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Abstract Key-value (KV) stores have become a backbone of large-scale applications in today’s data centers. Write-

optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used in KV storage

systems like BigTable and RocksDB. Conventional LSM-tree organizes KV items into multiple, successively larger compo-

nents, and uses compaction to push KV items from one smaller component to another adjacent larger component until the

KV items reach the largest component. Unfortunately, current compaction scheme incurs significant write amplification due

to repeated KV item reads and writes, and then results in poor throughput. We propose a new compaction scheme, de-

layed compaction (dCompaction) that decreases write amplification. dCompaction postpones some compactions and gathers

them into the following compaction. In this way, it avoids KV item reads and writes during compaction, and consequently

improves the throughput of LSM-tree based KV stores. We implement dCompaction on RocksDB, and conduct extensive

experiments. Validation using YCSB framework shows that compared with RocksDB, dCompaction has about 40% write

performance improvements and also comparable read performance.

Keywords key-value store, Log-Structured Merge-tree (LSM-tree), write amplification, delayed compaction

1 Introduction

Key-value (KV) store plays a vital role in today’s

large-scale, high-performance, data-intensive applica-

tions in data centers. Handling write-dominated inte-

ractive workloads is becoming increasingly important

for KV stores. On the one hand, typical KV store work-

loads have transitioned from 80%∼90% reads in 2010

to only 50% reads in 2012[1], so that the ratio of writes

is increasing in comparison with that of reads in typical

low-latency workloads. On the other hand, writes are

more likely to be the performance bottleneck of back-

end storage systems, since most read requests can be

absorbed by multi-level caches[2], implemented by Web

browser’s cache, CDN, Redis 1○, Memcached[3] and OS

page cache, while data must be written to persistent

storage devices to ensure data persistence. The analy-

sis results of photo caching mechanism in Facebook[2]

show that 90.1% of read requests are served by multi-

layer cache and only 9.9% of read requests are served

by back-end storage.

Since caches in the entire system absorb most of

read requests, back-end storage tends to be write-

dominated. Therefore, write-optimized data structures

like the Log-Structured Merge-tree (LSM-tree)[4] and

their variants have attracted much attention and have

widely been used in KV storage systems, including dis-

tributed KV stores, such as BigTable[5], Cassandra[6],
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HBase[7], HyperDex[8], Pnuts[9], and local KV stores

like LevelDB 2○, RocksDB 3○.

The LSM-tree organizes data into multiple, succes-

sively larger components (or levels) named C0, C1, ...,

Ck. The first component C0 is memory-resident and the

others are disk-resident. When one component is filled

up, its KV items are pushed to the adjacent larger com-

ponent via a procedure called compaction. The com-

paction procedure is extremely I/O-intensive. Briefly, if

M = (Size (Ci+1 )
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Fig.1. (a) Basic LSM-tree data structure and (b) SSTable layout.

SSTables, whose key ranges do not overlap with each

other except those in C1. Fig.1(b) presents the layout

of one SSTable. Each SSTable contains multiple data

blocks and one index block. The data block contains

the sorted KV items, while the index block contains

both indexes and bloom filters of each data block.

2.2 Compaction Procedure and Write

Amplification in LSM-Tree

LSM-tree defers and batches index updates, cas-

cading the changes from a memory-based component

through one or more disk components. For one KV

item, it is firstly inserted into the in-memory buffer

component C0, then dumped into C1 and pushed into

C2, C3, ..., Ck in sequence during the compaction pro-

cedure. KV items of both Ci and Ci+1 within the same

key range are firstly read into memory, then merge-

sorted, and finally written back to Ci+1 in the fix-sized

SSTables during the compaction procedure. For exam-

ple, as shown in Fig.1(a), KV items of T22 in C2 have

the same key range with those of T32 and T33 in C3, and

they are involved in one compaction procedure. The

compacted KV items are sequentially stored into T34,

T35 and T36, which are located in C3.

Unfortunately, the compaction procedure is ex-

tremely I/O-intensive. Assume that each SSTable is

sized to V , and in LSM-tree, Ci+1 has around M times

the total size of Ci, i.e., M = Size (Ci+1 )
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phase with 2 000 000 operations, including update and

get operations.
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Fig.2. (a) Comparison between input data volume and actual
disk write I/O and (b) write amplification of RocksDB.

From Fig.3 we can see that the proportion of write-

ahead log I/O is always less than 2% and the proportion

of get I/O is increasing but never exceeds 20% even

when the get proportion increases to 90%. The pro-

portion of compaction I/O is consistently larger than

80%. Thus we can conclude that serious write ampli-

fication greatly consumes most of the disk I/O band-

width, and leaves little for servicing the fronted appli-

cation requests.
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Fig.3. Comparison of compaction I/O, get I/O and log I/O.

2.3 Motivation

For some KV items in LSM-tree to reach Ck, it

would be involved in the compaction between C0 and C1

to reach C1 first, and then involved in the compaction

between C1 and C2 to reach C2, and so on. Finally, it

would be involved in the compaction between Ck−1 and

Ck to arrive at the destination component Ck, which

incurs repeated reads and writes for these KV items

during the compaction procedure, and results in super-

fluous I/O overheads.

Fig.4 shows two conventional compaction proce-

dures. SSTables T34, T35 and T36 are generated by

one compaction of T22, T32 and T33, and then SSTa-

bles T44, T45, T46, T47, T48 are generated by another

compaction of T34, T35, T36, T42 and T43. During the

compaction procedure, we assume that there is no re-

peated KV items between SSTables, which means that

the KV items in SSTables are just merge-sorted by the

compaction (in the real environment, there always ex-

ist repeated KV items, thereby the compaction will

delete redundant KV items and merge-sort the remain-

ing items), so that we can get two relationships between

compaction read and write I/O as (1) and (2):

W (T34 + T35 + T36) = R(T22 + T32 + T33), (1)

W (T44 + T45 + T46 + T47 + T48)

= R(T34 + T35 + T36 + T42 + T43), (2)

where W () and R() are two functions. W () means the

total size of write I/O during compaction procedure and

R() means the total size of read I/O during compaction

procedure. From these two equations, we can conclude

two observations as follows.

1) KV items in T34, T35 and T36 can be read from

T22, T32 and T33. Similarly, KV items in T44, T45, T46,

T47 and T48 can also be read from T34, T35, T36, T42

and T43.

2) There exist repeated reads and writes during

these two compaction procedures. KV items in T22,

T32 and T33 are read and written at least twice dur-

ing the two compaction procedures. This needs to be

stressed that the repeated reads and writes are also in

the real environment, which is shown in Fig.2(b).
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Motivated by the above two observations, we pro-

pose dCompaction, instead of conventional compaction

scheme.

3 Design of dCompaction

This section introduces the design of dCompaction

optimized for write-intensive performance. Firstly, the

main idea of dCompaction is described in more detail

in Subsection 3.1. Traditional dCompaction has a great

effect on the read performance of KV stores, which is

explained in Subsection 3.2. In order to overcome these

challenges, we introduce two parameters named vir-

tual compaction threshold (VCT) and virtual SSTable

merge threshold (VSMT) to support comparable read

performance while maintaining high write performance,

and they are illustrated in Subsection 3.3 and Subsec-

tion 3.4 respectively.

3.1 Main Idea

As shown in Fig.4, we call the compaction real com-

paction, i.e., the chosen SSTables are merged into new

and non-overlapped SSTables, which is displayed in

Fig.5(a), and all the SSTable sizes are identical no mat-

ter what level they are in or among. We define the

SSTables generated by real compaction as real SSTa-

bles, e.g., SSTables T34, T35 and T36. For each real

SSTable, there exists a corresponding SSTable meta-

data including the smallest key, the largest key, file

number, and file size. Here we define the stage of gen-

erating metadata as metadata generation. Therefore

there are two stages in real compaction named data

generation and metadata generation. Most of I/O over-

heads are caused by data generation, while metadata

generation has less I/O overheads.

In contrast to real compaction, virtual compaction

has less compaction I/O overheads since there is only

one stage, metadata generation. Virtual SSTable’s

metadata is composed of the smallest key, the largest

key, file number, file size and parentSSTables. The

parentSSTables store the relationship between the real

SSTable and the virtual SSTable. For example, the vir-

tual SSTables V T34, V T35 and V T36 are derived from

real SSTables T22, T32 and T33 in Fig.5(b); thus the

parentSSTables of V T34, V T35 and V T36 are the same,

i.e., the file number of T22, T32 and T33.
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Fig.5. (a) Real compaction and real SSTable’s metadata and (b) virtual compaction and virtual SSTable’s metadata.
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According to the observations in Subsection 2.3 and

the combination of real compaction and virtual com-

paction, we present dCompaction instead of conven-

tional compaction scheme. dCompaction postpones

real compaction through virtual compaction to avoid

repeated KV item reads and writes.

Fig.6 shows the basic process of dCompaction. T22,

T32 and T33 are converted to V T34, V T35 and V T36

via virtual compaction and only metadata are recorded

in V T34, V T35 and V T36; thus it skips compaction

I/O overheads resulted from real compaction, such as

compaction shown in Fig.4. In the following real com-

paction, it merges T42, T43 with other SSTables which

V T34, V T35 and V T36 are derived from, i.e., T22, T32

and T33, into T44, T45, T46, T47 and T48. Compared

with conventional compaction scheme, T22, T32 and T33

are read and written only once in dCompaction; hence

the repeated I/O overheads can be reduced, and write

amplification can be greatly reduced.
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Fig.6. Delayed compaction procedure.

Also, we can use a simple mathematical model to

compute the I/O bandwidth saved by dCompaction

which is described in Subsection 2.2. For example, AF

is set to 10, which means when an SSTable is merged

into the next level, 10 SSTables in next level (in the

worst case) whose entire key range matches the key

range of the SSTable will be read into memory. If an

SSTable T21 is merged into the next level (level 3), 10

SSTables, i.e., T31, T32, ..., T39 and T310 will be read

and merged into T311, T312, ..., and T321. When T311

is merged into the next level (level 4), T41, T42, ..., and

T410 will be read.

Using the conventional compaction scheme, after

T21 is merged into level 4, 132 (=(1+10)+(11+110))

SSTables are read and written. Using the proposed

dCompaction, after T21 is merged into level 4, 121

(=1+10+110) SSTables are read and written, since

T311, T312, ..., and T321 become V T311, V T312, ...,

and V T321 which are not read and written. In gen-

eral, (132−121)×2/(132×2) = 8.3% I/O bandwidth is

saved by dCompaction from the above mathematical

model.

Above all, dCompaction uses virtual compaction to

reduce the compaction I/O overheads, so that the write

performance can be improved. However, everything has

both sides. With the advantages of virtual compaction

on write performance, it also has an even greater in-

fluence on read performance, and the read process of

virtual SSTable is discussed next.

3.2 Read Process

When a read operation falls in one real SSTable, it

will search the target KV item in it which is shown in

Fig.7(a). When a read operation falls in one virtual

SSTable, since there is no data in the virtual SSTable,

it will also search the target KV item in real SSTables

which the virtual SSTable is derived from. For exam-

ple, in Fig.7(b), we can see when one read operation

falls in V T34, firstly, it will determine whether the key

is in the key range of V T34. If so, it will read its meta-

data (parentSSTables) to get the real SSTables which

V T34 is derived from, i.e., T22, T32 and T33, and then

it will search the target KV item in these real SSTables

in order.

Through the analysis of the read process of virtual

SSTable, we can observe that the read path is increased

by searching target KV item in many real SSTables;

thus the number of real SSTables involved in the vir-

tual SSTable is significantly important. In other words,

more frequent virtual compaction means higher write

performance but lower read performance. On the con-

trary, more frequent real compaction means lower write

performance but higher read performance. In conclu-

sion, the condition of triggering real compaction or vir-

tual compaction is crucial to write and read perfor-

mance, and more details about them are described as

follows.

3.3 Trigger Condition: VCT

As mentioned above, the frequency of triggering real

compaction or virtual compaction makes great influ-

ence on write and read performance. On the one hand,

write performance can be speeded up by virtual com-

paction because of the reduction of compaction I/O

overheads; on the other hand, through real compaction,

the problem of the read latency of the virtual SSTable

can be eased, since the read path is reduced. In or-

der to take advantages of real compaction and virtual

compaction, we introduce one parameter called VCT

into dCompaction to trigger real compaction or virtual

compaction.

VCT defines a threshold (the number of real SSTa-

bles during compaction) to trigger either virtual com-
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paction or real compaction. Firstly, we count the num-

ber of real SSTables, and then compare it with VCT to

determine either virtual compaction or real compaction.

The detailed algorithm is described in Algorithm 1. We

can see that triggering either real compaction or virtual

compaction depends on VCT, and it can make a large

influence on the system performance.

1. Triggering Real Compaction or Vir-

tual Compaction
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cal path of read process, i.e., many read operations will

meet the virtual SSTable to read its real SSTables, it

has a large impact on the read performance. Thus if

this virtual SSTable is merged into a real SSTable, the

problem can be solved.

Based on above analysis, we introduce another para-

meter called VSMT into the read process. VSMT

means the number of real SSTables which the virtual

SSTable is derived from. During the read process, if

read operation meets a virtual SSTable and the number

of its real SSTables is larger than VSMT, thus we trig-

ger the virtual SSTable merge, i.e., the virtual SSTable

V T34 will be replaced by the real SSTable T34 as shown

in Fig.8, and the following reads in this virtual SSTable

will fall in the real SSTable. Here, not only the single

virtual SSTable but also its adjacent virtual SSTable

should be also merged into the real SSTable. For ex-

ample, in Fig.8, when V T34 is merged into T34, all the

three real SSTables T22, T32 and T33 should be loaded

to memory which can be merged into three SSTables

T34, T35 and T36. Thus the virtual SSTables V T35 and

V T36 should be also merged into T35 and T36. Oth-

erwise, it is a waste of I/O bandwidth. The virtual

SSTable merge reduces the lookup I/O, and improves

the read performance. Triggering the virtual SSTable

merge process is described in Algorithm 2.

82. Triggering the Virtual SSTable Merge

Process
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1) File metadata (the representation of virtual

SSTable and real SSTable): we add one field, i.e., par-

entSSTables, into the original file metadata of RocksDB

to distinguish between a virtual SSTable and a real

SSTable, and we use this field to store the real SSTable’s

file number for the virtual SSTable, so that when the

length of this field of one SSTable is larger than 0,

this SSTable is a virtual SSTable; otherwise it is a real

SSTable.

2) Compaction (supporting virtual compaction): we

modify the original compaction procedure to support

virtual compaction, and the main role of virtual com-

paction is generating the virtual SSTable’s metadata.

3) Read procedure (virtual SSTable merge): we add

the virtual SSTable merge process into the original read

procedure to improve the subsequent read performance.

Experimental Setup. We conduct experiments on

one machine running Linux CentOS 6.5 final with

kernel 2.6.32. The machine includes a two-socket

Intelr Xeonr E5645 (6 cores with hyper-threading,

2.4 GHz, 12 MB L3 cache). The machine has 2 GB

of DRAM, and two 1 TB 7200RPM SATA III disks

(avg. seek/rotational time: 8.5 ms/4.2 ms, sustained

transfer rate: 150 MB/s). Moreover, it has one

480 GB SATA III Intel 520 solid state drive (avg.

read/write latency: 80 µs/85 µs, sequential read/write

rate: 550/520 MB/s). We drop all the caches before

running any benchmark.

For the configuration of RocksDB and dCom-

paction, we use the default parameter values for all

experiments. That is, the MemTable size is 4 MB, the

SSTable size is 2 MB and the data block size is 4 KB.

Workload Generation. We use YCSB to generate

workload traces, which are replayed in a light-weight

workload generator. YCSB generates synthetic work-

loads with varying degrees of read/write ratio, statisti-

cal distributions and value size. Here, the dataset used

is denoted as (O, W , R, V , S) where O is the number

of total operations, W is the ratio of write operations,

R is the ratio of read operations, V is the record size

and S is the total size of the dataset. We configure it

to generate different datasets that are described in Sub-

section 4.1 and Subsection 4.2, and make use of Zipfian

request distributions for experiments.

4.1 Overall Evaluation

Firstly, the datasets used are D1: (2.4×107, 1, 0,

256 B, 6 GB), D2: (2.4×107, 0.8, 0.2, 256 B, 5 GB),

D3: (2.4×107, 0.2, 0.8, 256 B, 2 GB), D4: (2.4×107,

0, 1, 256 B, 6 GB) for 256 B records. Here, VCT

and V SMT of dCompaction are 12 and 5 respectively.

Fig.10 shows the IOPS of RocksDB and dCompaction

under these four datasets based on SSD, and several

important observations stand out.
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1) For the write-100% workload (i.e., D1), compared

with RocksDB, write IOPS of dCompaction improves

by 89.47%. The reason is that virtual compaction in

dCompaction delays compaction to reduce the repeated

I/O overheads and write amplification during the com-

paction procedure. In order to see the effect of virtual

compaction, we evaluate the compaction data volume

during the runtime of this workload as shown in Fig.11.

From Fig.11, one can see that the I/O-savings on com-

paction read and compaction write by dCompaction

from RocksDB are 48.27% and 51.23% respectively.

2) For the read-100% workload (i.e., D4), we firstly

load 6 GB data into RocksDB and dCompaction sep-

arately and then process read operations. As shown

in Fig.10, the read operations have similar perfor-

mance on read IOPS in both systems: 2 730 ops/sec
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in RocksDB and 2 694 ops/sec in dCompaction (the

read IOPS of dCompaction is only 1.32% fewer than

that of RocksDB), and their read latency is also sim-

ilar, namely 366.3 µs and 371.21 µs respectively (the

read latency of dCompaction increases by only 1.34%,

compared with RocksDB). This is because through rea-

sonable VCT and virtual SSTable merger process, the

number of real SSTables involved in the virtual SSTable

is reduced during the read procedure, so that the read

performance of dCompaction can be matched with that

of RocksDB.
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3) For the write-80% workload (i.e., D2), due to

the read operations, the total IOPS’s improvement by

dCompaction from RocksDB decreases to 39.01%, com-

pared with D1. Fig.12 shows the read latency and

the write latency. As Fig.12 shows, compared with

RocksDB, the write latency of dCompaction decreases

by 45.28% due to the virtual compaction, while dCom-

paction and RocksDB have similar read performance,

namely 232.33 µs and 238.42 µs respectively (the read

latency of dCompaction increases by only 2.62%, com-

pared with RocksDB).
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4) For the write-20% workload (i.e., D3), dCom-

paction and RocksDB perform similarly, namely 10 555

ops/sec and 9 737 ops/sec, since the runtime for this

workload is mainly dominated by the read operations,

just like D4.

4.2 Sensitivity Study

To examine the impacts of data volume, record size,

VCT and VSMT, we conduct a series of sensitivity

studies through experiments about IOPS, latency of

RocksDB and dCompaction.

4.2.1 Data Volume

To examine the impact of data volume, we con-

duct experiments on different data volumes (4 GB,

5 GB, 6 GB, 7 GB, 8 GB) with 256 B record size of

write-100% workload and subsequent read-100% work-

load based on SSD. Fig.13 shows the write IOPS of

dCompaction and RocksDB. For the write-100% work-

load, as the data volume increases, the write IOPS of

dCompaction and RocksDB remains unchanged, and

the write IOPS of dCompaction under different data

volumes increases by 88.41%, 87.89%, 89.47%, 88.92%,

90.12% respectively compared with RocksDB, as a re-

sult of compaction I/O overheads decreases from virtual

compaction which is shown in Fig.14(a).
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Fig.13. Write IOPS of dCompaction and RocksDB under diffe-
rent data volumes.

In the subsequent read-100% workload from

Fig.14(b), one can see that as the data volume in-

creases, the read performance of dCompaction and

RocksDB slightly decreases due to the depth increase

of LSM-tree. Also we can find dCompaction has similar

read performance to RocksDB under different data vol-

umes, and the performance gaps between them are very

small, namely 2.11%, 1.79%, 1.32%, 2.72% and 2.29%

respectively. The reason is that through the virtual

SSTable merge, the average depth of read operations,
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i.e., the number of real SSTables involved in read pro-

cess, is reduced in dCompaction.
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Fig.14. (a) Percentage of compaction data volume reduction,
compared with RocksDB, based on SSD. (b) Read IOPS of
dCompaction and RocksDB under different data volumes on
SSD.

4.2.2 Record Size

To examine the impact of the record size, we

conduct experiments on different record sizes (128 B,

256 B, 384 B, 512 B, 640 B) with the same 6 GB data

volume of write-100% workload and subsequent read-

100% workload based on SSD.

Fig.15 exhibits the write and the read IOPS of both

dCompaction and RocksDB. For the write-100% work-

load, as the record size increases, the write IOPS of both

dCompaction and RocksDB decreases because within

the same data volume, the larger the record size, the

more the overheads of compaction. However, compared

with RocksDB, the write IOPS by dCompaction in-

creases by 92.41%, 89.47%, 86.93%, 83.11%, 79.04%

due to the virtual compaction. For the read-100%work-

load, as the record size increases, the read IOPS of both

dCompaction and RocksDB remains unchanged, and

the read performance gap between dCompaction and

RocksDB is similar.
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Fig.15. Write IOPS and read IOPS of dCompaction and
RocksDB under different record sizes on SSD.

4.2.3 VCT

To examine the impact of VCT, we conduct experi-

ments on different VCT s (4, 8, 12, 16, 20) with 256 B

record size, 6 GB data volume of write-100% workload

based on SSD. Fig.16 demonstrates the write latency

with varying the value of VCT of dCompaction. In

Fig.16, one can see that as VCT increases, the write

latency of dCompaction firstly decreases and then in-

creases. There are two reasons as follows.
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larger than some other VCT s due to the overheads of

real compaction.
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(particularly on LSM-tree).

Improvement on Write Performance. bLSM[1] uses

the replacement-selection sort algorithm in the com-

paction procedure of component C0 to increase the

length of sorted KV items, which decreases the fre-

quency of compactions for all the components. VT-

tree[10] looks for any block at a component whose key

range does not overlap with that of blocks at the other

component during the merge-sorting of the two com-

ponents’ KV items. In this way, it can avoid unnec-

essary disk I/O for sorted and non-overlap key range

to speed up compactions. However the effectiveness of

this method relies on the probability of having non-

overlapping blocks and also the stitching technique of

VT-tree may incur fragmentation. LSM-trie[13] intro-

duces linear growth pattern to minimize the compaction

cost for LSM-tree based KV systems; however LSM-tree

uses hash functions to organize its data and accordingly

does not support range search. bLSM and PE[11] parti-

tion the key range into multiple sub-key ranges and con-

fine compactions in hot data key ranges, which acceler-

ate the data flow. PCP[12] uses a pipelined compaction

procedure to fully utilize both CPUs and I/O devices to

speed up the compaction procedure. GTSSL[16] devel-

ops techniques to adapt to changing read-write ratios

and adapts to hybrid disk-flash systems.

Improvement on Read Performance. With respect

to read performance, LSM-tree requires each compo-

nent to be checked for a read. To improve performance,

datastores typically have four methods as follows:

1) caching frequently accessed data in memory;

2) protecting components with bloom filter[17] to

avoid disk I/O for the level which does not contain the

target KV item, e.g., RocksDB, Cassandra[6], bLSM[1];

3) using fractional cascading[18], where partial re-

sults from searching one component are used to

speed up searching following components, e.g., Cache-

Oblivious Lookahead Arrays (COLA)[19] and FD-

tree[20];

4) other optimizations: GTSSL[16] uses the recla-

mation and re-insert techniques to put KV items in

upper levels to decrease the count of levels that point

queries go through. The partitioned exponential file[11]

partitions the key range into multiple sub-key ranges,

and then point queries just search one smaller sub-key

range.

6 Conclusions

The LSM-tree incurs large I/O costs when data

compaction is performed, and the repeated KV item

reads and writes during compaction incur significant

write amplification and then result in poor overall

throughput. dCompaction replaces some compaction

operations, which generate large amounts of I/O, with

so-called virtual compaction. Since several virtual com-

pactions can be combined into one real compaction, the

total amount of I/O can be reduced. Hence dCom-

paction is able to significantly reduce repeated KV

item reads and writes and decrease the write ampli-

fication. Further, in order to minimize the virtual

SSTables’ impact on read performance, we proposed

two parameters named V CT and V SMT to control

the frequency of virtual compaction and limit the num-

ber of virtual SSTables respectively, and finally support

comparable read performance while maintaining high

writing performance. Extensive benchmark and real-

world workloads driven experimental results demon-

strated that compared with RocksDB, dCompaction

has about more than 40% write performance improve-

ment and matchable read performance when handling

write-intensive workloads (e.g., write-80% workload),

and also has comparable read performance when han-

dling read-intensive workload (e.g., read-100% work-

load).
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