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formance of simulation capability of an interconnec-

tion network. Graph embedding is a technique that

maps one graph (guest graph) into another graph (host

graph)[7]. There are many applications of graph em-

bedding, such as parallel algorithms transplanting, ar-

chitecture simulation[8-9], and VLSI chip design[10].

In parallel computing, a large process is usually di-

vided into a set of small subprocesses that can execute

in parallel with communications among these subpro-

cesses. Hence, the problem of allocating these subpro-

cesses into a parallel computing system can be again

modeled as a graph embedding problem[11].

Most of the studies on graph embedding consider

paths, cycles, trees, meshes as guest graphs, such as

[9, 12-20], because these interconnection networks are

widely used in parallel and distributed computing sys-

tems. In particular, paths and cycles, are more com-

mon and useful in embedding regular topologies such

as linear arrays and rings. What is more, they are suit-

able for designing simple parallel algorithms with low

communication cost. These algorithms like data (con-

trol) flow architectures can be applied to parallel and

distributed computing systems. Many efficient parallel

algorithms developed on paths (cycles) can be used to

solve graph problems, algebraic problems, some parallel

applications and so on. Besides, some special paths play

important roles in parallel and distributed computing.

A shortest path between any two vertices in an intercon-

nection network is an optimal path in the aspect of com-

munication delay. Efe[1] and Chang et al.[2] respectively

discussed different embeddings of the shortest paths be-

tween any two vertices in crossed cubes. Edge-disjoint

paths between two vertices are basic routing in high-

speed interconnection networks[21], while node-disjoint

paths are significant for fault-tolerant routing[22]. Lai

and Hsu presented the nearly shortest path embed-

ding in crossed cubes[23]. A Hamiltonian path can

be used in dual-path and multipath multicast routing

algorithms to decrease congestion or avoid deadlock

in parallel computing systems[24]. Huang et al. stu-

died the fault-tolerant Hamiltonian path embedding in

crossed cubes[25]. Chang et al. proposed the end-to-end

longest path problem[26]. Finally, if paths of consecu-

tive lengths can be embedded, the number of simulated

processors can be adjusted to match the elasticity of

demand. Fan et al. gave the results on embedding of

paths of consecutive lengths: for any two vertices, all

paths whose lengths are greater than or equal to the dis-

tance between the two vertices plus 2 can be embedded

between the two vertices with dilation 1[14]. And in [15],

it was proved that paths of all lengths from ⌈n+1
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exists a Hamiltonian path between any two distinct

vertices of graph G, then we say that graph G is a

Hamiltonian connected graph. The length of a short-

est 〈x, y〉-path in G between x and y is called the dis-

tance between x and y, denoted by dist(G, x, y). The

diameter of G, denoted by D(G), is the maximum of

dist(G, x, y) for any distinct vertices x and y[35]. The

neighbor set of vertex x in G is defined to be the set of

vertices adjacent to x.

A graph G1 = (V1, E1) is a subgraph G2 = (V2, E2)

(written by G1 ⊆ G2) if V1 ⊆ V2 and E1 ⊆ E2
[35]. For

two graphs G1 = (V1, E1) and G2 = (V2, E2), we say

that G1 is an edge-induced subgraph of G2 if E1 ⊆ E2

and V1 is the set of end vertices of edges E1. Two

graphs G1 and G2 are said to be isomorphic if and only

if there are bijections Θ : V1 −→ V2 and Φ : E1 −→ E2

such that Φ maps each edge (u, v) to (Θ(u),Θ(v)) and

vice versa.

Graph embedding can be defined as: given two

graphs G1 = (V1, E1) and G2 = (V2, E2), G1, which

represents the network (guest graph) to be embedded,

and G2, which represents the network (host graph) into

which other networks are to be embedded, an embed-

ding is to find an injective mapping f : V1 → V2
[34]. An

important performance standard of embedding is dila-

tion. The dilation of embedding f is defined as follows:

dil(G1, G2, f) = max{dist(G2, f(x), f(y))|(x, y) ∈ E1}.

The smaller the dilation of an embedding is, the shorter

the communication delay that the graph G2 simulates

the graph G1. We say f is the optimal embedding

G1 → G2 if f has the smallest dilation in all the em-

beddings from G1 to G2. Clearly, dil(G1, G2, f) is at

least 1. If dil(G1, G2, f) = 1, then G1 is isomorphic to

a subgraph of G2. This is the most ideal embedding,

which is also called isomorphic embedding. Under this

circumstance, f is surely optimal in the sense of com-

munication delay. Finding the isomorphic embedding

of graphs is NP-hard[15].

In order to demonstrate the process of constructing

ECQ(s, t), here we follow [4].

Definition 1[1]. Two binary strings, u = u1u0 and

v = v1v0, are pair related, denoted by u ∼ v, if and only

if (u, v) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}. If u and

v are not pair related, then we write u ≁ v.

Definition 2[1]. The n-dimensional crossed cube,

denoted by CQn, is the labeled graph recursively de-

fined as follows. CQ1 is the complete graph on two

vertices whose binary strings are 0 and 1. CQn con-

sists of two subcubes CQ0
n−1 and CQ1

n−1. The most

significant bit of the binary strings of the vertices of

CQ0
n−1 and CQ1

n−1 is 0 and 1, respectively. The ver-

tices u = un−1un−2 · · ·u1u0 and v = vn−1vn−2 · · · v1v0,

where un−1 = 0 and vn−1 = 1, are joined by an edge in

CQn if and only if

1) un−2 = vn−2 if n is even, and

2) u2i+1u2i ∼ v2i+1v2i for 0 6 i < ⌊n−1
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ECQ(s, t) can be also decomposed into two subgraphs

ECQ0(s, t) and ECQ1(s, t), where V (ECQλ(s, t)) =

{λas−2 · · · a0bt−1 . . . b0c | ai, bj , c ∈ {0, 1}, i ∈ [0, s− 2],

j ∈ [0, t− 1]}, for λ ∈ {0, 1}. Obviously, both

ECQ0(s, t) and ECQ1(s, t) are also isomorphic to

ECQ(s − 1, t). An edge between ECQ0(s, t) and

ECQ1(s, t) belongs to E2.
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Fig.2. Exchanged crossed cube ECQ(2, 3).

The definitions of distance-preserving pair related

and pair related distance were proposed by Chang et al.

in crossed cubes[2]. Here, for convenience, we rephrase

them as follows.

Let u = un−1un−2 . . . u0 and v = vn−1vn−2 . . . v0
be two distinct vertices in CQn. The i-th double bit

of vertex u is defined as a 2-bit string u2i+1u2i for

0 6 i 6 ⌊n
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Lemma 1[2]. For any integer n > 1 and any

u, v ∈ V (CQn), dist(CQn, u, v) = ρ(u, v).

Lemma 2[4]. The diameter of an ECQ(s, t) is

⌈ s+1
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By using the CSH algorithm, we can get a shortest

path Ps between u2
2 and u1

2 in CQ3[2], whose length is

dist(CQ3[2], u
2
2, u

1
2). Then, 〈x, v11〉 + Pt + 〈v21 , u

2
2〉 + Ps

is a path of length lt + dist(CQ3[2], u
2
2, u

1
2)+ 2 between

x and y in ECQ(3, 4). Since dist(CQ4[1], v
2
1 , v

1
1) +

dist(CQ3[2], u
2
2, u

1
2) + 4 6 9 6 l 6 13 < 17 +

dist(CQ3[2], u
2
2, u

1
2), P = 〈x, v11〉 + Pt + 〈v21 , u

2
2〉 + Ps

is a path of length l between x and y in ECQ(3, 4).

Case 2.2 : i = 1. By Lemma 9, there exists a

path Pt of length lt between v11 and v21 in CQ4[1],

where dist(CQ4[1], v
1
1 , v

2
1) + 2 6 lt 6 15. Then,

〈x, v11〉+ Pt + 〈v21 , y〉 is a path of length lt + 2 between

x and y in ECQ(3, 4). Since dist(CQ4[1], v
1
1 , v

2
1) + 4 <

9 6 l 6 13 < 17, P = 〈x, v11〉+ Pt + 〈v21 , y〉 is a path of

length l between x and y in ECQ(3, 4).

Case 3 : x ∈ V (CQ4[k1]) and y ∈ V (CQ4[k2])

for some integers k1, k2 ∈ [1, 8] with k1 6= k2.

Without loss of generality, suppose that x = v11 ∈

V (CQ4[1]) and y = v12 ∈ V (CQ4[2]). In ECQ(3, 4),

each vertex of CQ4[1] has exactly one neighbor

in CQ3[1], CQ3[2], . . . , CQ3[16], respectively. And

each vertex of CQ3[1] has exactly one neighbor in

CQ4[1], CQ4[2], . . . , CQ4[8], respectively. Without loss

of generality, suppose that x has exactly one neighbor

u1
1 in CQ3[1]. Select (u2

1, v
2
2) ∈ E1. Obviously, v22 6= y.

By Lemma 9, there exists a path Pt of length lt between

v22 and v12 , where dist(CQ4[2], v
2
2 , v

1
2) + 2 6 lt 6 15.

By using the CSH algorithm, we can get a shortest

path Ps between u2
1 and u1

1 in CQ3[1], whose length is

dist(CQ3[1], u
2
1, u

1
1). Then, 〈x, u

1
1〉+ Ps + 〈u2

1, v
2
2〉+ Pt

is a path of length lt+ dist(CQ3[1], u
2
1, u

1
1) + 2 between

x and y in ECQ(3, 4). Since dist(CQ3[1], u
2
1, u

1
1)+

dist(CQ4[2], v
2
2 , v

1
2) + 4 6 9 6 l 6 13 < 17+

dist(CQ3[1], u
2
1, u

1
1), P = 〈x, u1

1〉 + Ps + 〈u2
1, v

2
2〉 + Pt

is a path of length l between x and y in ECQ(3, 4).

Case 4 : x ∈ V (CQ4) and y ∈ V (CQ3). With-

out loss of generality, suppose that x = v11 ∈

V (CQ4[1]) and y = u1
2 ∈ V (CQ3[2]). In ECQ(3, 4),

each vertex of CQ3[1] has exactly one neighbor

in CQ4[1], CQ4[2], . . . , CQ4[8], respectively. And

each vertex of CQ4[1] has exactly one neighbor in

CQ3[1], CQ3[2], . . . , CQ3[16], respectively. Select v21 ∈

V (CQ4[1])−{v11} and let ui
2 (1 6 i 6 8) be the neighbor

of v21 in CQ3[2]. We have the following cases.

Case 4.1 : i 6= 1. Without loss of generality, let

i = 2. By Lemma 9, there exists a path Pt of length

lt between v11 and v21 , where dist(CQ4[1], v
1
1 , v

2
1) + 2 6

lt 6 15. By using the CSH algorithm, we can get a

shortest path Ps between u2
2 and u1

2 in CQ3[2], whose

length is dist(CQ3[2], u
2
2, u

1
2). Then, Pt + 〈v21 , u

2
2〉+ Ps

is a path of length lt+ dist(CQ3[2], u
2
2, u

1
2)+ 1 between

x and y in ECQ(3, 4). Since dist(CQ4[1], v
1
1 , v

2
1)+

dist(CQ3[2], u
2
2, u

1
2) + 3 < 9 6 l 6 13 < 16+

dist(CQ3[2], u
2
2, u

1
2), P = Pt + 〈v21 , u

2
2〉+Ps is a path of

length l between x and y in ECQ(3, 4).

Case 4.2 : i = 1. By Lemma 9, there exists a path

Pt of length lt between v11 and v21 in CQ4[1], where

dist(CQ4[1], v
1
1 , v

2
1) + 2 6 lt 6 15. Then, Pt + 〈v21 , y〉 is

a path of length lt + 1 between x and y in ECQ(3, 4).

Since dist(CQ4[1], v
1
1 , v

2
1) + 3 < 9 6 l 6 13 < 16,

P = Pt + 〈v21 , y〉 is a path of length l between x and y

in ECQ(3, 4).

Case 5 : x ∈ V (CQ3) and y ∈ V (CQ4). Using the

similar method in case 4, we can prove that there exists

a path of length l between x and y in ECQ(3, 4). Thus,

the proof of case 5 is omitted. �

Lemma 11. If s > 4, t > 4, and s 6 t, for any two

distinct vertices x ∈ V (ECQ0
s,t) and y ∈ V (ECQ1

s,t)

with (x, y) /∈ E1, there exists a path P of length l be-

tween x and y in ECQ(s, t), where ⌈ s+1
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bor v11 in CQt[1]. Select v
2
1 ∈ V (CQt[1])−{v11} and let

ui
2 (1 6 i 6 2s) be the neighbor of v21 in CQs[2]. We

consider the following cases.

Case 2.1 : i 6= 1. Without loss of generality, let

i = 2. That is, (v21 , u
2
2) ∈ E1. By Lemma 9, there ex-

ists a path Pt of length lt between v21 and v11 in CQt[1],

where dist(CQt[1], v
2
1 , v

1
1)+2 6 lt 6 2t−1. By using the

CSH algorithm, we can get a shortest path Ps between

u2
2 and u1

2 in CQs[2], whose length is ds. Then, 〈x, v
1
1〉+

Pt+〈v21 , u
2
2〉+Ps is a path of length lt+ds+2 between x

and y in ECQ(s, t). Since dist(CQt[1], v
2
1 , v

1
1)+ds+4 6

⌈ s+1



Dong-Fang Zhou et al.: Optimal Path Embedding in the Exchanged Crossed Cube 625

P

ECQs֒t

P

... ...

x(1) x/x(0)

x(1) x/x(0)

x(l) x(l)

x(
s⇁t
֓)

y/x(
s⇁t
֓)

u

v

P

v

u

u

P

v

x(
s⇁t
֓)

y/x(
s⇁t
֓)

 ECQs֒t


(a)

ECQs֒t
 ECQs֒t



(b)

Fig.4. Illustration for the proof of (a) case 1.2.1 and (b) case 1.2.2 (a straight line denotes an edge and a curved line denotes a path
between two vertices).

path of length l in ECQ(s, t). Fig.4(b) illustrates the

subcase.

Case 1.2.3 : x(l1) ∈ V (CQt[i]) and y ∈ V (CQs[j]),

where 1 6 i 6 2s and 1 6 j 6 2t. We can write

l = l1 + l2 + 3 where 2s+t − 4 6 l2 6 2s+t − 2. Choose

(y, v1) ∈ E1 with v1 6= x(2s+t−2) in ECQ0
s,t. Let u1

be adjacent to x(l1) in ECQ1
s,t and v2 be the neighbor

of v1 in ECQ1
s,t. Since 2s+t − 4 > D(ECQ1

s,t) + 3,

by the induction hypothesis, there exists a path P2

of length l2 between u1 and v2 in ECQ1
s,t. Then,

P = 〈x, x(1), . . . , x(l1), u1, P2, v2, v1, y〉 is an 〈x, y〉-path

of length l in ECQ(s, t). Fig.5(a) illustrates the sub-

case.

Case 1.2.4 : x(l1) ∈ V (CQs[j]) and y ∈ V (CQt[i]),

where 1 6 j 6 2t and 1 6 i 6 2s. The discussion is

similar to that of case 1.2.3. Thus, the proof of case

1.2.4 is omitted.

Case 2 : x ∈ V (ECQ0
s,t) and y ∈ V (ECQ1

s,t). We

have the following cases.

Case 2.1 : 2s+t 6 l 6 2s+t+1 − 1. Select x′ ∈

V (CQt[i]) in V (ECQ0
s,t)−{x}, where 1 6 i 6 2s. Let y′

be a neighbor of x′ in ECQ1
s,t and y′ 6= y. By the induc-

tion hypothesis, there exists an 〈x, x′〉-path P0 of length

l0 in ECQ0
s,t, where l0 ∈ {D(ECQ0

s,t) + 3, 2s+t − 1};

there also exists a 〈y′, y〉-path P1 of length l1 in ECQ1
s,t,

where l1 ∈ {D(ECQ1
s,t) + 3, 2s+t − 1}. Since 2s+t >

D(ECQ0
s,t)+D(ECQ1

s,t)+7, then P = P0+〈x′, y′〉+P1

is a path of length l between x and y in ECQ(s, t).
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P P
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Fig.5. Illustration for the proof of (a) case 1.2.3 and (b) case 2.1 (a straight line denotes an edge and a curved line denotes a path
between two vertices).
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Fig.5(b) illustrates the subcase.

Case 2.2 : ⌈ s+1
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with two cases according to the odevity of t.

If t is odd, by the induction hypothesis, there ex-

ists an 〈x,w〉-path P0 of length l0 in ECQ0
s,t, where

D(ECQ0
s,t) + 3 6 l0 6 2s+t − 1. Then P0 + 〈w, y〉 is

a path of length l0 + 1. By Lemma 10 and Lemma 11,

there exists an 〈x, y〉-path of length ⌈ s+1
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