
Lin ZQ, Xie B, Zou YZ et al. Intelligent development environment and software knowledge graph. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 32(2): 242–249 Mar. 2017. DOI 10.1007/s11390-017-1718-y

Intelligent Development Environment and Software Knowledge Graph

Ze-Qi Lin 1,2, Bing Xie 1,2,∗, Senior Member, CCF, Yan-Zhen Zou 1,2, Member, CCF, ACM, IEEE

Jun-Feng Zhao 1,2, Member, CCF, Xuan-Dong Li 3, Fellow, CCF, Member, ACM, IEEE

Jun Wei 4, Senior Member, CCF, Hai-Long Sun 5, Senior Member, CCF, Member, ACM, IEEE

and Gang Yin 6, Member, CCF

1Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

Beijing 100871, China

2Beida (Binhai) Information Research, Tianjin 300450, China

3National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

4Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

5School of Computer Science and Engineering, Beihang University, Beijing 100191, China

6College of Computer, National University of Defense Technology, Changsha 410073, China

E-mail: {linzeqi, xiebing, zouyz, zhaojf}@pku.edu.cn; lxd@nju.edu.cn; weijun@iscas.ac.cn; sunhl@act.buaa.edu.cn
E-mail: jack

Regular Paper

Special Section on MOST Cloud and Big Data

This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000800,
and the National Science Fund for Distinguished Young Scholars of China under Grant No. 61525201.

∗Corresponding Author

©2017 Springer Science +Business Media, LLC & Science Press, China



Ze-Qi Lin et al.: Intelligent Development Environment and Software Knowledge Graph 243

is a knowledge-intensive task, requiring semantic un-

derstanding and inference for software big data.

In this paper, we put forward two key concepts

— intelligent development environment (IntelliDE) and

software knowledge graph — for the first time. In-

telliDE is an ecosystem in which software big data is

aggregated, mined and analyzed to provide intelligent

assistance in the life cycle of software development. It

proposes that software intelligent development passes

through three stages: data aggregation, knowledge ac-

quisition, and intelligent assistance. Based on this idea,

IntelliDE illustrates how to develop the well-rounded

technology architecture, software ecosystem and ser-

vice environment for software intelligent development.

Software knowledge graph is a software knowledge rep-

resentation and management framework. In IntelliDE,

complex software knowledge is extracted from software

big data; thus we propose software knowledge graph

to ensure that software knowledge could be represented

uniformly, connected together and easy to reuse.

Section 2 is about IntelliDE. We introduce its ar-

chitecture and discuss its key research issues and chal-

lenges. Section 3 presents the definition and key ideas

of software knowledge graph, and introduces some de-

tails and examples about how we construct and leverage

it at the present stage. Section 4 concludes the paper.

2 IntelliDE

Modern software development activities have gene-

rated web-scale software data, especially open source

software projects on the Internet. The wide practice of

enterprise engineering also provides rich domain specific

data. These software data are large-scale, multi-source,

heterogeneous, distributed and fast-growing, contain-

ing rich and complex software knowledge. At the same

time, the rapid development of information extraction

and machine learning technologies makes automatic

software knowledge extraction easier and faster. There-

fore, software intelligent development is becoming one

of the most popular research issues in software engi-

neering.

However, existing studies in software intelligent

development are usually conducted case by case. Diffe-

rent researchers study different intelligent assistance

tasks (e.g., code completion[3], defect prediction[4] and

bug location[5]). For different tasks, specific datasets

are collected separately, and different intelligent assis-

tance tools are created. We call this problem as diverse-

tooling[6]. Diverse-tooling makes it difficult to reuse

these software data, knowledge and tools in software

development. Therefore, a uniform ecosystem for soft-

ware intelligent development is needed.

For this purpose, we propose intelligent develo-

pment environment (IntelliDE). Fig.1 shows its archi-

tecture. In this ecosystem, software intelligent develo-

pment passes through three stages: data aggregation,

knowledge acquisition, and intelligent assistance. Soft-

ware knowledge is extracted from software big data,

and then leveraged to promote the intelligence level

of software development environment. In Subsec-

tion 2.1∼Subsection2.3, we discuss key research issues

and challenges in these three stages respectively.

2.1 Data Aggregation

Issue. Software big data is web-scale, distribu-

ted, multi-source, heterogeneous, dynamic and fast-

growing. Therefore, IntelliDE needs an ultra-large-

scale, up-to-date and easy-to-access software data

repository to solve the problem of insufficient data sup-

ply for software engineering researchers.

Challenges. IntelliDE faces three main research

challenges in data aggregation: data collection, data

fusion, and data update.

1) Data Collection. We need to study the forms and

features of software big data on the Internet so that

IntelliDE can sense them pertinently, download them

accurately and store them organically.

2) Data Fusion. Different aspects of software

are hidden in multi-source and heterogeneous software

data. Therefore, we need to study how to discover the

relationships between different software data sources so

that researchers can analyze them jointly.

3) Data Update. Keeping the software data reposi-

tory up-to-date is an important task since software big

data is dynamic and fast-growing. Therefore, we need

to study software big data update strategies (e.g., in-

cremental update and partial update).

2.2 Knowledge Acquisition

Issue. Complex software knowledge is hidden in

large-scale software data, and software knowledge is

the key to providing intelligent assistance for software

development. Therefore, IntelliDE needs the support

of knowledge acquisition, i.e., we need to study how

to construct a knowledge base from the software data

repository.

Challenges. IntelliDE faces two main research chal-

lenges in knowledge acquisition: knowledge extraction,



244 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

Development Interface

Intelligent Development Service Platform

Software

Construction

Intelligent Development Environment

Software Knowledge

Open Source Repository

Big Data

Application Community

Big Data

Software Big Data Environment

Software Big Data Sources

Operation and

Maintenance Big Data

Enterprise

Development Big Data

Software Data 

Collection Engine

Software Data 

Fusion Engine

Software Delivery

Big Data

Software Service
Big Data

Testing and Verification Group Collaboration

Operation,

Maintenance and

Evolution

Access Interface

Access Interface

Fig.1. Architecture of IntelliDE.

and knowledge representation and management.

1) Knowledge Extraction. IntelliDE needs to extract

various kinds of software knowledge from software big

data automatically. Therefore, we need to study various

software knowledge extraction algorithms. These ex-

traction algorithms are mainly based on program anal-

ysis, natural language processing, data mining, machine

learning and information retrieval, etc., but are not lim-

ited to them.

2) Knowledge Representation and Management. To

ensure that the intelligent development environment

could leverage the knowledge efficiently and systemati-

cally, we need to study how software knowledge could

be represented uniformly, linked together and queried

easily. We propose software knowledge graph to solve

this challenge, and the detailed solution is presented in

Section 3.

2.3 Intelligent Assistance

Issue. In IntelliDE, software knowledge extracted

from software big data is leveraged to provide intelli-

gent recommendation services and intelligent question-

answering services for software developers. Software

developers are concerned about various tasks in diffe-

rent stages in the life cycle of software development, and

providing intelligent assistance for different tasks re-

quires different software knowledge and different know-

ledge processing strategies. Therefore, IntelliDE needs

a series of intelligent development services, leverag-

ing software knowledge through different algorithms to

solve different software engineering tasks intelligently.

Challenges. We conclude the main concerned intel-

ligent development services in IntelliDE as four cate-

gories: 1) software construction, 2) testing and verifi-

cation, 3) group collaboration, and 4) operation, main-

tenance, and evolution.

1) Software Construction. IntelliDE needs to pro-

vide intelligent development services for different soft-

ware construction activities (e.g., domain analysis, pro-

gramming and software refactoring). These services

include software project knowledge visualization and

browsing, software document semantic retrieval, intelli-

gent code synthesis and completion, software refactor-

ing recommendation, etc.

2) Testing and Verification. IntelliDE needs to pro-

vide software big data based software testing and veri-

fication technology and methods, including test cases

generation, inspecting code by bounded model check-



Ze-Qi Lin et al.: Intelligent Development Environment and Software Knowledge Graph 245

ing, identifying warnings output from static analysis,

debugging software, etc.

3) Group Collaboration. IntelliDE needs to analyze

the skill characteristics of developers and the poten-

tial collaborative relationship among them, leveraging

software knowledge (especially historical collaboration

knowledge) to improve developer recommendation, task

assignment, resource recommendation, etc.

4) Operation, Maintenance, and Evolution. Intel-

liDE needs to solve problems in the scope of whole soft-

ware lifecycle, such as the fragmentation between soft-

ware development and system maintenance, and the in-

capability of fast adaptation to changing requirements.

Relevant intelligent development services include intel-

ligent load testing, anomaly analysis, service interface

design and evolution, etc.

3 Software Knowledge Graph

In this section, we present software knowledge

graph, the software knowledge representation and

management framework in IntelliDE.

3.1 Definition

Knowledge graph means a graph made up of nodes

and directed edges, which is used to represent domain

knowledge[7]. Software knowledge graph is defined as a

graph for representing relevant knowledge in software

domains, projects, and systems. In a software know-

ledge graph, nodes represent software knowledge enti-

ties (e.g., classes, issue reports and business concepts),

and directed edges represent various relationships be-

tween these entities (e.g., method invocation and trace-

ability link). Different nodes and relationships have

different properties to describe their inner features. For

example, a method entity’s properties include its name,

return type, parameter list, access modifier, and de-

scription.

Knowledge in software knowledge graph is divided

into two categories: primitive knowledge and derivative

knowledge.

Primitive knowledge is defined as software know-

ledge added into software knowledge graph through

data structure parsing. For example, we may parse the

abstract syntax trees (ASTs) of source code files, and

then code entities (such as classes, methods and fields)

and relationships between them (such as method invo-

cation and inheritance hierarchy) could be added into

software knowledge graph. And we may parse the struc-

ture of mail archive files, and then mail entities (such as

mails and mail users) and relationships between them

(such as mail sending, mail receiving, and mail reply-

ing) could be added into software knowledge graph.

Derivative knowledge is defined as software know-

ledge added into software knowledge graph through

mining existing software knowledge in it. For exam-

ple, we may extract business concept entities through

processing natural language sentences in software docu-

ment entities. We may recover traceability links be-

tween document entities and code entities. And we may

further leverage these traceability links to recover trace-

ability links between business concept entities and code

entities.

Based on the definition, we construct software

knowledge graph automatically from software big data.

The construction process contains two phases: data

parsing and knowledge extraction. The data parsing

phase adds various kinds of primitive knowledge into

a software knowledge graph through parsing various

software data. Then the knowledge extraction phase

adds various kinds of derivative knowledge into soft-

ware knowledge graph via various knowledge extraction

algorithms.

The software knowledge graph should be ever-

evolving. When new data parsing modules or know-

ledge extraction modules are developed and integrated

in this framework, new kinds of software knowledge

could be accumulated in the software knowledge graph.

A software knowledge ecosystem could be formed based

on this framework, and IntelliDE could leverage it to

provide intelligent assistance for software development.

3.2 Software Knowledge Graph in IntelliDE

In this subsection, we describe the software know-

ledge graph construction platform we have imple-

mented in IntelliDE at the present stage. Currently, we

focus on constructing a software knowledge graph for a

given software project. Fig.2 shows a logical overview

of this platform.

3.2.1 Data Parsing

When a software developer wants to construct a

software knowledge graph for a software project, he/she

should add relevant software data to our platform via

its web front-end. The added software data are al-

lowed to be large-scale, multi-source and heterogeneous.

Currently, data formats supported by this platform in-

clude: 1) source code files (e.g., Java); 2) version con-

trol systems (e.g., VCS, SVN and Git); 3) mailing lists



246 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

Application

Semantic Search

Plugin

Plugin

Data Parsing Framework

Researchers

Software Knowledge Graph
Knowledge Extraction

Framework

Knowledge Access

Mechanism

Knowledge

Data

Source Code

Files

Issue Tracking

Systems

Office

Documents
QA Pairs

Version Control

Systems

Blogs PDF Mailing Lists

Fig.2. Logical overview of the software knowledge graph construction platform. OA: question-answer.

(e.g., mbox); 4) issue tracking systems (e.g., JIRA and

BugZilla); 5) Microsoft office (e.g., DOC, DOCX) and

PDF documents; 6) html-format tutorials, API docu-

mentation, user forum posts and blogs; 7) online social

question-answering pairs (StackOverflow XML dumps).

We provide a data parsing framework in the soft-

ware knowledge construction platform. This framework

provides a data parsing plugin interface so that different

data parsing plugins could be developed and integrated

together.

3.2.2 Knowledge Extraction

After the data parsing phase adds primitive know-

ledge into the software knowledge graph, we use vari-

ous knowledge extraction algorithms to add derivative

knowledge into the software knowledge graph. There

is a knowledge extraction framework in the software

knowledge graph construction platform. It provides a

knowledge extraction interface so that different know-

ledge extraction algorithms could be developed as plu-

gins and integrated together. Currently, the knowledge

extraction plugins we implement include: 1) document-

to-code traceability link recovery[8], 2) document-to-

document lexical similarity estimation[9], 3) issue-to-

commit link recovery, 4) stakeholder identification, 5)

source code latent topic modelling[10], 6) API usage ex-

ample extraction[11], etc.

3.2.3 Storage and Query

We use Neo4j 1○, a popular graph database, to store

software knowledge graph. Cypher 2○, a declarative

query language that allows for expressive and efficient

querying of graph data, is used to query software know-

ledge graph. Besides Cypher, we also use Java API 3○

provided by Neo4j to access the software knowledge

graph. Cypher is more concise than Java API, but Java

API can implement more complex graph algorithms.

3.3 Application

IntelliDE aims to provide the support of intelligent

recommendation and intelligent question-answering for

software development. In this subsection, we introduce

software text semantic search, a current preliminary

study, as an example to show how software knowledge

graph could be leveraged to assist software developers.

3.3.1 Software Text Semantic Search

Text search is defined as the matching of some free-

text user queries against a set of free-text documents.

Since text is the common form of information repre-

sentation among various software artifacts at different

abstraction levels (such as identifiers, comments, doc-

umentation, issue reports, commit message, developer

discussions, and user communications), text search is

widely used in software development, maintenance, and

reuse[12]. However, keyword matching based text search



Ze-Qi Lin et al.: Intelligent Development Environment and Software Knowledge Graph 247

techniques suffer from the problem that they cannot un-

derstand the semantic meaning of free-text. Therefore,

we propose a software knowledge graph based software

text semantic search approach. Developers are allowed

to input free-text queries. For each query, we return

a ranked list of text items (i.e., text properties in the

software knowledge graph) semantically relevant to it,

and for each text item in the list, we visualize a sub-

graph of the software knowledge graph to demonstrate

how this text item is semantically relevant to the query.

The basic idea of this approach is that well-

structured source code knowledge can be used as

a bridge to mine semantic relevance between text

items[13-14]. The approach is composed of three phases.

Code Location. We link free-text to relevant code

entities in the software knowledge graph via feature lo-

cation technique[15].

Entity Matching. We measure the structural simila-

rity between different code entities based on TransR[16],

a graph embedding technique. The structural similarity

re-ranks text search results.

Subgraph Extraction. We extract a subgraph from

the software knowledge graph to visualize the relation-

ships between a query and a related text item. This

phase is accomplished based on a minimum spanning

tree based algorithm[17].

3.3.2 Case Study

We construct a software knowledge graph for

Apache Lucene 4○, a popular open source software

project, as an example to demonstrate our software

text semantic search approach. Relevant data contain:

source code files (800 000+ lines), version control logs

(1.2+ GB), emails (244 000+), issue reports (5 200+),

official web pages (500+), blogs (1 200+), StackOver-

flow Q&A (question-answer) pairs (3 800+), etc. We

extract 64 932 software knowledge entities and 276065

relationships from these software data. Then, a soft-

ware text semantic search engine is provided, and a

semantic search example is discussed.

The example user query is “how to get all field

names using class IndexReader”. The semantic search

result is shown in Fig.3. The left of this figure lists a

ranked list of text items semantically relevant to the

query. For each text item in the ranked list, the seman-

tic search engine demonstrates a subgraph of the soft-

ware knowledge graph for it. For example, consider the

text item ranked in the second place, which is a Stack-

Overflow Q&A pair. The user can click it and then

corresponding subgraph would be shown in the right of

the semantic search web front-end interface, as shown

in Fig.3. In the subgraph, nodes in the “query” column

represent the query and some keywords in it. Similarly,

nodes in the “document” column represent the Q&A

pair and some keywords in it. The subgraph shown in

the “code” column illustrates how different keywords

are semantically related through the software know-

ledge graph. For example, the keyword “IndexReader”

occurring in the query is semantically relevant to the

keyword “AtomicReader” occurring in the Q&A pair,

since class AtomicReader is the super-class of class In-

dexReader. Though the query and the Q&A pair share

few common keywords, the software knowledge graph

bridges them semantically. Therefore, this Q&A pair is

returned to help the user.

Fig.3. Example of software text semantic search.



248 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

In this example, we can see that software know-

ledge graph can be used to assist the semantic under-

standing of free-text in software effectively. It shows

that the software text semantic search engine is a good

start of the intelligent utilization of software knowledge

graph for improving the efficiency and quality of soft-

ware development activities.

4 Conclusions

In this paper, we proposed two key concepts—

IntelliDE and software knowledge graph — for the first

time. IntelliDE is an ecosystem which aims to lead the

current integrated development environments (IDE) to

intelligent development environment (IntelliDE), and

the key research issues and challenges are concluded

as: data aggregation, knowledge acquisition, and intelli-

gent assistance. Software knowledge graph is a software

knowledge representation and management framework.

It is proposed as an infrastructure for knowledge acqui-

sition in IntelliDE. Currently, our software knowledge

graph contains not only primitive knowledge directly

extracted from data sources (e.g., source code files and

issue tracking systems), but also derivative knowledge

(e.g., traceability links, API usage examples and latent

topics). We provided a software text semantic search

engine as an example application to show how software

knowledge graph can provide the support of semantic

understanding and inference in IntelliDE. And we hope

that it will lead to intelligent question-answering in soft-

ware domain in future.

References

[1] Kaiser G E, Feiler P H, Popovich S S. Intelligent assistance

for software development and maintenance. IEEE Software,

1988, 5(3): 40-49.

[2] Robillard M, Walker R, Zimmermann T. Recommenda-

tion systems for software engineering. IEEE Software, 2010,

27(4): 80-86.

[3] Raychev V, Vechev M, Yahav E. Code completion with sta-

tistical language models. ACM SIGPLAN Notices, 2014,

49(6): 419-428.

[4] Shepperd M, Bowes D, Hall T. Researcher bias: The use of

machine learning in software defect prediction. IEEE Trans-

actions on Software Engineering, 2014, 40(6): 603-616.

[5] Ye X, Bunescu R, Liu C. Learning to rank relevant files

for bug reports using domain knowledge. In Proc. the 22nd

ACM SIGSOFT International Symposium on Foundations

of Software Engineering, Nov. 2014, pp.689-699.

[6] Trautsch F, Herbold S, Makedonski P, Grabowski J. Adress-

ing problems with external validity of repository mining

studies through a smart data platform. In Proc. the 13th

International Conference on Mining Software Repositories,

May 2016, pp.97-108.

[7] Liu Q, Li Y, Duan H, Liu Y, Qin Z G. Knowledge graph

construction techniques. Journal of Computer Research and

Development, 2016, 53(3): 582-600. (in Chinese)

[8] Dagenais B, Robillard M P. Recovering traceability links be-

tween an API and its learning resources. In Proc. the 34th

International Conference on Software Engineering, June

2012, pp.47-57.

[9] Ye X, Shen H, Ma X, Bunescu R, Liu C. From word em-

beddings to document similarities for improved information

retrieval in software engineering. In Proc. the 38th Inter-

national Conference on Software Engineering, May 2016,

pp.404-415.

[10] Hua Z B, Li M, Zhao J F, Zou Y Z, Xie B, Li C. Code

function mining tool based on topic modeling technology.

Computer Science, 2014, 41(9): 52-59. (in Chinese)

[11] Wang L J, Fang L, Wang L Y, Li G, Xie B, Yang F Q.

APIExample: An effective web search based usage example

recommendation system for Java APIs. In Proc. the 26th

IEEE/ACM International Conference on Automated Soft-

ware Engineering, Nov. 2011, pp.592-595.

[12] Marcus A, Antoniol G. On the use of text retrieval

techniques in software engineering. In Proc. the 34th

IEEE/ACM International Conference on Software Engi-

neering, Technical Briefing, June 2012.

[13] Chan W K, Cheng H, Lo D. Searching connected API sub-

graph via text phrases. In Proc. the 20th ACM SIGSOFT

International Symposium on the Foundations of Software

Engineering, Nov. 2012, Article No. 10.

[14] Mcmillan C, Poshyvanyk D, Grechanik M, Xie Q, Fu C.

Portfolio: Searching for relevant functions and their usages

in millions of lines of code. ACM Transactions on Software

Engineering and Methodology, 2013, 22(4): Article No. 37.

[15] Marcus A, Sergeyev A, Rajlich V, Maletic J I. An informa-

tion retrieval approach to concept location in source code.

In Proc. the 11th Working Conference on Reverse Engi-

neering, Nov. 2004, pp.214-223.

[16] Lin Y K, Liu Z Y, Sun M S, Liu Y, Zhu X. Learning entity

and relation embeddings for knowledge graph completion.

In Proc. the 29th AAAI Conference on Artificial Intelli-

gence, Jan. 2015, pp.2181-2187.

[17] Schuhmacher M, Ponzetto S P. Knowledge-based graph

document modeling. In Proc. the 7th ACM International

Conference on Web Search and Data Mining, Feb. 2014,

pp.543-552.

Ze-Qi Lin received his B.E. degree

in computer science from Peking Uni-

versity, Beijing, in 2014. He is currently

pursuing his Ph.D. degree in computer

science at Peking University, Beijing.

His main research interests include

software engineering, software reuse,

knowledge engineering, data mining,

etc.



Ze-Qi Lin et al.: Intelligent Development Environment and Software Knowledge Graph 249

Bing Xie received his Ph.D. degree

in computer science from National

University of Defense Technology,

Changsha, in 1998. He is a professor

and Ph.D. supervisor in Peking Uni-

versity, Beijing. His main research

interests include software engineering,

formal method, software reuse, etc.

Yan-Zhen Zou received her Ph.D.

degree in computer science from Peking

University, Beijing, in 2010. She is

an associate professor in Peking Uni-

versity, Beijing. Her main research

interests include software engineering,

software reuse, information retrieval,

etc.

Jun-Feng Zhao received her Ph.D.

degree in computer science from Peking

University, Beijing, in 2005. She is an

associate professor in Peking University,

Beijing. Her main research interests

include software engineering, software

reuse, Web services, cloud computing,

ubiquitous computing, etc.

Xuan-Dong Li received his B.S.,

M.S., and Ph.D. degrees all in com-

puter science from Nanjing University,

Nanjing, in 1985, 1991 and 1994 respec-

tively. Since 1994 he has been in the

Department of Computer Science and

Technology at the Nanjing University

where he is currently a professor. He is

also a professor of the National Key Laboratory for Novel

Software Technology, Nanjing University. His research

interests include formal support for design and analysis of

reactive, disturbed, real-time, and hybrid systems, soft-

ware testing and verification, and model-driven software

development.

Jun Wei received his B.S. degree

in 1992 and his Ph.D. degree in 1997,

both in computer science and from

Wuhan University, Wuhan. He was a

visiting researcher in the Department

of Computer Science and Engineering,

Hong Kong University of Science and

Technology, in 2000. He is a professor

in the Institute of Software, Chinese Academy of Sciences

(ISCAS), Beijing. His area of research is software en-

gineering and distributed computing, with emphasis on

middleware-based distributed software engineering.

Hai-Long Sun received his Ph.D.

degree in computer software and theory

from Beihang University, Beijing, in

2008. Currently he is an associate pro-

fessor in the School of Computer Science

and Engineering of Beihang Univer-

sity, Beijing. His research interests

include software engineering, crowd-

sourcing and distributed systems. He is

a senior member of CCF and a member of ACM and IEEE.

Gang Yin received his Ph.D. degree

in computer science from National

University of Defense Technology

(NUDT), Changsha, in 2006. He is

currently an associate professor in

NUDT, Changsha. His main research

interests include software engineering,

big data and cloud computing, etc.


