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Abstract Data deduplication (dedupe for short) is a special data compression technique. It has been widely adopted

to save backup time as well as storage space, particularly in backup storage systems. Therefore, most dedupe research

has primarily focused on improving dedupe write performance. However, backup storage dedupe read performance is also

a crucial problem for storage recovery. This paper designs a new dedupe storage read cache for backup applications that

improves read performance by exploiting a special characteristic: the read sequence is the same as the write sequence.

Consequently, for better cache utilization, by looking ahead for future references within a moving window, it evicts victims

from the cache having the smallest future access. Moreover, to further improve read cache performance, it maintains a

small log buffer to judiciously cache future access data chunks. Extensive experiments with real-world backup workloads

demonstrate that the proposed read cache scheme improves read performance by up to 64.3%

Keywords deduplication, dedupe, read cache, backup

1 Introduction

Today’s digital data explosion has propelled data

deduplication (dedupe for short) into the spotlight.

Over 80% of companies are considering dedupe

technologies[1]. In addition, due to the home digital

data explosion, personal consumers have increasingly

adopted personal backup storage systems such as home

network attached storage (NAS) for reliable data sto-

rage and backup[2]. Most of these systems are equipped

with their own backup systems. It has been reported

that about 75%, or even as much as 80%, of digital data

is duplicated[3-4]. Hence, deduplication technology is of

great importance for both industry and in the home.

Data dedupe is a specialized technique to eliminate

duplicate data so that it retains only one unique data

copy on storage. It replaces redundant data with a

pointer to the unique data afterwards. Today, dedupe

technologies are widely deployed to save cost, particu-

larly in secondary storage systems for data backup or

archiving. Therefore, most dedupe research has prima-

rily focused on dedupe write performance improvement:

how well (or how efficiently) dedupe storage systems

can detect and eliminate duplicate data chunks. This

includes index optimization and caching, efficient data

chunking, compression, and data container design[5-11].

On the other hand, dedupe read performance has

not attracted considerable attention because read ope-

rations are rarely invoked during system backup or

archiving. However, when it comes to system reco-

very, it is a totally different story. Long term digi-

tal preservation (LTDP) communities also emphasize

read performance importance in dedupe storage[12].

Moreover, some primary storage systems have started

to provide dedupe technologies where the number of

read operations even exceeds the number of write

operations[13-14]. Although read performance is also

a crucial dedupe storage consideration, relatively little

effort has been devoted to this problem.

A typical dedupe read operation processes a data

chunk (generally, 4 KB∼8 KB) in secondary dedupe
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storage as follows: first, the dedupe storage system

identifies the data container ID which stores the cor-

responding data chunks to read. Then, it looks up the

container (generally, 2 or 4 MB) in the read cache. Once

hitting the cache, it can directly read the chunks from

the cache. Otherwise, it fetches one whole container

from the underlying storage, allowing it to read the

corresponding data chunks in the container. In general,

more duplicate data chunks (i.e., higher dedupe rate)

give rise to higher data fragmentation, which is a root

cause of dedupe read performance degradation. This

performance decrease stems from the fact that only par-

tial data chunks are accessed in a container and the re-

mainder (the majority) in the container is unavoidably

fetched into memory with no access.

To resolve this limitation, allowing duplicate data

(that is, selective duplication) is a possible solution

to improve the dedupe read performance[1,15-16]. This

turns random data accesses into sequential accesses, in-

creasing cache utilization due to higher data container

spatial localities. However, this inevitably hurts dedupe

write throughput (i.e., dedupe rate) due to more dupli-

cate data chunks.

This paper proposes a novel dedupe storage read

cache design for a backup application named a looka-

head read cache. This proposed design is a pure read

cache design with no need to sub-optimize the dedupe

rate. Hence, the dedupe system can achieve both a

complete dedupe and fast read performance. Moreover,

it can be efficiently deployed to existing dedupe systems

with minimum changes.

The key idea is to exploit future data chunk ac-

cess patterns. In general, for backup applications, read

sequences are identical to write sequences in dedupe

storage[16-17]. Inspired by this special characteristic,

the read cache design can exploit future read access pat-

terns during dedupe processes. Consequently, the pro-

posed scheme outperforms a widely adopted cache algo-

rithm in backup storage systems, the least recently used

(LRU) scheme. The proposed lookahead read cache

maintains a future reference count for each data con-

tainer. Unlike the LRU, it evicts a data container with

the smallest future reference count from the cache.

Furthermore, based on real backup dataset analysis

observations, employing a small log buffer that keeps

small portions of future reference data chunks further

improves the lookahead read cache design. The main

contributions of this paper are as follows.

• Future Access-Based Read Cache Design. It main-

tains access information for future read references dur-

ing dedupe (i.e., write) processes. Thus, the proposed

design evicts from the read cache a victim with a small-

est future reference count.

• Extended Cache Design with a Log Buffer. A

lookahead read cache assigns a portion of a read cache

space to a log buffer, which can effectively maintain fu-

ture access chunks on the basis of our hot data identi-

fication scheme adopting the counting bloom filter and

multiple hash functions.

• Extensive Dataset Workload Analysis. The pro-

posed design is fundamentally inspired by the workload

analysis of diverse real backup datasets.

The remainder of this paper is organized as follows.

Section 2 presents the background of the work. Sec-

tion 3 explains the design and operations of the pro-

posed cache scheme. Section 4 provides a variety of

experimental results and analyses. Section 5 discusses

related work addressing especially the dedupe read per-

formance problem. Finally, Section 6 concludes this

work.

2 Background

This section first describes data deduplication tech-

niques and then discusses a read performance problem

in the existing data deduplication systems.

2.1 Data Deduplication

Data deduplication can efficiently eliminate dupli-

cates from a large number of data streams and it

has already become a key capability of current com-

mercial backup storage systems[18]. Fig.1 shows a

typical dedupe process that mainly consists of chunk-

ing and dedupe logic. A typical dedupe process be-

gins with dividing a given data stream into smaller

chunks with variable/fixed lengths, and computes a

hash value of each chunk (digested chunk informa-

tion) with a cryptographic hash function (such as

SHA-1). Generally, dynamic chunking (variable-length

chunks) with fingerprinting[20] or its variants outper-

forms static chunking (fixed-length chunks) for data

backup applications[7], where an average chunk size

ranges from 4 KB to 8 KB[7-8,21]. However, a static

chunking technique works well for some applications

such as VM disk images[22]. A hash index table, also

known as a type of key-value store[23], is required to

effectively associate a large number of hash values with

their storage locations. Only if the hash value of a

chunk is not found in the hash index table (assuming

all hash values are kept in the table), the chunk (i.e.,
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Fig.1. Typical data deduplication process[19]. A and B are data streams. a and b are data chunks of A and B respectively. For
instance, data stream A is composed of a1 and a0.

unique chunk) is allowed to be written to the underlying

storage. Otherwise, the chunk (i.e., shared/duplicate

chunk) is ignored. The collision probability of a cryp-

tographic hash function is very low enough compared

with the soft error rate of the storage system[24]. The

unique chunks are not directly written to the underly-

ing storage because the chunk sizes are not large enough

to achieve high write performance. Instead, they are

organized into a fixed-sized container[8], where the con-

tainer size is significantly bigger than the average chunk

size. The unique chunks are initially buffered into the

in-memory container that is allocated for each data

stream. Once the in-memory container is full of chunks,

it is flushed to the storage. To read a chunk from sto-

rage, the entire corresponding container must be first

read and then the small chunk in the container can be

accessed. Directly reading a small chunk is not allowed.

Recent dedupe research has primarily focused on

maximizing the efficient duplication detection by using

better chunking[25-27], optimized hash indexing[7,23],

locality-preserving index caching[8], and various bloom

filters[8,28]. Moreover, good write performance has been

its primary goal by compressing unique chunks and per-

forming (fixed length) large writes (2 or 4 MB) through

containers[5,8] or similar structures[6].

2.2 Read Performance in Data Deduplication

Dedupe storage read performance (mainly through-

put), such as for backup systems, has not been spot-

lighted since it was widely accepted that read ope-

rations are executed less frequently than write ope-

rations in such systems. However, read performance

becomes extremely critical when restoring entire sys-

tems from crashes[8,19]. Higher read performance can

significantly save the recovery time, thereby providing

higher system availability. Thus, a system may require

guaranteed dedupe storage read performance in order

to meet a target system recovery time from a crash

(e.g., service-level agreement)[29]. In addition, since

the dedupe storage has limited storage capacity, it oc-

casionally needs to stage the deduped data in the un-

derlying storage to archival storage media such as a

virtual tape. This requires reconstructing the original

data streams because archival storage operations are

typically stream-based. In fact, this staging frequency

is remarkably higher than user-triggered data retrieval

frequency.

As duplicate data increases, dedupe storage read

data performance generally decreases because reading a

data stream requires retrieving both unique and shared

chunks, whereas write throughput increases because it

stores only unique chunks. Shared chunks are likely to

have been physically distributed over different data con-

tainers in the underlying storage. This is called chunk

fragmentation.

Fig.2 illustrates an example of this chunk fragmen-

tation. Assume that the chunks marked with 10, 11,

12, and 13 are unique chunks. On the contrary, the

chunks marked with 200 and 201, 300, and 400 are

shared chunks duplicated with the chunks stored in

containers 20, 30, and 7, respectively. It is also sim-

ply assumed that each container has four chunks. If

all eight incoming chunks are unique, the data stream

read request ideally requires retrieving only two con-

tainers from storage. However, in this example, it re-

quires accessing four different containers. Obviously,

this degrades read performance. In reality, the actual

read performance significantly drops because an even

smaller container portion is only accessed.

3 Lookahead Read Cache

This section first presents the extensive analysis of

real backup datasets. It then explores the proposed

lookahead read cache design by adopting both a count-

ing bloom filter and a sliding window. To improve
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Fig.2. Chunk fragmentation over different containers caused by data deduplication.

performance further, it is extended by employing a log

buffer and a hot data identification scheme.

3.1 Rationale and Assumptions

In general, as more incoming data stream duplicates

are eliminated, subsequent read performance stands

in marked contrast to the initial good write perfor-

mance due to the higher likelihood of shared data

fragmentation[1]. This is a fundamental challenge in the

tradeoff between dedupe storage read performance and

write performance. To address this read performance

problem, a novel read cache design leveraging future

access information is proposed. In dedupe storage for

backup or archive data, a read access sequence is highly

likely to be identical to its write sequence. Based on

this key observation, during each dedupe process, the

proposed scheme records write access metadata infor-

mation for future read access. This enables a lookahead

read cache to exploit future read references. It is as-

sumed that each data chunk has a variable size and a

data container containing many data chunks (generally,

200∼300 chunks) is a basic read unit.

Please note that dedupe storage systems apply this

proposed read cache design to each incoming data

stream. Moreover, enterprise dedupe storage produc-

tion systems can concurrently have tens to several hun-

dred of incoming dedupe data streams. Therefore, for

each stream to have its own cache, it is important to

keep the per-stream cache memory size in the range of

megabytes[30].

3.2 Dataset Analysis

An extensive analysis of six real backup datasets is

made. It is observed that considerable portions of data

are, in general, duplicate for each version of backup

datasets. For instance, as Table 1 presents, the backup

dataset 2 (i.e., ds-2) has all unique data in the first

backup version (i.e., Ver-1). However, in the second

backup version, a majority of the data are duplicated

(72%). This implies a typical dedupe read cache can

be poorly utilized because only a small number of data

chunks in a data container are accessed.

Table 1. Average Dedupe Gain Ratio (DGR) in

Successive Version of Each Backup Dataset
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Fig.3. Distributions of the number of accessed containers for six real backup datasets. X-axis represents the percentage of accessed
chunks in a container. (a) Container access distribution. (b) CDF (cumulative distribution function).
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Fig.4. Container access patterns of six datasets. (a) ds-1. (b) ds-2. (c) ds-3. (d) ds-4. (e) ds-5. (f) ds-6.

chunk sequence ID of successive versions of each backup

dataset. The Y -axis represents accessed-container IDs

storing the data chunks in the X-axis. The container

ID starts from 0. For example, if a dataset includes

many unique data chunks, the accessed container ID

increases linearly, like the first version (Ver-1) of the

dataset ds-1: there are no fluctuations within the Ver-1

section in Fig.4(a), whereas if a dataset contains many

duplicates, the chart fluctuates due to fragmented ac-

cesses of previous containers (Ver-2∼Ver-5 in Fig.4(a)).

Four datasets (ds-1∼ds-4) also show similar data ac-

cess patterns: most data chunks are unique in the initial

backup version (Ver-1) and duplicate chunks increase

for each successive backup dataset (Fig.4(a)∼Fig.4(d)).

In fact, this is a very typical characteristic of most

reverse-referencing backup datasets. That is, the

newest backup is made up of pointers that point back-

wards in time to older backups. Thus, many fluctua-

tions are observable in newer backups. On the other

hand, the other two datasets (ds-5 and ds-6) exhibit
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different access patterns: there are many duplicates

even in the initial version of backup datasets (Ver-

1). Thus, many vertical lines are observable, even in

Ver-1 as well as successive versions of backup datasets

(Fig.4(e) and Fig.4(f)). Although many duplicates

are observable, even in the oldest backup version of

these two datasets, more duplicates (i.e., fluctuations)

still exist in newer backups. This implies these are

also reverse-referencing backup datasets. Generally, a

reverse-referencing approach exhibits a lower read per-

formance in newer backup datasets due to higher data

chunk fragmentation as a consequence of more dedu-

plicated data chunks. This can be observed in Subsec-

tion 4.2.

3.3 Architectural Overview

Fig.5 illustrates an overview of the proposed backup

storage base read cache design. The proposed scheme

consists of three key components: 1) a future sliding

window, 2) a hot data identification scheme, and 3) a

read cache. The sliding window can be regarded as a

lookahead window to estimate future chunk read ac-

cesses. The data chunk in the sliding window’s tail

position is always considered as a current data chunk

to read. After reading the current chunk, the window

takes a slide toward the future direction by one chunk.

Based on this sliding window scheme, the hot or cold

decision is made. The hot data identification scheme

maintains a future reference counter for each data con-

tainer. When any data chunk comes into the head po-

sition in the window, its reference count of the corre-

sponding data container is incremented by 1 (note: a

data container is a basic unit of the chunk read). On

the contrary, if any data chunk is evicted from the tail

position in the window, the reference count is decreased

by 1. If a total reference count of a data container stor-

ing current access chunk is greater than a predefined

threshold value (e.g., 5%) within the window, the corre-

sponding container is classified as a hot container; oth-

erwise, a cold container. A more detailed architecture

of this hot data identification scheme is described in

Subsection 3.4. Lastly, the proposed read cache stores

the accessed containers and does not adopt the existing

cache algorithms such as LRU. Instead, when it is full

of data containers fetched from underlying storage, it

selects a container with the smallest reference count as

a cache eviction victim.

3.4 Hot Data Identification Scheme

Hot data identification plays an important role

in the read cache design. Since it is invoked

each time when a data chunk is accessed, it must

achieve low computational overhead and small memory

consumption[31]. To meet these requirements, both a 4-

bit single counting bloom filter and multiple hash func-

tions are adopted as Fig.6 shows. Please note the mul-

tiple bloom filter-based hot data identification scheme

proposed by Park and Du[31] employs multiple indepen-

dent bloom filters and hash functions to capture recency

as well as frequency.

21 22 31 23 24 41 42 25 26 32 51 27
...43

Moving Window

Current Data Chunk to Read

Hash Functions (Container ID (Chunk ID))

Hot Data Identification

HOT

Container 1
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Read Cache

…
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Fig.5. Base read cache design architecture. It is assumed that each data chunk with same color belongs to the same data container.
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The aforementioned container reference counters are

implemented by the counting bloom filter. This hot

data identification scheme works as follows: whenever

a data chunk comes in the sliding window to the head

position, the chunk ID is converted into its container

ID and then the container ID is fed to each hash func-

tion. Multiple hash functions are employed to reduce a

false identification rate in the bloom filter. Each hash

value corresponds to its bit position in the bloom filter.

Finally, each reference counter is increased by 1. Simi-

larly, the outgoing data chunk from the sliding window

decreases each counter by 1 accordingly.

To identify a current access chunk based on these

basic operations, its container ID is fed to multiple hash

functions. Then, the scheme checks its corresponding

reference counters in each bloom filter bit-position. Due

to potential hash collisions, the scheme always chooses

a smallest reference count for each count value. If it is

greater than a predefined threshold, the data container

is classified as hot; otherwise it is classified as cold.

3.5 Base Design

Initially, a small (8 MB = 4× 2 MB container) read

cache space is assigned. This is a common and reason-

able size in dedupe storage systems which run multi-

ple dedupe processes (usually hundreds of dedupe pro-

cesses) concurrently.

Overall working processes are described as follows:

whenever any data chunk is accessed for read, its con-

tainer ID is first identified. Next, the container is ready

to be stored in the cache. If the data container read

cache is full, a victim selection is required. The pro-

posed scheme selects a container with the smallest fu-

ture reference count as a victim. However, the refer-

ence counters of each data container in the cache may

change over time because the window continues moving

forward. Therefore, the reference counts need updat-

ing. That is, when the sliding window moves beyond

a chunk, the scheme decreases the reference counters

of the data container in the bloom filter by 1. If the

data container exists in the cache, it also decreases the

corresponding reference counter by 1. Similarly, when

a chunk comes into the sliding window, it increases the

reference counters in the bloom filter (and in the cache

if any) by 1. This update produces negligible over-

heads because not only are there only a few (basically,

four) containers in the cache, but their reference coun-

ters need updating only if the corresponding containers

reside in the cache.

Even though this algorithm is simple, it consider-

ably improves dedupe read performance and outper-

forms the widely adopted LRU cache algorithm. Un-

like the extended design, this base design utilizes the

hot data identification scheme mainly for its efficient

reference count management, not for hot data identifi-

cation.

3.6 Extended Design

This extended read cache design is inspired by

dataset workload analysis observations. As in Fig.7,

a portion of the read cache space is assigned to a log

buffer to more judiciously exploit future access infor-

mation. The key idea of this extended design is to

maintain a small buffer for logging future access chunks

before a container is evicted from the read cache in ac-

cordance with the hot data identification scheme. This

log buffer is managed by a circular queue. Before evic-

tion, the extended design attempts to classify the victim

container as either hot or cold by using the hot data

identification scheme. If a victim container is identi-

fied as cold (that is, only a small number of chunks

in the container will be accessed in the near future),

its remaining future access chunks within the window

are stored in the log buffer. It does not store already-

accessed data chunks. Since it employs 5% as a hot

threshold value, the maximum amount of data chunks

to be logged is at most 5% of the total data chunks (typ-

ically 10∼20 chunks) in the victim container. However,

in most cases, the amount of logging chunks will be less

than the threshold because the window moves forward

over time and only the remaining future access chunks

in the window are stored to the log buffer. On the other

hand, if a victim is identified as hot, the scheme sim-

ply discards the victim container without any logging
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because it can still achieve high container utilization

with this hot container in the near future access. This

policy is based on the fact that if it stores many remain-

ing future access chunks (in the hot container) into the

log buffer, they also lead to the unnecessary eviction of

many logged chunks in the buffer.
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Container 1

Reference:15

COLD

Container N

Reference:4

…

1 3

3

Log Buffer

…

Victim: a Container with a Smallest Future Reference Count  

HOT

Container 3

Reference:13
1

Read Cache

Only If the Victim Is COLD, 

Future Reference Chunks Are 

Logged in the Log Buffer

…

Fig.7. Architecture of our extended read cache design.

This extended read cache design may be compara-

ble to the existing ARC (adaptive replacement cache)

design[32] in the sense that evicted data is given a

second chance by not discarding the evicted data at

once. However, both schemes have significant diffe-

rences. Specifically, ARC maintains ghost caches for

both recency cache and frequency cache. Each ghost

cache tracks the history of recently evicted cache entries

and is used to adapt to recent resource usage change.

Please note that ARC ghost caches only contain meta-

data, not resource data. That is, if an entry is evicted

from either the recency cache or the frequency cache

into a ghost cache, its data is discarded. On the other

hand, our log buffer keeps evicted data (not the meta-

data) from a read cache and is not used to adjust a read

cache size. Moreover, unlike ARC, even if any data in

the log buffer hits, it is not promoted to a read cache.

Our read cache is not subdivided into two caches such

as recency cache and frequency cache. Finally, our log

buffer caching policy is also totally different: our log

buffer only stores parts of data evicted from the read

cache (i.e., only remains future access chunks in a cold

container). Not all data evicted from the read cache

are stored in the log buffer. Therefore, the proposed

log buffer design is significant different from the ARC

cache scheme.

4 Performance Evaluation

4.1 Experimental Setup

We implemented a dedupe storage simulator based

on the DiskSim simulator. DiskSim is widely adopted

for disk-based storage subsystem simulations because

it is very accurate and highly configurable[33]. Specifi-

cally, the disk drive module simulates modern disk

drives in extreme detail and has been carefully vali-

dated against several production disks[33].

The underlying storage includes 9 individual disks,

each providing 17 916 240 blocks (8.54 GB) of storage

capacity. It is configured as RAID0 to improve perfor-

mance and enough storage space to accommodate all

the chunks in the backup datasets. The stripe unit size

is set to 32 KB. The chunk indexing (hash index ta-

ble) is based on Google Sparsehash. For read and write

performance measurements, it ignores the elapsed time

to execute the typical dedupe or the proposed scheme

because it is much smaller than storage I/O time. For

the dedupe, it uses a fix-sized 2 MB container and each

container read (write) accesses 64 stripe units, where

each individual disk serves about 7∼8 stripe unit reads

(writes).

Six backup datasets, traced in real data backup en-

vironments, are employed 1○. Table 2 summarizes the

dataset characteristics. Each dataset consists of 2 or

5 concatenated, weekly full-backup data streams. The

ds-1, ds-2, and ds-3 datasets were obtained from all ex-

change server data encoded in different ways. The ds-4

contains system data for a revision control system. The

ds-5 includes the data from the /var directory in the

same machine. The ds-6 contains the data from home

directories in a workstation supporting several users.

For experimental purposes, all datasets except the last

(ds-6) were truncated to 20 GB in order for them to

have about 1 900k total chunks. Each dataset contains

chunked-data streams by using variable-length chunk-

ing with an average chunk size of 8 KB.

Table 2. Characteristics of the Six Real Backup Datasets
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Each data stream in the datasets consists of a se-

quence of chunk records each of which specifies the key

chunk information including 20-byte chunk ID (SHA-1

hash value), its LBA information, dataset and version

IDs (Ver.), and a chunk size (not compressed size). The

deduplication gain ratio (DGR) represents the ratio of

the stored data stream size to the original data stream

size. Most datasets except ds-3 contain many dupli-

cated chunks. The proposed design is compared with

the LRU approach which is a widely adopted caching

scheme in dedupe storage systems[16,34-35].

4.2 Experimental Results

Fig.8 shows the LRU and base lookahead design

read performance with various cache sizes. Note that

the cache size of 2, 4, and 8 means the number of 2 MB

units in a data container. Thus, the cache size of 2, 4,

and 8 corresponds to 4 MB, 8 MB, and 16 MB cache

respectively.

Both Figs.8(a) and 8(b) exhibit very typical read

performance for dedupe backup datasets. For each

backup version, its successive version is likely to contain

more duplicate data chunks (please refer to Figs.3(a)

and 3(b)), which leads to read performance degrada-

tion. Therefore, performance generally continues de-

grading with each backup version. As plotted, even

when only using a cache replacement algorithm, the

base lookahead design exhibits better read performance

than LRU for all cache sizes because it exploits fu-

ture access information. The proposed scheme improves

dedupe read performance by an average of 14.5% and

16.8% respectively. For the Ver-1 in both Fig.8(a) and

Fig.8(b), all of the schemes exhibit the same perfor-

mance because all the chunks are unique (99.9% in ds-1

and 100% in ds-2). Therefore, no cache algorithm can

help improve the performance. On the other hand, the

other four datasets (ds-3∼ds-6) show difference perfor-

mance in the first backup version (Ver-1) because they

have duplicate chunks, even in the Ver-1. You can refer

these to the dataset analysis in Fig.3 and Table 1.

Unlike the other five datasets, ds-4 shows a some-

what different performance pattern for each backup ver-

sion. Its performance fluctuates from version to version.

This is also closely related to the amount of duplicate

data chunks and its data container access pattern. As

shown in Fig.3(d), Ver-1, Ver-3 and Ver-5 do not have so

many shared chunks (i.e., vertical lines) as both Ver-2

and Ver-4. Consequently, Ver-1, Ver-3 and Ver-5 ex-

hibit higher read performance than the others. Now,

Fig.9∼Fig.12 depict the performance improvement with

the extended cache design with various configurations.

First of all, Fig.9 explores the impact of both a hot
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Fig.11. Impact of a window size (window). Here, the unit of a future window corresponds to the number of a data container. Thus,
it can look ahead the following number of chunks: the window unit × the number of data chunks in one container. (a) ds-1. (b) ds-2.
(c) ds-3. (d) ds-4. (e) ds-5. (f) ds-6.
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Fig.12. Impact of diverse cache and log buffer sizes. Here, a total space (cache plus log buffer) is fixed. C and L stand for the cache
size and the log buffer size respectively. (a) ds-1. (b) ds-2. (c) ds-3. (d) ds-4. (e) ds-5. (f) ds-6.
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threshold value (Thr) and the extended design’s perfor-

mance improvement. Hot data identification plays an

important role in making decisions about logging fu-

ture container data chunk accesses into the log buffer.

The extended scheme stores the remaining future ac-

cess chunks in the small buffer only if the container is

identified as cold. Here, the hot threshold value stands

for the percentage of accessed data chunks in a con-

tainer. It can be intuitively expected that the higher

a hot threshold, the better the read performance. This

is because the buffer will be able to store more future

access chunks. However, the proposed design with a

threshold higher than 3% or 5% does not lead to higher

performance gain. In addition, it is observed that the

extended design (with a log buffer) does not conside-

rably improve the performance in ds-1, ds-2, ds-3, and

ds-4 (2.3% improvement on average). However, in both

ds-5 and ds-6, it significantly improves the read perfor-

mance by an average of 63.1%. These results stem from

the fact that there are many duplicates even in Ver-1.

Thus, many containers can be classified as cold. Conse-

quently, a large number of future reference chunks can

be stored in the log buffer.

Fig.10 exhibits the impact of a log buffer size. It

is observed that it has a more impact on both ds-5

and ds-6 than ds-1∼ds-4 (47.8% vs 9.8% on average).

Fig.10 also supports the experimental results shown in

Fig.9. Both Fig.9 and Fig.10 show very similar per-

formance patterns, because the performance gains of

the extended design fundamentally originate from the

log buffer. Moreover, the extended design outperforms

LRU by an average of 64.3% in ds-5 and ds-6.

The sliding window size is another factor to be dis-

cussed since it implies how much a lookahead scheme

can look ahead for future references (Fig.11). Interest-

ingly, the impact of a bigger window is almost negligible

in ds-1∼ds-4 (less than 0.5%) and it even degrades the

performance in ds-5 and ds-6 (6.6% on average). This

is because farther future accesses in a big window can

contaminate a cache space, which can lead to low cache

utilization in the cache policies.

Lastly, Fig.12 explores the impacts of various cache

and log buffer sizes. It first fixes the total cache space

and then varies both cache sizes and log buffer sizes. As

in Fig.10, it is observed that a read cache size is a more

important factor in ds-1∼ds-4. Thus, it is suggested

that more space be assigned to a read cache (instead of

the log buffer) for those types of datasets. On the other

hand, a larger log buffer has a more impact on the read

performance in both ds-5 and ds-6. Because both ds-5

and ds-6 contain many duplicate chunks (even in Ver-

1), the big read cache does not have so much impact

as a log buffer. Cache utilization will not be relatively

high due to many shared chunks. Therefore, assigning

more space to the log buffer for these types of datasets

will help improve dedupe read performance.

5 Related Work

Zhu et al. in [8] put an emphasis on the impor-

tance of dedupe storage read performance, for data re-

covery in particular. They also addressed that read

performance substantially decreased during a dedupe

process. I/O deduplication[36] is a selective duplication

scheme to increase read/write performance by reduc-

ing disk head movement. iDedupe[1] is a primary inline

dedupe system taking the read performance issue into

consideration. It tries to exploit both spatial locality by

selectively de-duplicating primary data and temporal

locality by maintaining dedupe metadata completely in

memory, not on disk. Nam et al.[19] introduced an indi-

cator for the degraded read performance named chunk

fragmentation level (CFL) and observed a strong corre-

lation between the CFL value and the read performance

under backup datasets.

Nam et al.[15] proposed a novel backup deduplica-

tion storage system in order to assure required read

performance. It adopts a selective deduplication ap-

proach based on a read performance monitoring factor

(CFL). Lillibridge et al.[16] proposed three mechanisms

(a speed factor, container capping, and forward assem-

bly) to improve backup system restore speeds. This

work also employs a selective deduplication based on

their performance monitoring factor (i.e., a speed fac-

tor). HAR[34] uses historical backup system informa-

tion to identify and rewrite fragmented chunks so that

it can remove the merging operation in containers. In

addition, it tries to reduce garbage collection overhead.

Mao et al.[29] proposed the SAR (SSD-assisted

read) scheme to accelerate read performance for

deduplication-based storage systems. SAR stores

unique data chunks with a high reference count, small

size, and non-sequentiality into SSDs to utilize the

high random-read performance of SSDs. Li et al.[37]

proposed RevDedup to improve not only restore per-

formance, but also backup performance and backup

deletion performance. RevDedup first applies coarse-

grained (i.e., large size unit) inline deduplication, and

then applies fine-grained (small size units) out-of-line

deduplication to improve storage efficiency. Tan et
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al.[38] proposed De-Frag to improve deduplication per-

formance by reducing data chunk fragmentation (i.e.,

de-linearization). De-Frag also selectively duplicates

data chunks in a deduplication system by monitoring

the spatial locality of each chunk group and adding re-

dundant chunks. Fu et al. in [3] provided an efficient

backup system design guide via extensive studies on the

fundamental tradeoffs of existing modern backup sys-

tems. Unlike these studies, this paper focuses specifi-

cally on a dedupe storage system read cache design.

6 Conclusions

This paper addressed a data deduplication (dedupe)

read performance problem and proposed a novel dedupe

read cache design, named lookahead read cache, for

backup applications. The key idea is inspired by the

following special backup application workload charac-

teristic: read sequences are identical to write sequences.

Based on this consideration, the proposed design can

exploit future read access patterns by evicting a cache

victim with a smallest future reference count. More-

over, unlike the existing selective duplication approach,

it does not sacrifice write performance for read perfor-

mance improvements since a new read cache design in

dedupe storage systems does not affect a write buffer

design. The base lookahead read cache design was ext-

ended with a small log buffer and a hot data identifica-

tion scheme. It stores a small number of future access

chunks in the log buffer before the cold container is

evicted.

The experiments with real-world workloads demon-

strated that the lookahead read cache shows a better

performance than the existing LRU cache design.
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