental results showed that LCI-ELM

achieves good performance even if the parameters are

chosen simply: λ = 0.02 and k from 4, 9 and 14.

LCI-ELM converges much faster than I-ELM and CI-

ELM. The training time of LCI-ELM is much shorter

than that of EI-ELM (k = 10 and k = 20) for net-

works of the same size and LCI-ELM usually achieves

a faster convergence rate. Compared with EM-ELM

and EIR-ELM, LCI-ELM can converge more stably:

the testing error decreases while new hidden nodes are

added successively. Over-fitting does not usually occur

for LCI-ELM.

In this paper, the number of newly added nodes at

each step is set to decrease and there are two control

parameters: k and λ. In the experiments, the two para-

meters are chosen in a quite simple way. Although the

method is somewhat effective, how to choose the para-

meters properly for different datasets to achieve better

performance is still a problem requiring further investi-

gation. Proposals for new ways of adding hidden nodes

are also worth investigating in the future.

References

[1] Castano A, Fernández-Navarro F, Hervás Martinez C.

PCA-ELM: A robust and pruned extreme learning machine



642 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

approach based on principal component analysis. Neural

Processing Letters, 2013, 37(3): 377-392.

[2] Chen H, Gong Y, Hong X. Online modeling with tunable

RBF network. IEEE Transactions on Cybernetics, 2013,

43(3): 935-947.

[3] Frénay B, Verleysen M. Using SVMs with randomised fea-

ture spaces: An extreme learning approach. In Proc. the

18th European Symposium on Artificial Neural Networks,

Apr. 2010, pp.315-320.

[4] Shin Y, Ghosh J. Approximation of multivariate functions

using ridge polynomial networks. In Proc. International

Joint Conference on Neural Networks, June 1992, pp.380-

385.

[5] Park B J, KimW D, Oh S K, Pedrycz W. Fuzzy set-oriented

neural networks based on fuzzy polynomial inference and

dynamic genetic optimization. Knowledge and Information

Systems, 2014, 39(1): 207-240.

[6] Han F, Huang D S. Improved extreme learning machine for

function approximation by encoding a priori information.

Neurocomputing, 2006, 69(16/17/18): 2369-2373.

[7] Lin F J, Hung Y C, Ruan K C. An intelligent second-order

sliding-mode control for an electric power steering system

using a wavelet fuzzy neural network. IEEE Transactions

on Fuzzy Systems, 2014, 22(6): 1598-1611.

[8] Capizzi G, Capizzi C, Bonanno F. Innovative second-

generation wavelets construction with recurrent neural net-

works for solar radiation forecasting. IEEE Transactions

on Neural Networks and Learning Systems, 2012, 23(11):

1805-1815.

[9] Hornik K. Approximation capabilities of multilayer feedfor-

ward networks. Neural Networks, 1991, 4(2): 251-257.

[10] Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feed-

forward networks with a nonpolynomial activation function

can approximate any function. Neural Networks, 1993, 6(6):

861-867.

[11] Park J, Sandberg I W. Universal approximation using

radial-basis-function networks. Neural Computation, 1991,

3(2): 246-257.

[12] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:

Theory and applications. Neurocomputing, 2006, 70(1/2/3):

489-501.

[13] Huang G B, Zhou H, Ding X, Zhang R. Extreme learn-

ing machine for regression and multiclass classification.

IEEE Transactions on Systems, Man, Cybernetics, Part

B (Cybernetics), 2012, 42(2): 513-529.

[14] Wang S J, Chen H L, Yan W J, Chen Y H, Fu X L. Face

recognition and micro-expression recognition based on dis-

criminant tensor subspace analysis plus extreme learning

machine. Neural Processing Letters, 2014, 39(1): 25-43.

[15] Liu D, Wu Y, Jiang H. FP-ELM: An online sequential learn-

ing algorithm for dealing with concept drift. Neurocomput-

ing, 2016, 207(26): 322-334.

[16] Han D H, Zhang X, Wang G R. Classifying uncertain and

evolving data streams with distributed extreme learning

machine. Journal of Computer Science and Technology,

2015, 30(4): 874-887.

[17] Zhang T, Dai Q, Ma Z. Extreme learning machines’ en-

semble selection with GRASP. Applied Intelligence, 2015,

43(2): 439-459.

[18] Nie L, Jiang H, Ren Z et al. Query expansion based on

crowd knowledge for code search. IEEE Transactions on

Services Computing, 2016, 9(5): 771-783.

[19] Deng C W, Huang G B, Xu J et al. Extreme learning ma-

chines: New trends and applications. Science China Infor-

mation Sciences, 2015, 58(2): 1-16.

[20] Jiang H, Nie L, Sun Z et al. ROSF: Leveraging information

retrieval and supervised learning for recommending code

snippets. IEEE Transactions on Services Computing, 2016.

doi:10.1109/TSC.2016.2592909

[21] Huang G B, Chen L, Siew C K. Universal approximation

using incremental constructive feedforward networks with

random hidden nodes. IEEE Transactions on Neural Net-

works, 2006, 17(4): 879-892.

[22] Wang N, Han M, Dong N, Er M J. Constructive multi-

output extreme learning machine with application to large

tanker motion dynamics identification. Neurocomputing,

2014, 128: 59-72.

[23] Feng G, Huang G B, Lin Q, Gay R. Error minimized ex-

treme learning machine with growth of hidden nodes and

incremental learning. IEEE Transactions on Neural Net-

works, 2009, 20(8): 1352-1357.

[24] Wang N, Er M J, Han M. Parsimonious extreme learn-

ing machine using recursive orthogonal least squares. IEEE

Transactions on Neural Networks and Learning Systems,

2014, 25(10): 1828-1841.

[25] Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse

A. OP-ELM: Optimally pruned extreme learning machine.

IEEE Transactions on Neural Networks, 2010, 21(1): 158-

162.

[26] Luo X, Liu F, Yang S, Wang X, Zhou Z. Joint sparse

regularization based sparse semi-supervised extreme learn-

ing machine (S3ELM) for classification. Knowledge-Based

Systems, 2015, 73: 149-160.

[27] Zhang R, Lan Y, Huang G B, Xu Z B. Universal approxi-

mation of extreme learning machine with adaptive growth

of hidden nodes. IEEE Transactions on Neural Networks

and Learning Systems, 2012, 23(2): 365-371.

[28] Zhang R, Lan Y, Huang G B, Xu Z B, Soh Y C. Dynamic

extreme learning machine and its approximation capability.

IEEE Transactions on Cybernetics, 2013, 43(6): 2054-2065.

[29] Feng G, Lan Y, Zhang X et al. Dynamic adjustment of hid-

den node parameters for extreme learning machine. IEEE

Transactions on Cybernetics, 2015, 45(2): 279-288.

[30] Yang Y, Wu Q M J. Extreme learning machine with subnet-

work hidden nodes for regression and classification. IEEE

Transactions on Cybernetics, 2016, 46(12): 2885-2898.

[31] Huang G B, Chen L. Convex incremental extreme learning

machine. Neurocomputing, 2007, 70(16/17/18): 3056-3062.

[32] Huang G B, Chen L. Enhanced random search based incre-

mental extreme learning machine. Neurocomputing, 2008,

71(16/17/18): 3460-3468.

[33] Xu Z, Yao M, Wu Z, Dai W. Incremental regularized ex-

treme learning machine and it’s enhancement. Neurocom-

puting, 2016, 174: 134-142.

[34] Kolmogorov A N, Fomin S V. Elements of the Theory

of Functions and Functional Analysis: Measure. Graylock

Press, 1961.

[35] Kwok T Y, Yeung D Y. Objective functions for training

new hidden units in constructive neural networks. IEEE

Transactions on Neural Networks, 1997, 8(5): 1131-1148.



You-Xi Wu et al.: Length-Changeable Incremental Extreme Learning Machine 643

[36] Micchelli C A. Interpolation of scattered data: Distance

matrices and conditionally positive definite functions. Con-

structive Approximation, 1986, 2: 11-22.

You-Xi Wu received his Ph.D.

degree in theory and new technology

of electrical engineering from Hebei

University of Technology, Tianjin, in

2007. He is currently a Ph.D. supervisor

and a professor with Hebei University

of Technology, Tianjin. His current

research interests include data mining and machine

learning. Dr. Wu is a senior member of CCF.

Dong Liu received his Master’s de-

gree in computer science and technology

from Hebei University of Technology,

Tianjin, in 2016. Now, he is a Ph.D.

candidate of software engineering

at Dalian University of Technology,

Dalian. His research interests include

machine learning and its applications in

software engineering.

He Jiang received his Ph.D. degree

in computer science from University

of Science and Technology of China,

Hefei, in 2004. He is currently a Ph.D.

supervisor and a professor with Dalian

University of Technology, Dalian.

His current research interests include

search-based software engineering and mining software

repositories. Dr. Jiang is a senior member of CCF.


