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is a knowledge-intensive task, requiring semantic un-

derstanding and inference for software big data.

In this paper, we put forward two key concepts

— intelligent development environment (IntelliDE) and

software knowledge graph — for the first time. In-

telliDE is an ecosystem in which software big data is

aggregated, mined and analyzed to provide intelligent

assistance in the life cycle of software development. It

proposes that software intelligent development passes

through three stages: data aggregation, knowledge ac-

quisition, and intelligent assistance. Based on this idea,

IntelliDE illustrates how to develop the well-rounded

technology architecture, software ecosystem and ser-

vice environment for software intelligent development.

Software knowledge graph is a software knowledge rep-

resentation and management framework. In IntelliDE,

complex software knowledge is extracted from software

big data; thus we propose software knowledge graph

to ensure that software knowledge could be represented

uniformly, connected together and easy to reuse.

Section 2 is about IntelliDE. We introduce its ar-

chitecture and discuss its key research issues and chal-

lenges. Section 3 presents the definition and key ideas

of software knowledge graph, and introduces some de-

tails and examples about how we construct and leverage

it at the present stage. Section 4 concludes the paper.

2 IntelliDE

Modern software development activities have gene-

rated web-scale software data, especially open source

software projects on the Internet. The wide practice of

enterprise engineering also provides rich domain specific

data. These software data are large-scale, multi-source,

heterogeneous, distributed and fast-growing, contain-

ing rich and complex software knowledge. At the same

time, the rapid development of information extraction

and machine learning technologies makes automatic

software knowledge extraction easier and faster. There-

fore, software intelligent development is becoming one

of the most popular research issues in software engi-

neering.

However, existing studies in software intelligent

development are usually conducted case by case. Diffe-

rent researchers study different intelligent assistance

tasks (e.g., code completion[3], defect prediction[4] and

bug location[5]). For different tasks, specific datasets

are collected separately, and different intelligent assis-

tance tools are created. We call this problem as diverse-

tooling[6]. Diverse-tooling makes it difficult to reuse

these software data, knowledge and tools in software

development. Therefore, a uniform ecosystem for soft-

ware intelligent development is needed.

For this purpose, we propose intelligent develo-

pment environment (IntelliDE). Fig.1 shows its archi-

tecture. In this ecosystem, software intelligent develo-

pment passes through three stages: data aggregation,

knowledge acquisition, and intelligent assistance. Soft-

ware knowledge is extracted from software big data,

and then leveraged to promote the intelligence level

of software development environment. In Subsec-

tion 2.1∼Subsection2.3, we discuss key research issues

and challenges in these three stages respectively.

2.1 Data Aggregation

Issue. Software big data is web-scale, distribu-

ted, multi-source, heterogeneous, dynamic and fast-

growing. Therefore, IntelliDE needs an ultra-large-

scale, up-to-date and easy-to-access software data

repository to solve the problem of insufficient data sup-

ply for software engineering researchers.

Challenges. IntelliDE faces three main research

challenges in data aggregation: data collection, data

fusion, and data update.

1) Data Collection. We need to study the forms and

features of software big data on the Internet so that

IntelliDE can sense them pertinently, download them

accurately and store them organically.

2) Data Fusion. Different aspects of software

are hidden in multi-source and heterogeneous software

data. Therefore, we need to study how to discover the

relationships between different software data sources so

that researchers can analyze them jointly.

3) Data Update. Keeping the software data reposi-

tory up-to-date is an important task since software big

data is dynamic and fast-growing. Therefore, we need

to study software big data update strategies (e.g., in-

cremental update and partial update).

2.2 Knowledge Acquisition

Issue. Complex software knowledge is hidden in

large-scale software data, and software knowledge is

the key to providing intelligent assistance for software

development. Therefore, IntelliDE needs the support

of knowledge acquisition, i.e., we need to study how

to construct a knowledge base from the software data

repository.

Challenges. IntelliDE faces two main research chal-

lenges in knowledge acquisition: knowledge extraction,
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Fig.1. Architecture of IntelliDE.

and knowledge representation and management.

1) Knowledge Extraction. IntelliDE needs to extract

various kinds of software knowledge from software big

data automatically. Therefore, we need to study various

software knowledge extraction algorithms. These ex-

traction algorithms are mainly based on program anal-

ysis, natural language processing, data mining, machine

learning and information retrieval, etc., but are not lim-

ited to them.

2) Knowledge Representation and Management. To

ensure that the intelligent development environment

could leverage the knowledge efficiently and systemati-

cally, we need to study how software knowledge could

be represented uniformly, linked together and queried

easily. We propose software knowledge graph to solve

this challenge, and the detailed solution is presented in

Section 3.

2.3 Intelligent Assistance

Issue. In IntelliDE, software knowledge extracted

from software big data is leveraged to provide intelli-

gent recommendation services and intelligent question-

answering services for software developers. Software

developers are concerned about various tasks in diffe-

rent stages in the life cycle of software development, and

providing intelligent assistance for different tasks re-

quires different software knowledge and different know-

ledge processing strategies. Therefore, IntelliDE needs

a series of intelligent development services, leverag-

ing software knowledge through different algorithms to

solve different software engineering tasks intelligently.

Challenges. We conclude the main concerned intel-

ligent development services in IntelliDE as four cate-

gories: 1) software construction, 2) testing and verifi-

cation, 3) group collaboration, and 4) operation, main-

tenance, and evolution.

1) Software Construction. IntelliDE needs to pro-

vide intelligent development services for different soft-

ware construction activities (e.g., domain analysis, pro-

gramming and software refactoring). These services

include software project knowledge visualization and

browsing, software document semantic retrieval, intelli-

gent code synthesis and completion, software refactor-

ing recommendation, etc.

2) Testing and Verification. IntelliDE needs to pro-

vide software big data based software testing and veri-

fication technology and methods, including test cases

generation, inspecting code by bounded model check-
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ing, identifying warnings output from static analysis,

debugging software, etc.

3) Group Collaboration. IntelliDE needs to analyze

the skill characteristics of developers and the poten-

tial collaborative relationship among them, leveraging

software knowledge (especially historical collaboration

knowledge) to improve developer recommendation, task

assignment, resource recommendation, etc.

4) Operation, Maintenance, and Evolution. Intel-

liDE needs to solve problems in the scope of whole soft-

ware lifecycle, such as the fragmentation between soft-

ware development and system maintenance, and the in-

capability of fast adaptation to changing requirements.

Relevant intelligent development services include intel-

ligent load testing, anomaly analysis, service interface

design and evolution, etc.

3 Software Knowledge Graph

In this section, we present software knowledge

graph, the software knowledge representation and

management framework in IntelliDE.

3.1 Definition

Knowledge graph means a graph made up of nodes

and directed edges, which is used to represent domain

knowledge[7]. Software knowledge graph is defined as a

graph for representing relevant knowledge in software

domains, projects, and systems. In a software know-

ledge graph, nodes represent software knowledge enti-

ties (e.g., classes, issue reports and business concepts),

and directed edges represent various relationships be-

tween these entities (e.g., method invocation and trace-

ability link). Different nodes and relationships have

different properties to describe their inner features. For

example, a method entity’s properties include its name,

return type, parameter list, access modifier, and de-

scription.

Knowledge in software knowledge graph is divided

into two categories: primitive knowledge and derivative

knowledge.

Primitive knowledge is defined as software know-

ledge added into software knowledge graph through

data structure parsing. For example, we may parse the

abstract syntax trees (ASTs) of source code files, and

then code entities (such as classes, methods and fields)

and relationships between them (such as method invo-

cation and inheritance hierarchy) could be added into

software knowledge graph. And we may parse the struc-

ture of mail archive files, and then mail entities (such as

mails and mail users) and relationships between them

(such as mail sending, mail receiving, and mail reply-

ing) could be added into software knowledge graph.

Derivative knowledge is defined as software know-

ledge added into software knowledge graph through

mining existing software knowledge in it. For exam-

ple, we may extract business concept entities through

processing natural language sentences in software docu-

ment entities. We may recover traceability links be-

tween document entities and code entities. And we may

further leverage these traceability links to recover trace-

ability links between business concept entities and code

entities.

Based on the definition, we construct software

knowledge graph automatically from software big data.

The construction process contains two phases: data

parsing and knowledge extraction. The data parsing

phase adds various kinds of primitive knowledge into

a software knowledge graph through parsing various

software data. Then the knowledge extraction phase

adds various kinds of derivative knowledge into soft-

ware knowledge graph via various knowledge extraction

algorithms.

The software knowledge graph should be ever-

evolving. When new data parsing modules or know-

ledge extraction modules are developed and integrated

in this framework, new kinds of software knowledge

could be accumulated in the software knowledge graph.

A software knowledge ecosystem could be formed based

on this framework, and IntelliDE could leverage it to

provide intelligent assistance for software development.

3.2 Software Knowledge Graph in IntelliDE

In this subsection, we describe the software know-

ledge graph construction platform we have imple-

mented in IntelliDE at the present stage. Currently, we

focus on constructing a software knowledge graph for a

given software project. Fig.2 shows a logical overview

of this platform.

3.2.1 Data Parsing

When a software developer wants to construct a

software knowledge graph for a software project, he/she

should add relevant software data to our platform via

its web front-end. The added software data are al-

lowed to be large-scale, multi-source and heterogeneous.

Currently, data formats supported by this platform in-

clude: 1) source code files (e.g., Java); 2) version con-

trol systems (e.g., VCS, SVN and Git); 3) mailing lists
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Fig.2. Logical overview of the software knowledge graph construction platform. OA: question-answer.

(e.g., mbox); 4) issue tracking systems (e.g., JIRA and

BugZilla); 5) Microsoft office (e.g., DOC, DOCX) and

PDF documents; 6) html-format tutorials, API docu-

mentation, user forum posts and blogs; 7) online social

question-answering pairs (StackOverflow XML dumps).

We provide a data parsing framework in the soft-

ware knowledge construction platform. This framework

provides a data parsing plugin interface so that different

data parsing plugins could be developed and integrated

together.

3.2.2 Knowledge Extraction

After the data parsing phase adds primitive know-

ledge into the software knowledge graph, we use vari-

ous knowledge extraction algorithms to add derivative

knowledge into the software knowledge graph. There

is a knowledge extraction framework in the software

knowledge graph construction platform. It provides a

knowledge extraction interface so that different know-

ledge extraction algorithms could be developed as plu-

gins and integrated together. Currently, the knowledge

extraction plugins we implement include: 1) document-

to-code traceability link recovery[8], 2) document-to-

document lexical similarity estimation[9], 3) issue-to-

commit link recovery, 4) stakeholder identification, 5)

source code latent topic modelling[10], 6) API usage ex-

ample extraction[11], etc.

3.2.3 Storage and Query

We use Neo4j 1○, a popular graph database, to store

software knowledge graph. Cypher 2○, a declarative

query language that allows for expressive and efficient

querying of graph data, is used to query software know-

ledge graph. Besides Cypher, we also use Java API 3○

provided by Neo4j to access the software knowledge

graph. Cypher is more concise than Java API, but Java

API can implement more complex graph algorithms.

3.3 Application

IntelliDE aims to provide the support of intelligent

recommendation and intelligent question-answering for

software development. In this subsection, we introduce

software text semantic search, a current preliminary

study, as an example to show how software knowledge

graph could be leveraged to assist software developers.

3.3.1 Software Text Semantic Search

Text search is defined as the matching of some free-

text user queries against a set of free-text documents.

Since text is the common form of information repre-

sentation among various software artifacts at different

abstraction levels (such as identifiers, comments, doc-

umentation, issue reports, commit message, developer

discussions, and user communications), text search is

widely used in software development, maintenance, and

reuse[12]. However, keyword matching based text search
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techniques suffer from the problem that they cannot un-

derstand the semantic meaning of free-text. Therefore,

we propose a software knowledge graph based software

text semantic search approach. Developers are allowed

to input free-text queries. For each query, we return

a ranked list of text items (i.e., text properties in the

software knowledge graph) semantically relevant to it,

and for each text item in the list, we visualize a sub-

graph of the software knowledge graph to demonstrate

how this text item is semantically relevant to the query.

The basic idea of this approach is that well-

structured source code knowledge can be used as

a bridge to mine semantic relevance between text

items[13-14]. The approach is composed of three phases.

Code Location. We link free-text to relevant code

entities in the software knowledge graph via feature lo-

cation technique[15].

Entity Matching. We measure the structural simila-

rity between different code entities based on TransR[16],

a graph embedding technique. The structural similarity

re-ranks text search results.

Subgraph Extraction. We extract a subgraph from

the software knowledge graph to visualize the relation-

ships between a query and a related text item. This

phase is accomplished based on a minimum spanning

tree based algorithm[17].

3.3.2 Case Study

We construct a software knowledge graph for

Apache Lucene 4○, a popular open source software

project, as an example to demonstrate our software

text semantic search approach. Relevant data contain:

source code files (800 000+ lines), version control logs

(1.2+ GB), emails (244 000+), issue reports (5 200+),

official web pages (500+), blogs (1 200+), StackOver-

flow Q&A (question-answer) pairs (3 800+), etc. We

extract 64 932 software knowledge entities and 276065

relationships from these software data. Then, a soft-

ware text semantic search engine is provided, and a

semantic search example is discussed.

The example user query is “how to get all field

names using class IndexReader”. The semantic search

result is shown in Fig.3. The left of this figure lists a

ranked list of text items semantically relevant to the

query. For each text item in the ranked list, the seman-

tic search engine demonstrates a subgraph of the soft-

ware knowledge graph for it. For example, consider the

text item ranked in the second place, which is a Stack-

Overflow Q&A pair. The user can click it and then

corresponding subgraph would be shown in the right of

the semantic search web front-end interface, as shown

in Fig.3. In the subgraph, nodes in the “query” column

represent the query and some keywords in it. Similarly,

nodes in the “document” column represent the Q&A

pair and some keywords in it. The subgraph shown in

the “code” column illustrates how different keywords

are semantically related through the software know-

ledge graph. For example, the keyword “IndexReader”

occurring in the query is semantically relevant to the

keyword “AtomicReader” occurring in the Q&A pair,

since class AtomicReader is the super-class of class In-

dexReader. Though the query and the Q&A pair share

few common keywords, the software knowledge graph

bridges them semantically. Therefore, this Q&A pair is

returned to help the user.

Fig.3. Example of software text semantic search.
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In this example, we can see that software know-

ledge graph can be used to assist the semantic under-

standing of free-text in software effectively. It shows

that the software text semantic search engine is a good

start of the intelligent utilization of software knowledge

graph for improving the efficiency and quality of soft-

ware development activities.

4 Conclusions

In this paper, we proposed two key concepts—

IntelliDE and software knowledge graph — for the first

time. IntelliDE is an ecosystem which aims to lead the

current integrated development environments (IDE) to

intelligent development environment (IntelliDE), and

the key research issues and challenges are concluded

as: data aggregation, knowledge acquisition, and intelli-

gent assistance. Software knowledge graph is a software

knowledge representation and management framework.

It is proposed as an infrastructure for knowledge acqui-

sition in IntelliDE. Currently, our software knowledge

graph contains not only primitive knowledge directly

extracted from data sources (e.g., source code files and

issue tracking systems), but also derivative knowledge

(e.g., traceability links, API usage examples and latent

topics). We provided a software text semantic search

engine as an example application to show how software

knowledge graph can provide the support of semantic

understanding and inference in IntelliDE. And we hope

that it will lead to intelligent question-answering in soft-

ware domain in future.
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