
Yao GL. A survey on pre-processing in image matting. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

32(1): 122–138 Jan. 2017. DOI 10.1007/s11390-017-1709-z

A Survey on Pre-Processing in Image Matting

Gui-Lin Yao

School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China

E-mail: glyao@hrbcu.edu.cn

Received April 18, 2016; revised October 18, 2016.

Abstract Pre-processing is an important step in digital image matting, which aims to classify more accurate foreground

and background pixels from the unknown region of the input three-region mask (Trimap). This step has no relation with

the well-known matting equation and only compares color differences between the current unknown pixel and those known

pixels. These newly classified pure pixels are then fed to the matting process as samples to improve the quality of the final

matte. However, in the research field of image matting, the importance of pre-processing step is still blurry. Moreover, there

are no corresponding review articles for this step, and the quantitative comparison of Trimap and alpha mattes after this

step still remains unsolved. In this paper, the necessity and the importance of pre-processing step in image matting are

firstly discussed in details. Next, current pre-processing methods are introduced by using the following two categories: static

thresholding methods and dynamic thresholding methods. Analyses and experimental results show that static thresholding

methods, especially the most popular iterative method, can make accurate pixel classifications in those general Trimaps

with relatively fewer unknown pixels. However, in a much larger Trimap, there methods are limited by the conservative

color and spatial thresholds. In contrast, dynamic thresholding methods can make much aggressive classifications on much

difficult cases, but still strongly suffer from noises and false classifications. In addition, the sharp boundary detector is

further discussed as a prior of pure pixels. Finally, summaries and a more effective approach are presented for pre-processing

compared with the existing methods.

Keywords image matting, pixel classification, pre-processing, Trimap expansion

1 Introduction

1.1 Image Matting

Image matting is a key technique in digital image

processing and editing[1-2], which is commonly applied

in image processing software, virtual studio, post pro-

duction in movies, and so on. Given an input image,

image matting mainly focuses on separating the fore-

ground object from the background scene. The major

difference between image matting and image segmen-

tation is the introduction of α channel[3]. In general,

for each 2-dimension coordinate z = (x, y) in an im-

age, αz ∈ [0, 1] is used to indicate the foreground trans-

parency of the pixel located at position z, where αz = 1

indicates a pure foreground (F) pixel and αz = 0 indi-

cates a pure background (B) pixel for z, while the case

0 < αz < 1 shows the pixel is a mixed one. The task of

image matting is to obtain the exact α from the input

image. Specifically, αz is solved by the input color Iz ,

foreground color Fz , and background color Bz based

on the following matting equation:

Iz = αzFz + (1 − αz)Bz. (1)

Commonly, a majority of pixels in most natural im-

ages belong to pure foreground or background, while

only a small part of them are mixed ones, which would

mostly happen at the “sharp boundary” or “soft bound-

ary” of the foreground object such as hair, fur, trans-

parent glass and plastic. Currently, most of the mat-

ting methods are assisted by a user interactive mask

with three regions: known foreground regionΩF, known

background region ΩB, and unknown region ΩU. Such
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Fig.1. Example showing Trimap-based matting and the effect of pre-processing. SAD: sum of absolute difference.

an assistant mask is called Trimap shown in Fig.1.

Here, the known regions ΩF and ΩB should contain

most of the pure pixels with α = 1 and α = 0, while

the unknown region ΩU must contain all the mixed pix-

els with 0 < α < 1 as well as the rest of pure pixels.

Ideally, ΩU should only contain mixed pixels. However,

this is a challenge and even an impossible task for hu-

man interactions.

The following two aspects are considered for the de-

sign of a Trimap. 1) A set of undisputed pure fore-

ground or background pixels are pre-classified into ΩF

and ΩB to reduce the unsolved set. 2) The pure regions

of ΩF and ΩB are expected to be the guides to greatly

reduce the solution space for these unsolved pixels in

the unknown region ΩU. Generally, the true foreground

color F and the background color B of each unknown

pixel in ΩU can be simulated by those pixels in ΩF and

ΩB respectively, and then the final α can be solved.

Currently, the online evaluation system[4-5] provides

a Trimap-based benchmark containing 27 training im-

ages with public ground truth αtrue and eight private

test images without αtrue. For each input image, two

basic types of Trimap with a large and a small size are

provided respectively. The small-size Trimap indicates

much fewer unknown pixels in this Trimap. According

to the benchmark, the results of α from a small Trimap

are always superior to those from a large Trimap. Ap-

parently, the size of ΩU is very important for Trimap-

based matting.

Up to now, two main categories have appeared in

the state-of-the-art Trimap-based matting algorithms:

1) sampling-based matting[6-23], which assumes the true

color of each unknown pixel could be approximated by

samples from ΩF and ΩB, and solves the problem in a

pixel-wise manner, and 2) affinity-based matting[24-29],

which solves the problem in a closed-form manner

where ΩF and ΩB act as boundary conditions. Clearly,

sampling-based matting is easy to debug for each pixel

after the matting process, while affinity-based matting

could only change basic neighboring model and has to

rerun the whole process after discovering mistakes. Be-

sides, post-processing step is always realized by affinity-

based matting to smooth the matte after sampling.

1.2 Pre-Processing

As discussed, an ideal ΩU in a Trimap should only

include mixed pixels. However, a great number of

pure pixels could still remain in ΩU from a user-drawn

Trimap, especially from the “large-size” Trimap in the

above benchmark. In practice, a requirement for a

fine Trimap like the “small size” in the benchmark is

tedious and usually unnecessary, especially for those

input images with massive semi-transparent pixels or

holes. Therefore, some of the recent sampling-based

matting methods begin to apply a step called pre-

processing before pure matting. This step, also called

“reducing ΩU”, actually employs some novel methods

irrelevant to the well-known matting equation to pre-

classify some of the potential pure pixels in ΩU into

pure regions ΩF and ΩB. This could also be regarded

as an extension for those pure pixels in ΩU which can-

not be easily distinguished by a user-drawn Trimap.

In general, by applying the same matting algorithm,

the results of α could be heavily raised with this pre-

processing step compared with those without it. Fig.1

shows such an example. Besides, pre-processing could

also raise the speed of pure matting, which will be dis-

cussed in Section 3.

The remainder of this paper is organized as follows.

Section 2 presents a detailed description on the signifi-

cance of pre-processing. Section 3 presents the experi-

mental environment and simulates the improvements on

matting with the help of pre-processing in both matte

quality and processing speed. Section 4 proposes the

classification of pre-processing methods and presents
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the detailed analyses and experimental comparisons on

this classification. Section 5 presents additional sharp

boundary pure pixel priors. Section 6 makes summaries

and presents a more effective approach. Section 7 draws

conclusions.

2 Significance of Pre-Processing

2.1 Basic Functions

Obviously, one function of pre-processing is to clas-

sify some pixels in ΩU into pure ones, which may not

be precisely solved based on a usual matting step.

The arrows in Fig.2(a) show such pure foreground pix-

els. They are precisely classified into ΩF after pre-

processing. In fact, the judgment and classification of

pure pixels must rely on some accurate thresholds and

one-side (unilateral) sample comparisons. For example,

if a current pixel z is classified into foreground, the pre-

processing step only has to compare z with foreground

samples, i.e., no background samples are involved. This

is superior to the sophisticated two-side (bilateral) com-

putation of matting equation and will be discussed in

details in Subsection 2.3.

Another function of pre-processing is to expect the

classified pure pixels to provide sufficient and valid sam-

ples for those remaining unknown ones, especially for

those mixed pixels with 0 < α < 1. On one hand, these

pure pixels should be spatially close to the remainder

part of ΩU to provide more accurate samples for the

pure matting process. On the other hand, some of the

newly classified pixels, which are actually more similar

to the true F/B colors of these remainder pixels in ΩU,

should be slightly different from these unknown pixels’

regular samples in the initial ΩF or ΩB. The arrows in

Fig.2(b) show some of the mixed pixels, whose α values

can be more precisely computed based on these newly

classified pure pixels as their samples.

Currently, pre-processing is always applied in

sampling-based matting because of its pixel-wise man-

ner. Hence, such a transition (from pre-processing to

pure matting) looks natural. However, pre-processing

could also be applied to affinity-based matting because

both of them are independent and are consecutively ap-

plied.

In the reminder of this paper, a “Pre-” is marked in

front of a pre-processing name.

2.2 Impact on Matting Benchmark

As discussed above, pre-processing has only ap-

peared in sampling-based matting algorithms on the

matting benchmark[4-5]. Hence, these algorithms are

only employed here for comparisons. Table 1 shows

the ranks of 20 sampling-based matting algorithms exi-

sting in the benchmark based on SAD (sum of abso-

lute difference) and MSE (mean square error), where

the nine algorithms in bold use pre-processing. Obvi-

ously, almost all the methods ranking on top of the

benchmark employ pre-processing. Without it their

ranks will intensively drop. A simulated rank com-

parison for some certain algorithms between with and

without pre-processing will be performed in Section 3.

Note that in Table 1, where the algorithms in bold

use pre



Gui-Lin Yao: Survey on Pre-Processing in Image Matting 125

Table 1. Ranks of 20 Sampling-Based Matting Algorithms on the Benchmark[4-5] Based on SAD and MSE
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known pixel z ∈ Fl. The approximate αz = 0.9 is thus

solved according to (1) as shown in Fig.3. However,

the composed color Iz of pixel z is also close enough

to its foreground sample Fz to make z be likely to be

pure foreground. More importantly, the prior of z ∈ Fl

actually tells αz = 1. Such an example has drawn a

conclusion that it is not suitable for some pure pixels to

apply the bilateral form of matting equation (1). Other

unilateral criteria, such as color and spatial similarities

to a unary known region ΩF or ΩB, must be introduced

to classify them correctly into pure regions.

Bz Fz

Iz

Fig.3. Illustration of the errors in pure sampling, where αz is
likely to be fractional (near 0.9) according to matting equation.
However, the similarity between its color Iz and foreground sam-
ple Fz indicates that z is more likely to be a pure foreground
pixel.

Consequently, a precise matting process must in-

clude the following two steps. The first step is the pre-

processing step, or the pure pixels classification step,

which must apply some certain methods instead of mat-

ting equation. The second step is the execution of mat-

ting equation for those mixed pixels with 0 < α < 1 and

the remaining pure pixels. Thus, a good pre-processing

step must classify enough pure pixels from ΩU as many

as possible.

2.4 Ideal Trimap and Pure Pixel Rates

According to the statistics of the 27 images from

GT01 to GT27 in the training set, the average per-

centage of pure pixels in ΩU in a small-size Trimap is

60.5%, and in a large size it is 72.4%. Such massive

pure pixels also indicate the importance of their initial

classifications.

Because αtrue are all provided in the above 27

training images, all of them are thus segmented into

three regions based on αtrue: true foreground region

F = {z|αtrue
z > 0.98}, true background region B =

{z|αtrue
z 6 0.02}, and the remaining true unknown

(mixed) region U . Such a three-region Trimap is called

an ideal Trimap. Fig.4 shows four input large-size

Trimaps and ideal Trimaps in four images, where blue

and red lines show the initial known F/B edges ΦF and

ΦB with unknown region ΩU between them, and the

pixels in green show the true unknown region U in the

ideal Trimap. It is clear that between ΩU and U , there

still exist a great number of pure pixels, whose rate

could also increase as the foreground edge becomes sim-

pler.

3 Experimental Setup and Simulated Effect on

Matting Algorithms

Although a rough rank comparison is presented

from the benchmark in Table 1, it does not show

these algorithms in bold when they do not apply pre-

processing. In order to simulate the rank changes[4],

the methods of Shared, Sparse Coded, High-res, WCT,

KL-D-Sparse and Comprehensive are implemented in

this paper, which include results both without and with

pre-processing.

Because the source codes of Shared, Sparse Coded

and High-res are not publicly provided, the α matting

results without pre-processing under the same code con-

dition for these three algorithms could not be obtained

and uploaded to the benchmark. To simulate the rank

change in this benchmark, the above three algorithms

(without and with pre-processing) are implemented by

ourselves in C++. Note that the real-time matting

⊲̺ ⊲̺ ⊲̺ ⊲̺

(a) (b) (c) (d)

Fig.4. Comparison between initial Trimaps and ideal Trimaps, where the percentages indicate the rates between the amount of pure
pixels and that of initial unknown region ΩU.
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strategy in Shared similar to Subsection 2.2 and Sub-

section 2.3 is applied here for a clearer display of the

rank change. Besides, WCT, KL-D-Sparse and Com-

prehensive are provided with public MATLAB source

codes. For comparison, another six matting algorithms

that do not employ pre-processing are also implemented

in C++ to rank together with the above six algorithms.

Our experiments are performed on a PC with an

Intelr Core i5 CPU with 3.3 GHz and 4 GB memory.

The 27 training images in the α evaluation benchmark

system[4-5] are included. For each image, a ground

truth αtrue, an ideal Trimap, and two types of Trimaps

(large and small sizes) are also provided.

A simulated rank change similar to the benchmark[4]

on SAD of the 27 training images with and without pre-

processing for 12 matting algorithms is illustrated in

Table 3, where bold texts indicate those applying pre-

processing. It shows that the ranks could be greatly

raised for relatively weak matting algorithms like WCT,

Comprehensive and Sparse Coded after applying pre-

processing. Besides, the rank of Shared (Real Time) is

raised to the first out of 12 because it also has good

matting performance without pre-processing. How-

ever, the high rate of false classification in Pre-High-

res makes High-res matting algorithm even worse. It

could also conclude that, at least up to now, the con-

servative static thresholding methods like Pre-Shared-

Init, Pre-WCT and Pre-Comprehensive could lead to

an improved performance compared with the aggres-

sive methods like Pre-High-res because of fewer false

classifications, despite more missing classifications.

The average processing time on 27 training images

with large- and small-size Trimaps (54 processing times

in total) for each of the above six matting algorithms

with and without pre-processing is also shown in Ta-

ble 4. It is clear that all algorithms have notable speed

accelerations in “pure matting” part, which is caused

by the greatly reduced amount of unknown pixels. Be-

sides, pre-processing only employs an easy and unilate-

ral method instead of the pair-wise brute-force matting

manner, and the total processing speed of these algo-

rithms with pre-processing is thus mostly raised com-

pared with that of those algorithms without it.

An exception is Sparse Coded whose total process-

ing time is long. This is because it applies a special

solution without both matting equation and the brute-

force processing manner. Thus, the reduced unknown

pixels do not quite influence the matting speed.

Table 3. Ranks of 12 Implemented Algorithms Based on SAD
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All the details of the above pre-processing methods

can be found in Section 4.

In summary, pre-processing must have a huge im-

pact on the whole matting process. However in the

current research field of image matting, pre-processing

has not received enough attentions that it should have,

and the corresponding analyses and summaries of var-

ious kinds of pre-processing are still lacking. Besides,

many of the state-of-the-art matting articles only em-

ploy simple methods and spend limited scopes on pre-

processing. A thorough interpretation and a plan of

future improvement are thus carried out at the remain-

der of this paper.

4 Analyses on Pre-Processing Methods

The state-of-the-art pre-processing methods can be

classified into two basic categories: static thresholding

methods and dynamic thresholding methods. The for-

mer can also be divided into one loop methods (Pre-

WCT and Pre-Shared-Init) and iterative methods (Pre-

Comprehensive), and the latter can also be divided into

local pixel-wise unilateral learning based method (Pre-

Shared-Mid) and global parametric bilateral ratio based

method (Pre-High-res). The following subsections of

Section 4 will give brief analyses on these four meth-

ods.

Denote an ideal Trimap as F ∪ B ∪ U and xz =

F/B/U as a certain classification for an unknown pixel

z ∈ ΩU. The following two negative cases are intro-

duced based on xz : missing classification xz = U ∧ z ∈

F ∪B and false classification xz = F/B ∧ z ∈ U .

4.1 Static Thresholding Method

The most popular pre-processing method in re-

cent matting algorithms is the simple and basic static

thresholding method, which defines an unchanged

threshold for the color difference between unknown pix-

els and their samples. Besides, spatial distances be-

tween unknown pixels and known regions ΩF and ΩB

are also employed as well as color difference in this

method. Such spatial constraint could also have good

effects because the continuity properties hold for both

foreground object and background scene during the ex-

tensions from ΩF or ΩB to ΩU.

A major problem of this method is that the thresh-

old is difficult to choose according to different local con-

texts and Trimap sizes.

4.1.1 One Loop Method

Static thresholding methods were initially applied

by Shared[11] and WCT[10] named one loop method

based on pixel-wise manner denoted as Pre-Shared-Init

and Pre-WCT respectively. Generally, for an unknown

pixel z ∈ ΩU, if there exists a pixel F i ∈ ΩF,

‖Iz − F
i‖ 6 Cthr ∧ Ds(z,F

i) 6 Ethr, (2)

then z is classified into pure foreground as z ∈ ΩF,

where Ds(·, ·) is the spatial distance between two

points, and Cthr and Ethr are color and spatial distance

thresholds respectively. In Pre-Shared-Init, Cthr = 10

and Ethr = 5, and in Pre-WCT, Cthr = 10 and Ethr =

3. A similar formulation is applied to pure background

classification. In fact, an additional texture space is

also employed to complement the color of (2) in Pre-

WCT. In practice, it only makes slight improvements

on RGB color space. (2) is also called the basic con-

straint term for static thresholding methods. Moreover,

such constraint could also be illustrated as a sampling

square window centered at z with radius Ethr shown in

Fig.5(a). Pixels inside both this square and ΩF/ΩB are

named target F/B (foreground/background) samples.

Target Sample

Unknown Pixel Sampling Region

Color Difference
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method invented in Comprehensive[7], which is denoted

as Pre-Comprehensive in this paper and is further ap-

plied in CWCT[8], SPS[18], KL-D-Sparse[6], and Sparse

Coded[9]. Its key feature is the iterative utilization of

(2), and the classification result of the current loop is

also fed to the subsequent loops as a new input. The

number of iterations on (2) is also Ethr. For the i-th

loop with 1 6 i 6 Ethr in (2), the spatial threshold

Ethr(i) = i, and the color threshold Cthr is calculated

as

Cthr(i) = Cthr − (Cthr − µ)× (i/Ethr).

In CWCT, SPS and KL-D-Sparse, Cthr = Ethr = 9,

and in Sparse Coded, Cthr = 4 and Ethr = 15. µ is a

small value always calculated as µ = Cthr/Ethr.

The above thresholds indicate that the spatial

threshold (sampling radius) Ethr(i) increases and the

color threshold Cthr(i) decreases as the iteration goes

on. Fig.5(b) shows this iterative process. Theoretically,

this method could be as many as 1+2+ · · ·+Ethr pixels

deep from ΩF and ΩB into ΩU, but it is much fewer in

practice.

Obviously, such an iterative method is relatively

more aggressive than one loop such that more pure pix-

els could be classified in common Trimaps and images

with simple color distributions. Besides, this method

can even lead to some false classifications in a small-

size Trimap which is also tolerable for the subsequent

matting process. However, similar to one loop, it can-

not adjust the fixed thresholds to those Trimaps with

much more unknown pixels and those images with quick

color variances.

4.2 Dynamic Thresholding Method

Although the above static thresholding method is

widely used in recent matting algorithms, it is still lim-

ited by color and spatial constraints, which could result

in a high missing rate and could not make a break-

through into the deep side of a large size ΩU, even for

the much aggressive Pre-Comprehensive. In fact, the

threshold must adapt to different images and local con-

texts.

The dynamic method is much more aggressive for

the classification of ΩU compared with the relatively

conservative static one. In fact, this method has not

emerged for a long time because false classification can

happen more frequently. However, in our opinion, such

an aggressive manner must be encouraged because the

exploration inside ΩU for more pure pixels is becoming

more and more necessary in the future development of

image matting, especially for those pure pixels dissimi-

lar to ΩF and ΩB, despite a higher risk of mistake.

Another change for dynamic method is discarding

spatial constraints. Thus it could examine much deep

inside of ΩU. However, the classification ability on the

pixels in ΩU spatially close to ΩF and ΩB may not be

as precise as the static method.

4.2.1 Local Learning Based Method

The “sample refinement” step of Shared[11] in-

troduces a local pixel-wise unilateral learning based

method denoted as Pre-Shared-Mid. Although such a

method is in the middle part of Shared, its real effect

is still the classification of pure pixels and can also be

treated as pre-processing.

The basic conception of learning based method is

that those pixels in ΩU spatially close enough to ΩF or

ΩB, e.g., pixels in the 5 × 5 region in this subsection,

and Fl and Bl in Subsection 2.3, named learning sam-

ples, are most likely to be pure pixels and can simulate

those unknown pixels deep inside ΩU far away from ΩF

or ΩB. Generally, the color threshold is obtained from

the average color difference between learning samples

and the edges ΦF and ΦB in known regions. Therefore,

the threshold could change in different local contexts

and the classification performance is thus improved.

As shown in Fig.6(a), in the “sample refinement”

step of Shared, three F/B target sample pairs are col-

lected from the “sample gathering” step according to

the least fitting errors (only three foreground samples

are shown) for the unknown pixel z. We denote an

arbitrary sample pair as {Fz,Bz}, and σ2
f and σ2

b are

defined as










σ2
f =

1
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Target Sample

Unknown Pixel

Color Difference

Learning Sample

Learning Region
Background GMM

Foreground GMM

Cthr

Cthr Cthr

ΩF

ΩU

ΦF

ΩF
ΩU

ΩB

(a) (b)

Fig.6. Illustration of the two dynamic thresholding methods in pre-processing. (a) Local pixel-wise unilateral learning based method
(Pre-Shared-Mid). (b) Global parametric bilateral ratio based method (Pre-High-Res).

In other words, some of the thresholds are large and

others are small. They could both cause missing clas-

sification and false classification. Therefore, too much

noise could emerge in the final Trimap which will be

shown in the consequent experiments.

In fact, the three target sample pairs and 5×5 learn-

ing neighbors are definitely small sets. If they are too

large to cover enough learning samples, such as large

learning regions like Fl and Bl in Subsection 2.3, the

noise could be greatly reduced on these thresholds. In

addition, the initial sample pair {Fz,Bz} should also

be selected by simple color difference instead of fitting

errors, such that this type of dynamic thresholds could

thus be placed before the sampling step of matting as

a pre-processing step.

4.2.2 Global Ratio Based Method

In the pre-processing step named “Trimap segmen-

tation” of High-res[19], a global parametric bilateral

ratio based method denoted as Pre-High-res is em-

ployed. Because both sides of foreground and back-

ground should be simultaneously considered for the

classification of any unknown pixel z, this type of classi-

fication is thus called “bilateral”, which is also the only

bilateral pre-processing method up to now.

This method firstly employs the binary segmenta-

tion results of GrabCut[31] denoted as F ′ and B′. Then

the following energy function is minimized by means of

Max-Flow[32-33] in MRF:

E(z, θ) =
∑

i

U c
i (zi) + Up

i (zi) + θoU
o
i (zi) +

θs
∑

i,j∈Ω

V s
ij(zi, zj), (4)

which is separated by data cost Ui(zi) and smoothness

cost Vij(zi, zj). The unknown region U and the known

region Ū are thus solved. Finally, the final pure regions

are obtained by Ū ∩ F ′ = F and Ū ∩B′ = B.

For smoothness cost V s
ij(zi, zj) in (4), Ω is the 8-

pixel neighborhood and θs = 0.1 (50 in GrabCut),

which means that smoothness cost is relatively weak

compared with the data. In fact, the edge of the un-

known region U is not necessarily smooth. For data

cost Ui(zi), color similarity term U c
i (zi) is the most es-

sential to the classification results and will be briefly

discussed. Terms Up
i (zi) and Uo

i (zi) will be discussed

as other pure pixel priors in Section 5.

In practice, the above MRF could be separated

into two types according to GrabCut result of F ′/B′,

and the color term U c
i (zi) could be defined as follows.

If zi ∈ F ′, then zi is classified into F or U , and

U c
i (zi ∈ Ū) = − logP (Ii|θF); if zi ∈ B′, then zi is clas-

sified into B or U , and U c
i (zi ∈ Ū) = − logP (Ii|θB);

U c
i (zi ∈ U) = − logP (Ii|θU). P (I|θ) is the proba-

bility of color I under model θ, and θF, θB and θU
are Gaussian mixture models (GMMs) of global fore-

ground, global background, and global unknown region,

respectively, where θU is obtained by the method of [34].

A much intuitive expression for color term U c
i (zi)

is illustrated in Fig.6(b). The centroid of θU could be

roughly located at the midpoint between those of θF
and θB in RGB space. Besides, the data cost part of

the above MRF optimization step could also be treated

as a binary classifier, such that the midpoints of θU and

θF, and θU and θB are both classification boundaries

shown in Fig.6(b). Thus, 1/4 and 3/4 positions of the

centroids of θF and θB are F/B classification boundaries

for zi ∈ F ′ and zi ∈ B′, respectively. And this method

is thus named “ratio based” with 1 : 3 as color differ-

ence constraint. Note that only the color probability
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P (I|θ) is considered here and the negative logarithm in

the above MRF is ignored.

The following drawbacks exist in Pre-High-res.

1) The ratio of F/B is opposite to the “absolute

threshold” applied by all the previous methods. Empir-

ically, absolute threshold is necessary in pre-processing,

especially in complex regions. For instance, suppose

the color difference between an unknown pixel z and

the foreground color is 30, and the difference between

z and the background color is 100. Thus the ratio is

30/100 = 0.3 < 1/3. In fact, z is not likely to be clas-

sified into F , because the absolute threshold is about

less than 10 for ordinary images and 30 is obviously

too large. Moreover, it is still too large for the ratio

1 : 3 which could cause too many false classifications.

In practice, 1 : 10 or less may be a more appropriate

one.

2) In global method, when many overlapping col-

ors exist in global foreground and background, plenty

of false classifications in the final Trimap could appear.

Two such cases are shown in Fig.7. In the local un-

known region of the left bottom corner of GT24, the

color of the foreground hair is similar to a piece of

known background far away in green rectangle on top

of this image. Besides, in the local unknown region

of the right part of GT11, the color of a piece of the

background is also similar to the several labeled known

foreground pixels. Consequently, plenty of false classi-

fications are caused in Pre-High-res.

GT11

GT24

Ideal TrimapImage/Trimap Local/Trimap Trimap
(Pre-High-res)

23.5/36.9
(0.662)

22.5/21.9
(0.419)

0/0(0.000)

0/0(0.000)

Fig.7. False classifications caused by global manner in Pre-
High-res. x/y(z): missing rate (%)/false rate (%) (false error).

4.3 Experimental Comparisons

The missing rate (MR) and the false rate (FR) are

defined as follows:

MR & FR = Nmissing & Nfalse/NU,

where Nmissing and Nfalse are the amounts of pixels with

missing and false classification respectively, and NU is

the amounts of total unknown pixels. Note that these

two rates are shown in a separate manner in this pa-

per different from the error function of classification in

High-res.

In practice, the false error (FE) should also be consi-

dered to further evaluate the degree of negative effect

in false classification. For example, for a classification

of xz = F (i.e., αz = 1) and αtrue
z = 0.9, the false error

for this classification of z is 0.1.

4.3.1 Overall Comparison

Table 5 shows the average MR, FR, and FE in the

27 training images on the four pre-processing methods

Pre-WCT, Pre-Comprehensive, Pre-Shared-Mid and

Pre-High-res, as well as “no pre-processing” with orig-

inal Trimap. Note that 72.4% and 62.5% are the same

pure pixel rates in ΩU with those in Subsection 2.4.

The following aspects can be derived from Table 5.

1) Pre-WCT is the most conservative and has the

highest MR (37.2% and 18.5%) and the lowest FR

(0.1% and 2.8%) in both large and small Trimaps.

2) Pre-Comprehensive brings in least MR+FR

(24.2% and 19.3%) and can thus be regarded as the best

pre-processing method up to now. However, the FR in

small-size Trimaps (8.0%) is relatively high, which re-

flects its weak ability on the adaptive adjustment ac-

cording to different Trimap sizes.

3) The FRs in dynamic thresholding methods Pre-

Shared-Mid and Pre-High-res are both high (6%∼10%).

Besides, MRs in these two methods are also not satis-

factory (15%∼20%) compared with static thresholding

methods.

4.3.2 Cases with Fewer Unknown Pixels

Four common and simple local cases are shown

in Fig.8 to compare the resulting Trimaps for these

four methods in both large (first two rows) and small

Trimaps (last two rows). Obviously, the lower MR and

the higher FR in Pre-Comprehensive compared with

those in Pre-WCT show that Pre-Comprehensive is rel-

atively more aggressive than Pre-WCT. However, due

to the weak adjustment abilities of both methods, the

FR can reach up to 15%∼18% in small-size Trimaps

with a narrow unknown region.

In contrast, because Pre-Shared-Mid highly relies on

a small sample set of each target sample and is heav-

ily influenced by noise, its results are thus unstable in
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Table 5. Average Trimap Comparison of 4 Pre-Processing Methods on 27 Training Images
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Trimap
(Pre-WCT)

43.4/0.0 (0.000)

33.1/0.0 (0.092)

33.9/0.0 (0.000)

49.6/0.3 (0.087)

26.8/1.0 (0.052)

22.2/1.0 (0.060)

18.2/0.5 (0.054)

33.4/2.5 (0.104)

10.1/6.1 (0.172)

14.2/8.2 (0.111)

15.9/7.7 (0.229)

23.2/15.4 (0.115)

10.4/9.9 (0.256)

10.6/4.8 (0.213)

6.8/8.7 (0.102)

24.1/5.4 (0.079)

0.0/0.0 (0.000)

0.0/0.0 (0.000)

0.0/0.0 (0.000)

45.5/0.1 (0.063) 22.6/4.3 (0.077) 20.8/8.6 (0.153) 1.6/12.7 (0.111) 0.0/0.0 (0.000)

0.0/0.0 (0.000)

Trimap
(Pre-High-res)

Trimap
(Pre-Shared-Mid)

Trimap
(Pre-Comprehensive)

(b) (c) (d)

GT03

GT04

GT09

GT13

GT10

(a)

Fig.9. Comparisons on the 4 pre-processing methods in local cases with more unknown pixels: x/y(z): missing rate (%)/false rate (%)
(false error). (a) Local/Trimap. (b) Static threshold. (c) Dynamic threshold. (d) Ideal Trimap.

regions. Note that in Pre-High-res, the MR is much

higher compared with that in Pre-Shared-Mid. This is

mainly caused by the unstable global parametric man-

ner that could weaken the effects of some key samples

for some unknown pixels. Hence, these pixels could not

be precisely classified by Pre-High-res due to large color

differences.

In addition, in Pre-Shared-Mid of Fig.10, the main

contours of foreground objects have already been

roughly recognized compared with Pre-High-res despite

too much noise and high FR. This is a breakthrough

and is also realized in the fourth column of Fig.9. Thus,

it could be convinced that local learning based method

is somewhat superior to global ratio based one in han-

dling complex regions. Furthermore, this method could

be further improved by increasing the amount of target

samples and local size to eliminate noise and increase

robustness. Such an idea will be described in details in

Subsection 6.2.

5 Other Pure Pixel Priors

Apart from color similarities, there are some other

methods to obtain pure pixel priors in the unknown re-
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55.0/0.1 (0.115)

60.2/0.0 (0.048)

57.5/0.6 (0.061)

44.8/0.7 (0.081)

53.7/0.7 (0.092)

52.1/2.5 (0.119)

28.1/17.0 (0.400)

24.0/12.2 (0.280)

19.1/13.4 (0.240)

29.1/2.4 (0.177)

29.2/9.1 (0.791)

58.8/1.1 (0.163)

0.0/0.0 (0.000)

0.0/0.0 (0.000)

55.0/0.3 (0.068) 54.5/0.8 (0.078) 20.3/18.5 (0.215) 44.4/6.5 (0.680) 0.0/0.0 (0.000)

0.0/0.0 (0.000)

(b) (c) (d)

GT26 (1)

GT26 (2)

GT27 (2)

GT27 (1)

(a)

Trimap
(Pre-WCT)

Trimap
(Pre-High-res)

Trimap
(Pre-Shared-Mid)

Trimap
(Pre-Comprehensive)

Fig.10. Comparisons in local cases with more unknown pixels and complex color distributions: x/y(z): missing rate (%)/false rate (%)
(false error). (a) Local/Trimap. (b) Static threshold. (c) Dynamic threshold. (d) Ideal Trimap.

gion. As discussed in Pre-High-res of Subsection 4.2.2,

the following two additional terms are also defined as

pure pixel priors in the energy function of (4) besides

the color term U c
i (zi).

Known Region Prior Up
i (zi). For each unknown

pixel z, Up
i (zi ∈ Ū) = λ, where λ is concerned with the

ratio between the number of unknown pixels and that

of total pixels. The size of the unknown region ΩU in

different images can be adjusted by an adaptive λ pre-

dicted from a quadratic function. Besides, an optimal

λ = 2.3 could also be adopted independently of each

image, which would lead to a relatively worse result.

However, the authors in High-res of [19] also ad-

mitted that λ is difficult to set and should be adjusted

manually to generate a good Trimap. In practice, it has

been widely acknowledged that an outstanding method

must automatically handle these parameters by itself.

Sharp Boundary Prior Uo
i (zi). This indicates the

solid foreground edge with quick and smooth transition

to background, which is different from fuzzy boundary

or semi-transparent inner. Generally, sharp boundary

could exist at the segmentation boundary of GrabCut.

The radius of unknown region in sharp boundary is

likely to be the width of PSF (point spread function) of

the camera and is set to 1 in this paper. The recovery

of sharp boundary is helped by the color term U c
i (zi)

in the data cost of (4) and by the α result of Closed-

Form[26]. Besides, sharp boundary could be further ext-

ended to obtain an additional known area denoted as

“barrier bound”, which has the lowest energy in (4)

(refer to the technical report version of [19] for details).

Fig.11 shows four examples of the detection of sharp

boundary (pink pixels in the first column), on which the

pre-processing results of Pre-High-res are based (bar-



Gui-Lin Yao: Survey on Pre-Processing in Image Matting 135

0.0/0.0 (0.000)

0.0/0.0 (0.000)

0.0/0.0 (0.000)

0.0/0.0 (0.000)8.5/1.5 (0.069)

6.6/0.9 (0.065)

8.1/0.3 (0.035)22.2/6.3 (0.356)

7.8/2.2 (0.089)

26.5/1.9 (0.099)

6.6/1.2 (0.044)9.4/2.3 (0.065)
GT01

GT19

GT18

GT02

Trimap
(Pre-High-res)

Trimap
(Pre-Shared-Mid)

Trimap
(Pre-Comprehensive) Ideal TrimapImage/Sharp Bound Local/Trimap Local/Sharp Bound 

25.2/1.7 (0.128)

26.5/0.3 (0.046)

21.9/0.7 (0.043)

17.2/0.7 (0.044)

(a) (b) (c) (d) (e) (f) (g)

Fig.11. Local cases showing the advantages of sharp boundary detector in Pre-High-res. x/y(z): missing rate (%)/false rate (%) (false
error).

rier bound results are not shown). In the local cases

of the last six columns, the missing and false rates

of the Trimap results of Pre-High-res are much lower

than those of Pre-Comprehensive and Pre-Shared-Mid

with the help of sharp boundary and barrier bound.

Note that in the last two rows of GT02 and GT18, the

background samples are always spatially far away from

known regions because of holes and narrow bounds in

the image. The global manner in Pre-High-res could

thus help to search far-away background samples, where

the low overlapping colors between foreground and

background in these cases are different from those in

Fig.7.

However, it is risky for the direct application of the

results of GrabCut (initial F ′/B′ segmentation) and

Closed-Form (sharp boundary detection). In fact, the

subsequent procedure should be highly influenced and

could not be adjusted if the previous method fails. As

also discussed in [35], the methods of GrabCut and

Closed-Form are far away from perfect. Besides, this

could also destroy the art of the whole process.

6 Summaries and Proposed Approach

6.1 Summaries

The main techniques of pre-processing methods can

be summarized into the following aspects.

1) Global and Local Target Sampling. The fun-

damental sampling way is in local like Pre-WCT,

Pre-Comprehensive and Pre-Shared-Mid. Besides, the

global method in Pre-High-res should be employed to

complement local method when the foreground object

contains a lot of holes, or the size of unknown region

is too large, where true samples are far away from the

current unknown pixel. A main drawback for global

method is the cause of false classification due to global

overlapping colors. Meanwhile, global method can also

weaken the effect of local colors and can bring in more

missing classifications.

2) Threshold Setting Methods:

• Static, Learning Based and Ratio Based.

Static thresholding methods like Pre-WCT and Pre-

Comprehensive can always generate good Trimap re-
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sults for Trimaps with fewer unknown pixels. However,

they could not make any breakthrough for large-size

Trimaps and for large fuzzy regions due to the conserva-

tive threshold and spatial constraint. The local learning

based method in Pre-Shared-Mid is relatively success-

ful with adaptive threshold according to different local

contexts. However in Pre-High-res, false classification

can easily happen due to large base threshold and large

ratio.

• Unilateral and Bilateral. Take foreground pixel

classification for example. Unilateral method is em-

ployed in Pre-Comprehensive and Pre-Shared-Mid,

which compares the color of the current unknown pixel

with only foreground samples (no background), and

could only make a relatively fixed threshold for fore-

ground. However, the bilateral method in Pre-High-res

could also magnify the threshold based on the color

comparison with background samples. Such an en-

larged threshold could cover more pure foreground pix-

els which could hardly coincide with background ones.

3) Priors. The sharp boundary detector in Pre-

High-res could bring in an effective prior of barrier

bound for pure pixels near the sharp edge. Besides,

some other priors, such as a defocused background

scene, could also be introduced as prior pixels for com-

plex defocused background edges. Predictably, such

prior can classify those background pixels similar to

foreground ones in color which cannot be routinely

identified.

6.2 Proposed Approach

According to the above analyses, a relatively more

effective approach is consequently formed for pre-

processing, which is an improved version of Pre-Shared-

Mid based on local pixel-wise learning bilateral based

method shown in Fig.12. Note that parametric method

like GMM could also be introduced based on the sim-

plicity of local color distributions.

Unknown Pixel

Foreground 
Target Samples

Foreground 
Learning Samples

Background 
Learning Samples

Color Difference 
Between Sample Sets

ΩB

ΩU

ΩF

Ωf

-

Ωbf

-

Fig.12. Proposed local approach for pre-processing in matting.

Foreground pixel classification is also shown here as

an example. A local window is firstly generated includ-

ing certain unknown pixels. Then a foreground thresh-

old σ̄f is obtained similar to (3) from the average color

difference between target samples and learning sam-

ples whose amounts are both greatly increased. The

increased sizes could result in a more stable threshold

and could greatly reduce noise. Besides, the foreground

learning sample set is similar to that of the area Fl in

ΩU defined in Subsection 2.3.

Meanwhile, as discussed in Subsection 6.1, the

bilateral method like Pre-High-res is also employed by

introducing a set of background learning samples, which

is spatially close to known background region ΩB sim-

ilar to the area Bl. The average foreground and back-

ground color difference σ̄bf is obtained according to the

average difference between the background learning set

and the foreground target set. Predictably, σ̄bf is much

larger than σ̄f . Thus, threshold σ̄f could be enlarged

into a new σ̂f according to the following equation:

σ̂f = (σ̄bf − σ̄f)× θ, (5)

where θ is small value like 0.01. For instance, suppose

the average color difference between the learning and

the target sets of foreground σ̄f is 2. In practice, the

ideal threshold σ̂f for foreground classification is always

slightly greater than 2, and is decided here by σ̄bf − σ̄f .

When it is 50, σ̂f is enlarged to about 2.5 according to

(5). And when it is 100, σ̂f could be up to 3.

Note that the static thresholding method like Pre-

WCT or Pre-Comprehensive could also be employed for

an initial rough classification with some conservative

thresholds.

7 Conclusions

In digital image matting, the specific characteris-

tic for pure foreground and background pixels makes

it important for pre-processing to be an isolated step

from the pure matting which employs the traditional

matting equation. The pre-processing step could not

only precisely classify those pure pixels which cannot

be easily classified by most of pure matting methods,

but also bring in effective samples for the subsequent

matting process. However, pre-processing step has not

been paid enough attention in the current research field

of image matting, and is only treated as a small supple-

ment to pure matting in the state-of-the-art algorithms.

Moreover, its complexity is also neglected.
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This survey paper firstly classified the pre-

processing step as static thresholding methods and dy-

namic thresholding methods, and then made thorough

analyses on the advantages and disadvantages of the

two basic categories. Experimental results showed that

pre-processing could greatly improve the matting re-

sults, but the missing and false classifications are also

popular. Besides, theoretical analyses and experimen-

tal results also indicated that static thresholding meth-

ods are good at initial conservative classifications for

the unknown region, and dynamic thresholding meth-

ods tend to make aggressive classifications in complex

cases. In addition, some other pure pixel priors such as

sharp boundary detector were also raised and discussed.

Finally, in order to further overcome the problems

of the state-of-the-art pre-processing methods, a design

thinking of a more effective approach of pre-processing

is finally presented to inspire new work on this field that

can bring in more accurate pure prior samples for the

performance of matting.
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