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Abstract Software product line (SPL) is an approach used to develop a range of software products with a high degree

of similarity. In this approach, a feature model is usually used to keep track of similarities and differences. Over time, as

modifications are made to the SPL, inconsistencies with the feature model could arise. The first approach to dealing with

these inconsistencies is refactoring. Refactoring consists of small steps which, when accumulated, may lead to large-scale

changes in the SPL, resulting in features being added to or eliminated from the SPL. In this paper, we propose a framework

for refactoring SPLs, which helps keep SPLs consistent with the feature model. After some introductory remarks, we describe

a formal model for representing the feature model. We express various refactoring patterns applicable to the feature model

and the SPL formally, and then introduce an algorithm for finding them in the SPL. In the end, we use a real-world case

study of an SPL to illustrate the applicability of the framework introduced in the paper.
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1 Introduction

In today’s competitive world, mass production has

given way to mass customization. Mass customiza-

tion means “producing goods and services to meet in-

dividual customer’s needs with near mass production

efficiency”[1]. For mass customization, the needs of a

large number of customers must be considered. The

products should be analyzed in such a way that mass

production can be done. SPL (software product line) as

an approach for developing a domain of products with

a lot of similarities, is used in response to these growing

needs[2]. Activities in SPL start with domain analysis.

The result of domain analysis, which consists of a set of

similarities and differences among the products in the

domain, is displayed by means of a feature model[3].

As products are added to, or eliminated from the SPL,

the domain of the SPL changes.

Changes in the SPL and its features are made con-

stantly. These changes include adding a new feature

to a product, eliminating a feature from a product, or

customizing a feature which exists in core assets and

in a product. Not only software products, but also the

reference architecture (which represents the architec-

ture of all products in the SPL), the core assets of the

SPL, and the features in the feature model, as an il-

lustrator of all the SPL features, experience frequent

changes go through a process of evolving as features

are added to them. Because of the continual changes,

the reference architecture, the feature model and other

artifacts of the SPL move away from their original form,

and the level of quality attributes of the SPL such as

maintainability and performance lowers[4]. The lack of

appropriate change management in the SPL leads to

the creation of some inconsistencies among the feature

model, the reference architecture, and the core assets.

These inconsistencies make it difficult to maintain the

SPL and enhance it to support new features.

Refactoring is a process which increases the quality

(such as maintainability) of the reference architecture,

feature model, and core assets of the SPL, but keeps
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the functionalities of the SPL products[5-6] intact. A

customized feature in a product might be suitable to be

used in other products of the SPL. On the other hand,

a feature in the feature model might not be used in any

product (dead feature), or those changes in the SPL

might eliminate the dependency between two features.

The lack of attention to the changes in the SPL leads

to the inconsistency between the feature model and the

SPL. As an example, the presence of features that are

not used in any product causes the unnecessary enlarge-

ment of the domain, thereby increasing the complexity

of the SPL and increasing maintenance costs.

The process of refactoring on the artifacts at the

architecture level (such as the feature model) is usu-

ally done manually without the use of any tools and

frameworks[7]. Refactoring of the feature model of an

SPL with a small number of features and limited prod-

ucts can be done easily. As the number of products

and features in the SPL increases, refactoring becomes

difficult to be done manually. In this situation, the

human analyst has to analyze many features, taking a

large number of products into consideration. We study

a small sample of an SPL with four products and about

30 features in Section 4. We see that even analyzing an

SPL with such a (relatively) small number of features

is not simple.

The complexity of finding refactoring opportunities

and reviewing products and feature models based on ex-

isting patterns indicates the need for more automatic

methods that are usable in practice as well as in SPLs

with a large number of features and products. Ide-

ally, these automatic methods should be able to identify

latent refactoring opportunities, serving as decision-

making aids for managers.

In this research, some refactoring patterns in the

feature model are presented. Refactoring the feature

model causes some changes in other artifacts of the

SPL. This is because the changes to the feature model

often need to be synchronized through the different ar-

tifacts of an SPL. These changes include changes in the

reference architecture, changes in the feature mapping,

and changes in the artifacts linked to the features in

the feature models. Our framework helps in detecting

refactoring opportunities on the feature model. We also

suggest a way to detect change points in the reference

architecture, the feature mapping, and other SPL arti-

facts such as code. However, our framework performs

refactoring only on the feature model. Users should

use other frameworks and tools to propagate changes

through other artifacts such as architecture and code.

We use the upcoming products of the SPL inline

with current products of the SPL to find refactoring op-

portunities in the SPL. The upcoming products include

a product of a product line we perform some modifica-

tions on, a new version of a current product or a near

future product. The upcoming products usually reveal

the development trends in the SPL.

As the first motivating example of performing refac-

toring on the feature model and removing useless con-

straints in it, this scenario is considered in an SPL:

developers modified a core asset of the SPL, and as a

result of the modifications, the need for the inclusion of

some other features is obviated. Based on the feature

model, products need the required feature to work but

the developer team in the development phase has with-

drawn the required feature. How can the managers of

the feature model find these types of problems in the

feature model? Unless they have the configurations of

the current and upcoming products, they cannot find

the source of the problem or refactoring opportunities

in this situation. Our framework helps developers in

synchronizing the feature model with the actual core

assets in the SPL.

Upcoming product configurations are appropriate

indicators of the refactoring opportunities in the fea-

ture model. As another example of refactoring feature

models and moving a feature from products to the fea-

ture model, a candidate feature (a feature that does

not exist in the list of features of the feature model)

considered is present in the majority of the upcoming

products of the SPL but is not present in the feature

model. What is a good decision in this situation? Can

we add this feature to the feature model?

As the last example of refactoring feature models

and removing a feature from the feature model, a situ-

ation where a feature of the feature model has not been

used in any upcoming product of the SPL is considered.

It is a good candidate to be removed from the feature

model. As we mentioned before by removing a feature

from the feature model, the artifacts related to that

feature such as implemented classes, reference archi-

tecture, feature mapping, and related code should be

changed in such a way that the consistency of the SPL

remains intact.

The adoption strategy is one of the important prop-

erties of each SPL development approach. It indicates

how the software is moving from single-system to an

SPL. The adoption strategy can be proactive, reactive,

or extractive[8]. While in the proactive strategy, the

core assets are built before SPL products, in the reac-
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tive strategy, one or more SPL products are built be-

fore establishing the core assets. In the extractive ap-

proach, the common parts of the existing (legacy) soft-

ware are extracted and built into a single system. Our

framework is applicable on the SPLs which were devel-

oped using the reactive or extractive adoption strate-

gies. Although some refactoring patterns introduced in

this framework are also applicable in an SPL with a

proactive adoption strategy, some important patterns

of our framework are not applicable in the SPL using

this strategy.

The structure of the remainder of this article is as

follows. The requisite background is surveyed in Sec-

tion 2. The main idea of the paper is proposed in

Section 3. In this section, a framework for perform-

ing refactoring in the SPL based on the feature model

is proposed. Subsection 3.1 explains the idea of big

refactoring. Subsection 3.2 presents a formal descrip-

tion of the feature model. In Subsection 3.3, refactoring

patterns are defined with regard to the formal descrip-

tion of the feature model, and the set of actions for

each pattern is discussed. In Subsection 3.4 we explain

the rationale behind using the upcoming products for

refactoring SPLs. A set of algorithms to find the refac-

toring patterns in a feature model is proposed in Sub-

section 3.5. The practical efficiency of the algorithms

is demonstrated in Section 4 by showing their appli-

cation to a real-world project. Threats to validity of

the result of the proposed framework are assessed in

Section 5. We discuss the proposed framework in Sec-

tion 6. In Section 7 we survey the related literature.

The paper concludes in Section 8 with a summary and

a discussion of possible future work. The complexity

of the algorithms proposed in this framework is ana-

lyzed in Appendix A.1. We proposed an approach to

estimate SPL development cost in Appendix A.2. The

experimental evaluation of this framework is explored

in Appendix A.3.

2 Background

2.1 Software Product Line

Software product line is a method for developing a

set of software products sharing commonalities in a spe-

cific domain[9]. Product development is done through

the use of existing features in core assets. Specific needs

of stakeholders in a particular product are supported

through variation points and extensions[3]. To manage

the similarities and differences among the products in

a domain, a reference architecture along with a feature

model[10] is typically used. While reference architec-

ture has some variations in its structure that allows

modeling the differences among products of the SPL,

the feature model helps in specifying the constraints on

the placement of the feature in these variation points.

The architecture of the product is an instance of the

reference architecture where some choices are done on

its variant points[11].

SPL helps in reducing development cost and time to

market and software quality improvement[3]. Reusing

the core assets in a product leads to savings in the

amount of code written. With the continued use of

the assets, the assets gradually reach maturity and can

exhibit a higher quality attributes level as compared

with code written from scratch[9].

2.2 Refactoring

Changing over time is an inherent property of soft-

ware artifacts in the real world[12]. As the artifacts

change, their initial design and quality attributes level

downgrade, and consequently, software maintenance

becomes difficult[13]. Accordingly, a way is needed to

reduce the complexity of the maintenance and the de-

velopment of software artifacts. One of the common

methods of improving the quality of software artifacts

and reducing their complexity is refactoring[5].

According to the taxonomy of Opdyke, refactoring

is defined as “the process of changing a software system

in such a way that it does not alter the external behav-

ior of code, yet improves its internal structure[5]”. The

refactoring process is not limited to the source code

level. It can be considered at the higher levels of de-

velopment such as design and software architecture[5].

However, refactoring at higher levels can cause large

changes in the source code and may impose a large cost

on the project.

The refactoring process generally comprises the fol-

lowing steps[5]:

● identifying the location of refactoring;

● identifying the type of refactoring that can be

done;

● guaranteeing to maintain the external behavior of

code;

● surveying the impact of refactoring on quality at-

tributes;

● maintaining the compatibility between the refac-

tored artifact and other artifacts.

Refactoring projects with a long lifetime is impor-

tant. Refactoring SPLs, which is a developing method-

ology with a long lifetime, is of special importance.
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Refactoring a product at code level can be done by con-

ventional methods. Performing refactoring at higher

levels is, however, usually trickier. One of the problems

that might arise is that an artifact can be shared among

several products. The user has to make sure that any

modification on the software architecture is made only

after fully considering the derived products. Hence do-

ing refactoring at the levels higher than the code level

in the SPL can be a challenging process.

2.2.1 Software Product Line Refactoring

The term SPL refactoring in this researchmeans any

changes made to the SPL artifacts whereby the internal

structure of the SPL improves, while the functionality

and the capabilities of the SPL are not affected[6,14-16].

The refactoring process may affect any such software

artifacts as the architecture, the feature model, the de-

sign, and the source code of the SPL.

The changes on the SPL should be done in a way

that the applicability of implementing products of the

SPL is not affected by performing refactoring. These

changes in SPL include removing a dead feature or func-

tionality from the feature model and core assets[17],

changes in the variability points[4], and adding a new

feature or functionality to the feature model and core

assets[6]. Changes on the artifacts such as the feature

model should be done in a way that has no impact

on the validity of the existing product configuration

models[16].

Refactoring changes artifacts at lower levels of ab-

straction such as code in two ways.

● Changes in the feature model and core assets may

necessitate some changes to the code behind them (to

support new conditions).

● Removing or adding a feature to the feature model

may include or exclude some pieces of code, especially

when a feature is linked to some lines of code (LOC)

through feature mapping.

2.3 Feature Model

The feature model represents a set of features for all

products in an SPL. The similarities and differences of

the SPL are captured in the form of a feature model[10].

The feature models represent not only a set of features

but also how they are related to each other and can be

combined/selected to define products in an SPL. This

model was developed and used for the first time in the

FODA[18] method.

The feature model is usually represented using a

tree-like structure and usually displayed through a vi-

sual diagram called feature diagram (Fig.1). The fea-

ture diagram can display the mandatory, optional, al-

ternative and OR-groups. The root of the tree stands

for the context, and its children represent the features

of the SPL.

Besides the items which can be displayed in a tree

structure, some cross-tree constraints can be defined in

the feature model that cannot be shown in a visual di-

agram. Two major types of cross-tree constraints are

inclusion and exclusion. Inclusion means that with the

presence of a particular feature in a product, some (spe-

cific) other features must be included in this product as

well. Exclusion means that with the presence of a par-

ticular feature in a product, some other features must

not be included in this product.

Fig.2 shows the feature model of graph product line

(GPL). GPL is a standard problem to evaluate product-

line development methodologies, developed by Lopez-

herrejon and Batory[19]. Some examples of cross-tree

constraints in the GPL are as follows:

{Strongly Connected} INCLUDES {DFS, Di-

rected},

{Strongly Connected} EXCLUDES {UnDirected}.

2.4 Feature Model Mapping

For implementing a concrete product from the se-

lected features in the feature model, one needs feature

model mapping. Feature model mapping relates each
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Fig.1. Graphical notation of the feature model[18].
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GPL

SearchGraph Type

Directed UnDirected Weighted UnWeighted BFS DFS
Strongly

Connected
Cycle

Checking
Minimum

Spanning Tree
Single-Source

Shortest Path
Vertex

Numbering Coloring

Approximation Brute Force

{Strongly Connected} INCLUDES {DFS, Directed}

{Cycle Checking} INCLUDES {DFS}

{Single-Source Shortest Path} INCLUDES {Directed, Weighted}

{Strongly Connected} EXCLUDES {UnDirected}

{Cycle Checking} EXCLUDES {BFS}

{Single-Source Shortest Path} EXCLUDES {UnDirected, UnWeighted}

Algorithms

Fig.2. Feature model of graph product line.

feature in a feature model to some artifacts in the so-

lution space[14]. Feature model mapping can be either

explicit or implicit. In the case of implicit feature model

mapping, the relation between features and software ar-

tifacts may be specified in the artifacts, comments, etc.

Whereas in the case of explicit feature model mapping

we have a particular artifact (e.g., table) to map every

feature to some software artifacts. In this paper, we use

the explicit form of the feature model mapping. Fig.3

shows a sample of feature model mapping from a fea-

ture model to designed classes. However, the level of

granularity can vary from very fine to very coarse. Our

example is a 1:1 feature mapping. It is possible that

we have an m ∶ n feature mapping. The case of m ∶ n

feature mapping can be seen regularly in annotative

SPLs.

Alert AlertClass

Email Alert SMS Alert

Email SMS

Fig.3. Sample of 1:1 feature model mapping (from features to
classes).

2.5 Feature Model Analysis

The implementation of the new products in the

feature-oriented product line begins with a selection of

the feature from the feature model, and the inclusion

of the artifacts related to in this product. Thus it is

important to keep the constraint of the feature model

consistent and the feature aligned to the existing arti-

facts in the SPL.

Over time, changes are inevitably made on the fea-

ture model. Because of this, the evaluation of the con-

straints of the feature model is a must. The human

analyst can analyze models with a few features and

a limited number of cross-tree constraints. With the

enlargement of the model and the proliferation of the

relationships among the features, performing analysis

becomes complicated and cannot be done by a human

analyst easily. That is why we need faster and more ac-

curate methods for analyzing the feature model. One

of the suitable methods for the analysis of the feature

model is converting it to propositional formulas. In this

way, each of the relations in the feature model is con-

verted to a law in propositional formulas[10]. Table 1

shows the propositional logic equivalent of each feature

model relation type. The notation of C1, ...,Cn is taken

to denote the children of the representative feature P .

The variables in the resultant SPL formula are then set

to true or false based on the presence or absence of the

corresponding feature from the product, and the state-

ment is then evaluated. If the sentence evaluates to the

true value, the current configuration satisfies the fea-

ture model constraints. Otherwise, the configuration

violates at least one of the constraints.

Table 1. Propositional Formula[10]
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(n,m) ∈ χ means if n is present in a product, m cannot

be present in it.

● r ∶ N is the root of a tree, which means ∄n ∈

N × n → r.

● DE is acyclic∶ ∄ni,⋯, nj where ni → ⋯ → nj →

⋯→ ni.

● DE is a tree∶ there is a unique path from r to every

other feature.

● N ∩N ′ = ∅, N and N ′ are disjoint.

Definition 2 (Configuration). A configuration is

a subset of primitive features of the feature model.

m ∈ ℘P is a configuration.

Definition 3 (Valid Configuration). A configura-

tion m ∈ M in the feature model d ∈ FM is valid and

displayed as m ⊢ d , if the following conditions are met.

1) ∀γ ⊆m, ∄λ(γ) = Opk ↔ Opk(S1 ∈ γ,⋯, Sk ∈ γ) ≡

false, conforms to all feature placement restrictions.

2) (ni ∈ m ∧ (ni, nj) ∈ φ) ⇒ nj ∈ m, inclusion con-

straints are not violated.

3) (ni ∈ m ∧ (ni, nj) ∈ χ) ⇒ nj ∉ m,exclusion con-

straints are not violated.

Definition 4 (Product). Product is defined as fol-

lows:

Product: JmK =m ∩P ≠ ∅ ∧ JmK ∈ ℘N .

A configuration m is a product if it is a non-empty sub-

set of the primitive features. The product derived from

configuration m is shown as JmK.

In this paper, we use upcoming products of the SPL

as a source to find refactoring opportunities in the SPL.

Upcoming products consist of two types of the prod-

ucts.

● Future Products. This type of products is sched-

uled to be implemented in the near future using SPL

facilities. This type of products shows the strategy of

the SPL evolution.

● New Version of the Current Products. The re-

quirements of the products in the SPL are changed over

time. SPL as an approach with high speed in response

to the demands of the stakeholders should prepare it-

self for the new version of the current products. In this

regard the current products may be changed to support

new requirements of the stakeholders.

Definition 5 (Upcoming Product). We display the

candidate features and the upcoming products by adding

an apostrophe (′).

Upcoming Product∶ Jm′K =m′∩{P ∪N ′} ≠ ∅∧Jm′K ∈

℘{N ∪N ′}.

An upcoming product can be formed using the ex-

isting primitive and candidate features of the feature

model. While the configuration of the current product

should be valid, there is no constraint on the validity

of the upcoming product of the SPL. However, the up-

coming product should be validated against the feature

model when it wants to be a real product of the SPL.

Definition 6 (Product Line). A software product

line is defined as follows.

ProductLine∶ JdK = {JmK∪ Jm′K ∣m ⊢ d}∧ JdK ∈ ℘℘N .

The products resulting from d are shown as JdK. The

SPL d is a set of the models with regard to l ∈ FM , and

is shown as d ⊧ l.

An SPL in our definition consists of two types of

products, current and upcoming products. The current

products of a product line are the valid products of the

feature model.

3.3 Refactoring in SPL

In SPL refactoring, it is possible that an artifact re-

lated to each feature (via feature mapping) is changed

in such a way that it might violate some feature model

constraints. For example, consider the alert system in

an SPL which is an alternative of SMS, email, or phone

call. Each of these features is related to an artifact

such as SMS class, email class, and call class via fea-

ture mapping. These classes are derived from a mas-

ter class named alert class. Over the time, the alert

class changes so much that the derived classes from it

can be present in the same product. In other words,

the derived classes from it are no longer alternatives

of each other. As a result, one can find some prod-

ucts in the SPL that are not validated against the fea-

ture model of the SPL, but perform their functionalities

without any problems. For example, a product contain-

ing the SMS and email features simultaneously is not

validated based on the feature model with alternative

constraint between them, but performs its duties un-

interruptedly. In this case, the inconsistency between

the feature model and the product configuration results

from the desynchronization between features of the fea-

ture model and the actual features used in the SPL core

assets. In this situation, the feature model and its con-

straints should be repaired and synchronized with the

actual features of the SPL.

An evolution opportunity appears when one or more

upcoming products’ configurations are not valid, or

some product configurations violate one or more con-

straints on the feature model. In these situations, the

feature model and each product configuration are ex-

amined. Model invalidation may occur for two reasons.

● Human Error (Product Configuration Invalidity).

The first cause for the invalidity of a product configura-
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tion is human error. In such cases, the configuration of

the actual product should be investigated. In case that

the product does not properly fit in with the configu-

ration, the inconsistencies between the actual product

and the product configuration should be rectified in re-

lation to the feature model and the constraints defined.

In case that the product configuration is invalid, the

feature model will remain intact. Batory et al. men-

tioned these types of problem in the SPL and surveyed

the solutions to ratify them in [22].

● SPL Evolution. Here the human error does not

cause the invalidity of a product configuration. For in-

stance, in the SPL feature model, two features should

be used simultaneously in a product to ensure desir-

able operation, but in the product under study, one of

the features alone suffices to ensure proper operation.

In this scenario, the invalidity of the product config-

uration stems from the inconsistencies in the feature

model. In the above example, the inconsistency can be

attributed to one of the features growing independent of

the others during the development process. Detecting

problem points in these situations becomes increasingly

infeasible as the model grows bigger. The alert class we

introduced at the beginning of Section 3 is another ex-

ample of the inconsistencies in the feature model that

the SPL evolution can cause. The evolution in the alert

class breaks the alternative constraint in the feature

model.

SPL is examined in regular time periods to de-

tect and correct any errors related to the invalidity of

the product configuration related to the feature model.

Two causes are behind most violations of validity in the

feature model: human error (invalidation of the product

configurations) and the SPL evolution (inconsistency of

the feature model). In case of human error, one inves-

tigates the wrong places in the product configurations

and attempts to fix them.

It gets challenging when a suspected product per-

forms its duties correctly. In this case, the models which

are used to demonstrate the architecture and features

of the SPL should be evaluated. In fact, it is possi-

ble that for some reasons, the changes in the products

might not be mirrored in the feature model, which is

supposed to reflect all product configurations. Refac-

toring methods introduced in this subsection provide

ideas for finding the problems in the feature model and

fixing them systematically. In the following we will de-

fine different refactoring patterns in the SPL by using

the feature model.

3.3.1 Absence of a Candidate Feature in the Feature
Model

It is possible that a feature which is present in the

upcoming products m′p1
∼m′pk

is not considered as a

feature of the feature model. In other words, a fea-

ture might be developed in a series of products, but be

absent from the feature model. In this situation, the

feature is a proper candidate to be added to the SPL

artifacts such as the feature model, the reference ar-

chitecture, and the core assets. By adding the feature

to the core assets, the overall functionality of the SPL

(the reference architecture, the feature model, and the

SPL products) does not change. In this situation, some

features from the SPL products are moved to the core

assets, and no new functionality is added to the SPL.

The condition of this refactoring opportunity is as

follows:

∃f ∉ N ∧ f ∈ N ′ ⋅ f ∈m′p1
∩m′p2

∩⋯∩m′pk
.

Possible Refactorings in the SPL:

1) Adding a feature to the feature model, reference

architecture, and core assets.

Transferring the features to the feature model,

the reference architecture, and core assets should go

through if the benefits of doing so (or the cost of not do-

ing the transfer) outweigh its costs; otherwise it should

not be done. For estimating the cost of adding a fea-

ture to the core assets and the feature model, as well as

determining the cost of developing the SPL, methods

such as COPLIMO[23] can be used. In this paper, we

discuss the usage of the COPLIMO[23] approach in Ap-

pendix A.2. However, users can use other methods for

estimating the benefits of adding or removing a feature

from the feature model.

When a feature is used in some current and upcom-

ing products of the SPL, the corresponding feature type

in the feature model will be optional. Fig.4 shows an

example of adding a feature to a feature model. FD

means feature diagram; C1 and C2 mean component 1

and component 2 respectively; F1, F2, F3 mean feature

1, feature 2, feature 3 respectively; P′1, P′2, P′3 mean

upcoming product 1, upcoming product 2, upcoming

product 3 respectively. Adding a feature to a feature

model is described formally as follows:

N = N ∪ f ,

N ′ =N ′/f ,

DE =DE ∪ (r, f),

λ = λ ∪ (f,{optional}),

P = P ∪ f .
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P' 1P1 P

All Configurations

FD

F1 F2

FD

F1

F1F1F1

F2

F2

Fig.6. Converting optional feature to mandatory feature.

3.3.4 Absence of a Member of an Alternative/OR
Feature Group in All Products

It is possible that a member of an alternative/OR

feature group is not used in any of the current and up-

coming products of the SPL:

∃ (L,{alternative/or}) ∈ λ ∧ f ∈ L ⋅ f ∈ P ∧ f ∉

mp1
∪⋯∪mpn

∪mp′
1
∪⋯∪mp′

n′
.

Possible Refactorings in the SPL: removing a fea-

ture from an alternative/OR-group.

When an alternative/OR feature does not appear

in all products of the SPL, it can be removed from the

alternative/OR-group and become an independent op-

tional feature. Fig.7 shows an example of converting

an alternative feature to an optional one. Removing a

feature from an alternative/OR-group is as follows:

λ = [λ/(L,{alternative/or})]∪

(L/f,{alternative/or})∪ {(f,{optional})}.

P' 1P1 P

FD FD

F1 F1F2 F2

F2 F2

F3 F3

F3

All Configurations

Fig.7. Converting type of a member of an alternative group to
optional one.

By performing this refactoring, the reference ar-

chitecture and the feature mapping artifacts do not

change. Based on the alternative group implementa-

tion mechanism, we may need to adjust the code to

accommodate this refactoring. For example, when an

alternative group is implemented using a switch and

#ifdef annotation inside, we need to extract the case

of optional feature and write another #ifdef for imple-

menting the optional feature condition in the code.

3.3.5 Violation of Alternative Group Rule

Two features of an alternative feature group might

appear in one or more upcoming products at the same

time:

∃ (L,{alternative}) ∈ λ × ∃nj ∈ L ∧ nk ∈ L ∧m
′
pi
⋅

[nj ∪ nk] ⊂ P ∧ (nj ∈m
′
pi
∧ nk ∈m

′
pi
) ∧ (nj ≠ nk).

Possible Refactorings in the SPL: transforming an

alternative member feature to optional one.

In this case, some features can be removed from the

alternative group. To do this, the causal relationships

among the features need to be determined. Dependency

analysis has to be done in this situation[24]. If the pres-

ence of a feature of an alternative group forces the con-

figuration to include another feature of that group, it

can be thrown out from the alternative group. Fig.8

shows an example of this situation. Removing an ele-

ment of an alternative group is represented as follows

(assume that nj is the cause of violation of the alterna-

tive constraint in the group):

λ = [λ/(L,{alternative})]∪ (L/nj,{alternative})∪

{(nj,{optional})}.

P' 1 P' 2 P' 3

FD FD

F1 F2 F3 F1

F1 F2 F2 F3

F2 F3

Some of the Configurations

Fig.8. Transforming an alternative group member to an optional
one.

The reference architecture and the feature mapping

artifacts are not affected by performing this refactoring.

As described in the previous subsection, based on the

implementation mechanism we may need to adjust the

code to accommodate this refactoring.

3.3.6 Optional Feature Not Present in Any Product

An optional feature might not be used in any pro-

duct of the SPL:

∃ (L,{optional}) ∈ λ ∧L ⊂ P ⋅L ⊈

mp1
∪⋯∪mpn

∪mp′
1
∪⋯∪mp′

n′
.

Possible Refactorings in the SPL: removing the fea-

ture from the feature model, the reference architecture,

the feature mapping, and the core assets.

When an optional feature is not used in all prod-

ucts of an SPL, the presence of this feature in the fea-

ture model adds complexity to the feature model and

increases the cost of maintenance of the SPL. In this

case, one can remove this unused feature from the SPL

safely. Fig.9 shows an example of this refactoring. In

removing a feature from a feature model, one should
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P' 1P1 P' 2

FD

F1

C1

C2

C2

F2

F2 F2

F3

FD

F3F2

F3 F2 F3

All Configurations

Fig.9. Removing an unused optional feature.

carefully consider the feature mapping artifacts. The

artifacts that only relate (directly or indirectly) to the

removed feature have to be dropped from the SPL core

assets. The formal representation of removing an op-

tional feature from a feature model is as follows: (in

this definition ▷ means range restriction and ◁ means

domain restriction).

N = N/L,

λ = λ/(L,{optional}),

P = P /L,

DE =DE/[DE ▷L],

φ = φ/[φ▷L ∪ φ◁L],

χ = χ/[χ▷L ∪ χ◁L].

To perform this refactoring, one should carefully in-

vestigate the SPL reference architecture. The feature

mapping at the architecture level can be used in this

regard. If some parts of the reference architecture are

useless in the SPL (only related to the removed fea-

ture), they can be marked for further investigation and

duly removed from it.

Other artifacts related to the removed feature such

as classes and code also should be investigated. If the

relations between the feature and these artifacts are

1 ∶ 1, the artifacts can be removed safely. In the case

of an m ∶ 1 or m ∶ n relation between feature(s) and

core asset artifacts, some investigations should be done.

Finding dead parts in code can help in this regard. This

work can be done by using the partial dead code re-

moval approach described in several books and papers

such as the book written by Knoop et al.[25]

In the end, after removing the feature from the fea-

ture model, the links between the deleted features and

other artifacts should be removed from feature mapping

artifacts.

3.3.7 Transforming the OR Feature Group to the
Alternative Feature Group

If among the features of an OR-group, just one fea-

ture appears on each product, the type of these features

can be changed to alternative one:

∃(L,{or}) ∈ λ ∧ n1 ∈ L ∧⋯∧ nk ∈ L⋯∄j<l ∧ j ∈

{1⋯k}∧ l ∈ {1⋯k}∧mpi
⋅ (nj ∈mpi

∧ nl ∈

mpi
) ∧ ∀mpi

⋅ ∃q ∈ {1⋯k} ⋅ nq ∈mpi
.

Possible Refactorings in the SPL: transforming type

of the OR feature group to the alternative one.

By performing this refactoring, the type of the OR-

group is transformed to alternative one (Fig.10). This

can be described formally as follows:

λ = [λ/{(L,{or})}] ∪ {(L,{alternative})}.

The reference architecture and the feature mapping

artifacts are not changed by performing this refactor-

ing. Based on the implementation mechanism of the

OR-group, we may need to change the code to accom-

modate changes.

P' 1P2P1

FD FD

F3

F3

F2

F2

F1

F1

F3F2F1

All Configurations

Fig.10. Example of converting type of OR-group to alternative.

3.3.8 Adding Optional Node to Alternative Group

Sometimes, an optional feature can be joined to its

neighbor alternative group (the alternative group and

the optional node share the same parent feature). The

condition of this refactoring is as follows:

∃ (l1,{alternative}) ∈ λ ∧ (l2,{optional}) ∈ λ ∧ f1 ∈

l1 ∧ f2 ∈ l2 ∧ h→ f1 ∧ h→ f2 ∧ (∀f ∈ l1∃mpi
(f ∉

mpi
∧ f2 ∈mpi

)) ∧ (∃f ∈ l1∃mpi
(f ∈mpi

∧ f2 ∉mpi
)).

Possible Refactorings in the SPL: adding the op-

tional feature to the alternative group.

The optional feature can be added to the neighbor

alternative group (Fig.11). In the following, we describe

this refactoring:
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λ = [λ/{(l1,{alternative}), (l2,{optional})}]∪

{(l1 ∪ l2,{alternative})}.

Performing this refactoring has no impact on the

feature mapping. In adding an optional feature to an al-

ternative group, the reference architecture may change.

If the component of the optional feature differs from the

components of the alternative group feature, we need

to transform the functionality of the optional feature

into the component of the alternative group. To per-

form this refactoring, we may need to adjust the code

to include a new optional feature in the implementation

of the alternative group in the code.

P' 1 P' 2 P' 3

FD FD

F3

F3

F2

F2

F1

F1

F3F2F1

All Configurations

Fig.11. Adding optional feature to an alternative feature group.

3.3.9 Violation of the Inclusion Constraint

This refactoring is applicable if some inclusion con-

straints are violated in some SPL upcoming products.

The constraint violation circumstance is as follows:

∃ (L,H) ∈ φ ∧m′pk
⋅L ∈m′pk

∧H ∉m′pk
.

Possible Refactorings in the SPL: removing the con-

straint from the feature model inclusion constraints.

Inclusion constraints are generally imposed because

one component depends on the services of another. If

component A can do its required services without need-

ing those of component B, any rule stating the depen-

dency of A on B should be removed. The break-up

of the dependence of a component on another may be

caused by the modifications done on the SPL compo-

nents or human errors. A sample of removing an inclu-

sion constraint from a feature model is shown in Fig.12.

Removing an inclusion constraint from a feature model

is represented as follows:

φ = φ/(L,H).

After removing an inclusion constraint from the fea-

ture model, there is no need to make changes to the

reference architecture, the core assets, and the feature

mapping artifacts to keep the consistency among the

artifacts in the SPL.

P' 1

FD FD

F3

F3

F2

F2

F1

F1F1

F3F2F1
P' 2 P' 3

Some of the Configurations

Fig.12. Removing inclusion constraint example.

3.3.10 Violation of the Exclusion Constraint

If an exclusion constraint is violated in some SPL

upcoming products, this refactoring can be applied.

The condition of the exclusion constraint violation is

as follows:

∃ (L,H) ∈ χ ∧m′pk
⋅L ∈m′pk

∧H ∈m′pk
.

Possible Refactorings in the SPL: removing the con-

straint from the feature model exclusion constraints.

Exclusion restriction is imposed due to any specific

inconsistency between two components. If the two mu-

tually exclusive components can appear in a product of

SPL simultaneously, the corresponding exclusion rule

must be removed. Fig.13 shows an example of remov-

ing an exclusion constraint from a feature model. Re-

moving an exclusion constraint from a feature model is

represented formally as follows:

χ = χ/(L,H).

Removing an exclusion constraint from a feature

model has no impact on the reference architecture, the

core assets, and the feature mapping artifacts.

P' 1

FD FD

F3F2

F2

F1

F3F2F1F1

P' 2 P' 3
F3F2F1

Some of the Configurations

Fig.13. Removing exclusion constraint example.

3.4 Rationale Behind Using Upcoming

Products for Refactoring

Software product line is a development approach

with a long life cycle. This approach is used to develop

a spectrum of similar products in a specific domain.

Based on this goal, a reference architecture and a set of

core assets are developed in the SPL. After adding new

requirements by the stakeholders and the environment,

SPL can take two ways:

1) perform domain analysis again and add support

for the new requirements to the SPL (clean approach);
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2) add support for the new requirements to the

products which need them and postpone changing the

SPL to the near future (dirty approach).

While the best way to manage SPL is to perform

domain analysis again and add the requirements to the

SPL, the second approach may nevertheless be consi-

dered as a quicker alternative in development teams (if

you are interested, you can take look at the technical

debt metaphor[26]). This is mainly done because of the

time pressure and cost constraints in many situations.

To save SPL from being a method of developing several

disparate products, the team should consider synchro-

nizing the product with the SPL architecture and core

assets from time to time.

According to new research[27], cloning is a mech-

anism which is widely used in the industry to form a

product line. Cloning decreases the cost of the develop-

ment and increases the flexibility and the independence

of SPL. It is known as an appropriate mechanism[27]

to form an SPL. Cloning has its overhead for organi-

zations: synchronizing products with SPL architecture

and core assets in this mechanism is difficult, propa-

gating changes between clones is difficult, and finally,

repetitive tasks are common in this mechanism.

One of the approaches to deal with the problem of

synchronizing products with SPL architecture is to use

a refactoring framework similar to the one developed

in this paper. Our approach facilitates the propagation

of changes between the products and the SPL architec-

ture by adding or removing features used or not used

in the SPL products. Consider the following scenario

for an SPL. Feature A requires feature B to perform its

functionality. Over time, feature A changes in a way

that it no longer depends on feature B for performing

its duties. After synchronizing the product with the

reference architecture of the SPL, the modified version

of feature A is imported to the core assets. In this situ-

ation, we have some inconsistencies in the SPL feature

model. The feature model forces the product to include

feature B when feature A is added to its configuration,

but feature A no longer uses the functionality offered

by feature B. Our refactoring patterns can find these

types of inconsistencies between the feature model and

the current and upcoming products’ configuration and

make suggestions to the developer team to modify the

feature model, the reference architecture, and the code

accordingly.

3.5 Reasoning on Feature Model

Different types of refactoring on the SPL feature

model were described in Subsection 3.3. These refac-

torings were defined by considering the current and

upcoming products’ configuration. Finding the refac-

toring opportunities in the feature model is difficult in

practice. In the remainder of this subsection, we pro-

pose several algorithms for reasoning about refactoring

in the feature model.

There already exist several tools for supporting

analyses on the feature model (such as FAMA[28] and

SPLOT[29]). However, these tools do not support anal-

yses on the features like Candidate features which we

used in our refactoring catalogs. As Thum et al.[21]

suggested, an approach that uses propositional formu-

las can be used to do this type of analysis. In this sub-

section, we introduce our algorithms which use propo-

sitional formulas in order to find refactoring opportu-

nities in a feature model.

3.5.1 Reasoning Algorithms

The first algorithm proposed in this subsection is

the algorithm which makes propositional formula from

a start feature r in the feature model tree (Algorithm 1).

This algorithm uses the mechanism described in Sub-

section 2.5. In this algorithm, every feature model

(which starts from feature r) is converted to a propo-

sitional string (lines 12∼41). PA is a static array

that saves the propositional formula of a feature model

(line 46). For example, PA[′sample′][′root′] saves the

propositional formula for a tree starting from root in

sample feature model. This algorithm recurs on all

child features of r (line 43) until it reaches the leaf

of the feature model where the feature r equals null

(lines 3∼5). In order to decrease the complexity of the

algorithm, we save the propositional formulas we com-

puted previously and use them if we need them later in

lines 6∼8.

The next algorithm evaluates propositional strings

based on a given feature model and a product configura-

tion (Algorithm 2). The ParentsOf(FM,m) method

in line 3 returns the set of parents of the primitive fea-

tures in m. In this algorithm, all features that are

present in product configuration m and the parents of

these features receive the true value (line 12). The value

of the reminder of the features is set to false (line 14).

The BDD(P ) method (line 21) evaluates the input bi-

nary string using binary decision diagrams (BDD). The

input to the BDD method is a string in the form of true
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1. Evaluate Propositional Formula

1. Check Mandatory Propositional For-

mula

1. Check Optional Propositional For-

mula
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1. Check Alternative Propositional For-

mula

1. Check Inclusion

1. Check Exclusion

1. List of Feature Opportunity
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In case of Mandatory feature (in Algorithm 9,

lines 5∼12), the algorithm checks mandatory condition

on the child feature ff. If the mandatory condition is

violated, refactoring 3.3.2 is matched. If the manda-

tory condition is not violated, the reasoning algorithm

begins on the ff feature recursively. The behavior of

the algorithm for the Optional feature is similar (in Al-

gorithm 9, lines 13∼24).

In case of Alternative feature (in Algorithm 9,

lines 25∼42), the algorithm checks the optional condi-

tion on all members of the alternative group. If check-

ing some optional conditions results in a false value (on

a primitive feature), it means that the investigated fea-

ture is not present in any product. In this situation,

the refactoring of 3.3.4 is matched. If the alternative

condition is violated (e.g., two members of the alterna-

tive group are present in a product at the same time),

the refactoring of 3.3.5 is matched. Finally, if there is

a sibling which can be added to the alternative group,

the refactoring pattern 3.3.8 is matched.

In the case of the OR feature group (in Algorithm 9,

lines 43∼54), if a member is not present in any product,

it can be removed from the OR-group. In this situation,

the refactoring pattern 3.3.6 is matched. If the alter-

native condition is matched for an OR-group, it can be

converted to alternative group and refactoring of 3.3.7

is matched.

Algorithm 10 checks the integrity constraints of the

feature model. This algorithm is not recursive in na-

ture and cannot be integrated with Algorithm 9, and

as a result, it is proposed as a separate algorithm.

In this algorithm (Algorithm 10), the refactoring of

3.3.1 is matched (line 4) if a feature that does not exist

in the feature model is present in some product configu-

rations. If an inclusion rule is violated in some product

configurations, refactoring 3.3.9 is matched (line 8). Fi-

nally, if there is an exclusion constraint that is violated

in some product configurations, refactoring 3.3.10 is

matched (line 13).

4 Case Study

One of the common approaches for evaluating

software engineering methods is using them in real

projects[30-31]. In this section, our proposed framework

is investigated in a practical example. We investigate

the applicability of our framework in a real-world SPL.

1. Check Cross-Tree Constraints
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Fig.14. Medio SPL reference architecture version 1.

2) External Team. We formed a new external team

in the Medio SPL, provided each of them with the ar-

tifacts we have in every refactoring point mentioned in

Subsection 4.5, and asked them to suggest refactoring

on the Medio SPL. This team does not use our frame-

work to find and perform refactoring in the refactor-

ing points. This team can survey every artifact of the

Medio SPL including the feature model, current prod-

ucts’ configuration, and reference architecture, as well

as feature mapping and code. It is important to note

that the external team only looks for refactoring oppor-

tunities in the specified refactoring points of Medio and

does not maintain and develop the Medio SPL.

4.2 Medio Architecture

Fig.14 shows the general architecture of the Medio

SPL version 1. Medio has a three-layer architecture

consisting of user interface (UI), business layer, and

data layer. An events manager is responsible for con-

trolling the requests in the UI layer, while the controller

component is responsible for managing the demands of

the business layer. The business layer has a client-server

style architecture. The controller component interprets

the requests and sends them to the appropriate com-

ponent with respect to the workflow. Communication

with web-services and database resources is managed in

the data layer. Besides the three layers, a cross-cutting

layer is defined. This layer controls access and commu-

nication among the other three layers.

The feature mapping can map any feature in the

feature model to several types of artifacts in the SPL.

Fig.16 shows a mapping between the access control fea-

tures in the Medio SPL and the reference architecture.

Fig.17 indicates a mapping between features in the fea-

ture model and classes in the core assets of the SPL.

In the end, Fig.18 shows a mapping between Medio ac-

cess control feature and the code implementation of the

SPL.

Every feature in the Medio feature model relates to

some artifacts in the Medio core assets. The artifacts

are spanned among the architecture level, the design

level, and the code level. The relation between the ar-

tifacts in core assets and the features in the feature

model can be direct, like the relation of the simple fea-

ture and the simple access class in Fig.17; or it can be

indirect, like the relation of the simple feature and the

access class in the access control component in Fig.17.

Medio

Access
Control

Rule
Based Simple

Language

Persian English

Feedback

Feedback
Person

Doctor Admin Comment SMS
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Wire Credit
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Appoint

Simple
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Appoint
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Appoint
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None Register
to Book

Registration
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Registration
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Registration
Help

FAQ Wizard Forum

Register to
Browse
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Manual

Calendar Events

Auto

Stock
Management

Notification

Email

Feedback Type

Email

Call SMS
Used in Product A1

Used in Product B1

Used in Product C1

Email None

Call

Secretary

Notification

Fig.15. Medio feature model version 1. Admin: Administrator. Appoint: Appointment.
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Fig.15 displays the Medio feature model which is

investigated in this case study.

Access Control

Rule Based Simple

Access Control

Fig.16. Example of 1:1 feature mapping in Medio SPL (from
feature model to designed reference architecture).

Access Control

Rule Based Simple

Access Class

Simple Access Rule Based Access

Access Control

Fig.17. Another example of 1:1 feature mapping in Medio SPL
(from feature model to designed classes).

Access Control

Rule Based Simple

Fig.18. Example of m ∶ n feature mapping in Medio SPL (from
feature model to code).

4.3 Products in the Medio SPL

Currently, four products are under development in

the Medio SPL. We design each of them according to

the needs of customers in this area. Medio clients can

be placed into four categories.

1) General Practitioner (GP). The main use of

Medio for this type of customer is managing appoint-

ments.

2) Intranet Reserve System. The customers of this

product are the military and some clinics. They can

manage appointments, pay the fees and manage the re-

sources using this product. The doctors and the man-

agers of the clinic can use this product offline. The

other three products of the Medio SPL can be used

through the Internet and on the customer servers, but

this product can only be placed on the customer servers

and can be used locally.

3) Dentists. The dentists’ use of Medio is wider than

that of GPs. They use Medio for setting simple and pe-

riodic appointments as well as managing the resources

in the clinic.

4) Clinics. The most complete product of the Medio

SPL is the clinic management product, which helps the

user moderate a large number of activities done in a

clinic.

To simplify the following discussion, we designate

for every product in the Medio SPL an alphabet let-

ter. The two products A and B are derived from the

first version of the SPL. Product C is derived from the

second version of the SPL, and finally, product D is an

upcoming product scheduled for being developed in the

near future.

4.3.1 Product A: Product for GPs

This product is a generic product suitable for most

medical needs. Some of the features of the Medio SPL

such as SMS and online appointment booking are not

available for this product. Due to the assumption that

patients are served on a spontaneous basis by GPs, on-

line booking has not been implemented in this product.

The configuration of product A1 (the first version of

product A) is as follows.
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4.3.3 Product C: Product for Dentists

The main feature of this product is the doctor-

patient interaction through the web and online booking.

Some of the dentist’s special needs such as periodic ap-

pointments are provided in this product. Due to the lin-

guistic needs of patients, Persian and English languages

are included in this product. Product C provides man-

ual material management and purchase management.

The configuration of product C1 is as follows.
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Fig.19. Development timeline of the products in Medio SPL.

4.5.2 Refactoring Point 1

The changes in the upcoming products’ configura-

tion in this refactoring point are as follows.
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Deletion of the SimpleAccess Feature from the Alter-

native Group. The SimpleAccess feature is not used in

any products of the Medio SPL. Our algorithm suggests

converting the type of this feature from Alternative to

Optional. The Medio team accepted the suggestion and

converted the type of this feature. As a result of remov-

ing SimpleAccess from the alternative group, another

member of that group which is named RuleBasedAc-

cess becomes mandatory.

The feature model changes as follows.
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SPL V1 based on the changes in the products A1.1 and

B1.1.

The OnlineBooking feature is initially present in all

current products, without being present in the feature

model. The addition of the SMSBooking feature means

both OnlineBooking and SMSBooking were added to

the feature model, sharing a “Booking” feature as their

parent. The Chat, DropIPRangeAccess, DiseaseDiag-

nosis and DrugConflictDiagnosis features were added

to N ′ list in this refactoring point.

The configuration model of SPL upcoming products

is as follows.
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ing this feature to the feature model and the core assets.

The Medio team decided to include the DBBackup fea-

ture in the feature model and the core assets (based on

the business benefit of adding this feature to the core

assets). For this reason, the feature mapping model

should be modified to support the new feature and the

relation of this feature to the artifacts in the core assets.

Changes Have Been Done on the Medio SPL to Add

the DBBackup Feature to the Core Assets. Changes

take place at several levels of abstractions. By adding

DBBackup to the Medio SPL, the data layer of the ref-

erence architecture changes. A new component, named

Backup, was added to the data layer. A link between

the new feature and the Backup component is created.

Fig.22 shows a partial view of the changes in the refer-

ence architecture and the feature model.

PDO Database
Access Component Models

Medio

DBBackup

Backup Service Agent

Data Layer

Fig.22. Changes in data layer of the Medio SPL reference archi-
tecture and the feature mapping artifact after adding DBBackup

to the core assets.

The code written for use in a single product should

be reviewed and rewritten so that it can be reused in

the SPL products. This is a time-consuming and costly

task. The result of this task is a DBBackup class which

extends the ActiveDBClass in the Medio SPL. A link

between this class and the DBBackup feature is estab-

lished (Fig.23).

Medio
ActiveDBClass MainView Controller

DBBackup

DBBackup DBView DBController

Fig.23. Changes in the class diagram and the feature mapping
artifact of the Medio SPL after adding DBBackup to the core
assets.

The refactoring process also affects the lowest level

of the abstraction of the Medio SPL (code level). One of

the effects is the addition of new code (including new

classes) to the core assets (Fig.24). Another effect is

changing the scripts which are used for creating code

in the Medio SPL. Some changes should be done on

the initial string of RuleBasedAccess. The addmodule

function in RuleBasedAccess generates rules for access-

ing the DBBackup module. The menus of the Medio

products are generated automatically from the list of

modules.

Medio

DBBackup

Fig.24. Changes in the code and the feature mapping artifact
of the Medio SPL after adding DBBackup to the core assets.

The list of changes on the feature model after adding

DBBackup to it is as follows:
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External Team Activities. In refactoring point 2,

the external team has access to the Medio feature

model version 1.1 (Fig.21), the reference architecture

and the current products’ configuration (MA1.1
and

MB1.2
). In this refactoring point, the external team sug-

gested these modifications on the Medio SPL (based on

analyzing the feature model, the reference architecture,

and the current products’ configuration): addition of

the DBBackup, SMSBooking, and Map features to the

feature model.

The external team suggested adding the DBBackup,

SMSBooking, and Map features to the Medio SPL. The

team suggested adding the DBBackup feature to the

SPL core assets and the feature model because the team

observes this feature in three products of the Medio

SPL. The team also believes that the SMSBooking and

Map features are attractive to the customers of the

other products. As a result, the team suggested adding

these features to the Medio SPL.

4.5.4 Refactoring Point 3

The second version of the SPL adds the SMSBook-

ing and Map features to the feature model.

The feature model of the Medio SPL before per-

forming the reasoning algorithm is as follows:
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The value of IR for these features shows the uneco-

nomical nature of transferring these features to the

core assets and the feature model.

External Team Activities. In refactoring point 3, the

external team has access to the Medio feature model

version 2 (Fig.25), the reference architecture and the

current products’ configuration of Medio (MA2
, MB1.23

,

and MC1
).

Based on analyzing the Medio feature model and

its related artifacts, the external team suggested this

refactoring activity: addition of the Chat feature to

the feature model.

The external team found the Chat feature attrac-

tive to the customers and as a result, suggested adding

this feature to the feature model.

4.6 Comparing Performance of the Two Teams

We compare the performance of the two teams in

finding and performing refactoring on the Medio SPL

in Table 2. As one can see in Table 2, our framework

can find refactoring opportunities in the feature model

that the external team (the team that did not use it

for performing refactoring) cannot find. In refactoring

point 2, the external team suggests three refactorings

on the Medio SPL. These three suggested refactorings

are in the type of moving a feature to the feature model.

The Medio team found these refactoring opportunities

but refused to move them to the Medio SPL based on

the computed IR for them. By comparing the perfor-

mance of the two teams, we find following benefits in

using our framework in refactoring the Medio SPL.

1) The team equipped with our framework can find

small refactorings on the feature model that the hu-

man analysts cannot find. For example, the human

analyst usually cannot find the refactoring of convert-

ing a mandatory feature into optional one in an SPL

with a wide range of features.

2) The external team often finds the refactoring op-

portunities too late. This is because the human ana-

lyzer finds the refactoring opportunities based on the

repetitions in the SPL. However, our framework can

search for and suggest refactoring to the Medio team

faster than an analyzer not powered by it.

3) While our framework considers the upcoming

products of the SPL as well as the current products,

the team which is not equipped with it usually looks

at the current products and does not use the upcoming

products to find refactoring opportunities. This is be-

cause the developers have no real sense of the products

that are not implemented in the SPL.

5 Threats to Validity

Internal Validity. There are some internal threats to

the validity of the refactoring performed on the feature

model. It is possible that a new customer requires a fea-

ture, which has been removed recently from the SPL.

This problem arises from a product line with poor fore-

seeing of the future or a product line including products

with large domain differences. One of the other inter-

nal threats to validity in our framework is whether our

framework is behavior preserving or not. Each refactor-

ing has a guard (pre-condition) to check the correct con-

dition in which the refactoring rule can be performed.

The effects of the refactoring rule on the feature model

can be anticipated. However, our framework does not

have post-condition to check the actual correctness and

behavior preservation of the feature model.

Construct Validity. There are some threats to the

construct validity of the result of our framework. These

threats can lead the user to an incorrect conclusion

about refactoring on the feature model. One can essen-

tially make two kinds of construct errors about feature

model refactoring based on the estimation approach

used to calculate the amount of benefit that comes from

moving a feature to the feature model or removing a

feature from the feature model.

● False-Negative Conclusion. It concludes that a

feature should not be added to the SPL when, in fact,

the feature should be included in the SPL. For exam-

ple, we introduced the notion of IR for computing the

economic benefit of moving a feature to the SPL. How-

ever, the IR parameters are computed experimentally.

The lack of experiments in the SPL leads to supplying

inaccurate parameters for computing IR. As a result,

the value of IR may lead to an incorrect decision on not

moving a feature to the feature model. In general, the

Table 2. Comparing Performance of the Two Teams in Finding Refactoring Opportunities
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false-negative conclusion can occur in every approach

which uses experimental metrics.

● False-Positive Conclusion. It concludes that a fea-

ture should be added to the SPL when, in fact, the fea-

ture should not be included in the SPL. The inaccuracy

of the estimation method may also lead to the incorrect

moving of a feature to the feature model and the SPL

core assets.

External Validity. The result of the framework can

be validated by an external viewer of it. For example,

in analyzing the case study in Section 4, an external ob-

server can repeat the same results on the Medio SPL by

using our framework. One of the other external threats

to validity is the ability of the framework to go beyond

the Medio SPL, which we analyzed. In this regard,

we analyze the algorithms we use in our framework in

Appendix A.1. The complexity of our framework is in

the order of O(n6). We also survey the experimental

evaluation of the framework in Appendix A.3. As one

can see in Appendix A.3, our framework can be run on

the SPL with a normal size feature model in a reason-

able amount of time.

6 Discussion

In this paper, we proposed a feature model based

framework for performing refactoring on the SPL. Our

framework performs refactoring on the feature model

and helps in synchronizing changes on it to the other

artifacts of the SPL. In this way, other artifacts of the

SPL can also sense the changes done on the feature

model. For example, when we remove a feature from

the feature model, we should assess other artifacts re-

lated to this feature and make appropriate changes on

them to keep the consistency of the SPL.

We introduced algorithms needed to implement a

tool for performing refactoring on feature models. Our

reasoning algorithms are given the feature model along

with the current and upcoming products’ configuration

to find refactoring opportunities in feature models.

In this paper, we used an extended version of the

free feature model. The free feature model supports a

majority of the methods used to develop SPLs[20]. As

a result, we expect our framework to be usable in such

methods with two considerations which we discuss in

the following.

● The first consideration in using our framework

is maintaining the upcoming products’ configuration.

Our framework uses the upcoming products to de-

tect SPL refactoring opportunities. Upcoming prod-

ucts usually reflect the strategy of the SPL team in

developing an SPL. As a consequence, by changing the

SPL team strategy, the upcoming products’ configura-

tion may be modified. In this regard, the SPL develop-

ers should have a clear program to maintain upcoming

products’ configuration and keep it synchronized to the

SPL strategies.

● Feature mapping is an appropriate approach to

linking every feature to the related artifacts in the SPL.

The second consideration in using our framework is to

maintain a clear and explicit relation between features

and other artifacts. We used feature mapping to find

the artifacts which are affected by performing refactor-

ing on the feature model at different levels of abstrac-

tion. Without a mechanism for feature mapping, the

applications of the feature model become very limited.

Our approach is not usable in the SPLs without a

clear development strategy or a mechanism for feature

mapping.

Our aim in this framework is to modify the SPL ar-

tifacts in such a way that the overall functionality of

the SPL (which appears in the SPL products) does not

change. In our refactoring framework, the functionali-

ties of the SPL are changed if the refactoring pattern

turns the validity of a product configuration from valid

into invalid. The conditions of our refactoring patterns

ensure that none of the refactoring patterns can turn a

valid product configuration into an invalid one.

One of the ways in which our framework may not

preserve the functionalities of the SPL is in the situa-

tion where a refactoring pattern removes a feature from

the feature model. By surveying the conditions of the

pattern of removing a feature from a feature model in

our framework, one can ensure that removing an unused

feature from the feature model and the SPL does not

change the functionalities of the SPL and its products.

We can use proof by contradiction to prove that

our refactoring patterns do not alter the validity of the

product configurations. For an example of using proof

by contradiction, assume that converting an optional

feature to mandatory one is not functionality preserv-

ing. As a result, at least one of the product config-

urations has become invalid by changing the type of

a feature from optional to mandatory. The only way

that a product configuration can be invalid by chang-

ing a feature type from optional to mandatory is when

the product configuration does not contain the modified

feature. This assumption contradicts the conditions of

converting an optional feature to a mandatory one, be-

cause, for converting an optional feature to a manda-

tory one, the feature should be present in all current
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and upcoming products of the SPL.

Many studies[32-37] use SAT solvers and binary de-

cision diagram (BDD) solvers to analyze propositional

formulae in the feature models. On the other hand,

our work uses BDD solvers to analyze refactoring op-

portunities in the feature model. In this research,

we performed feature model analysis by considering

product configurations. Our framework first converts

the feature model to a propositional formula and then

solves the propositional formula using BDD solvers.

Our framework generates strings consisting of Boolean

values for analyzing the feature model. BDD solvers

can check these Boolean strings in O(n2) time[22,38]

whereas the SAT problems are NP-hard in this case[22].

Because of the simplicity of using propositional formu-

las and Boolean values in BDD solvers, we decided to

use BDD solvers in our algorithms.

7 Related Work

One of the popular representations of the feature

model is the free feature model[20]. Schobbens et al.

provided a formal representation of the free feature

model in their work[20]. They surveyed several SPL

development methods such as FODA[18], FORM[39],

FeatuRSEB[40], and PLUSS[41] and suggested a general

model named “free feature model” to support them.

Our feature model definition extends the free feature

model by adding the definitions of the candidate fea-

tures and the upcoming products. We used Schobbens

et al.’s formalization[20] because their proposed feature

model can handle the most important variability as-

pects of the SPL.

Feature model analysis is a tedious and error-prone

task. In essence, manually analyzing feature mod-

els with more than a few dozen features is virtually

impossible[22]. Several studies are done on analyz-

ing feature models. Analysis performed on feature

models can be any one of detecting empty models[18],

product configuration verification[10,42-43], creating all

possible models[44], core features analysis[42], enumer-

ating all possible products, filtering[43], and anomaly

detection[17], among others.

Anomaly detection is one of the analyses that can

be performed on a feature model. The following is a

list of three anomalies to hunt for:

● dead feature: a feature that cannot be present in

any product[17];

● wrong optional feature: a feature that is present

in all products[45];

● repetition: a feature model that contains several

copies of a feature[45].

In our work, we provided support for exploring dead

feature and wrong feature by investigating the products

and feature models. Finding a repetition in a feature

model in our work needs a sort of ontology-based anal-

ysis.

Some research related to the current work uses

propositional formulas for analyzing feature models.

Analysis consists of two phases in this group of studies:

1) transforming a feature model into propositional

formulas;

2) analyzing the propositional formulas using off-

the-shelf tools.

The term feature mapping comes from a tool writ-

ten by Heidenreich et al.[46] Their tool (FeatureMap-

per) supports mapping features to the artifacts such as

code and design model in SPL and facilitates creating

concrete products from selected features. However, as

documented by Seidl et al.[47], the granularity of fea-

ture mapping can vary considerably from “very fine”

to “very coarse”. We utilized the feature mapping idea

in performing refactoring at three different levels of ab-

straction from architecture to design to code.

Seidl et al.[47] provided a mechanism for co-

evolution design models and feature models. Their

framework decreases the side-effects of the evolution

of SPL in the feature mapping model. Their frame-

work includes some ways to support moving, removing,

copying, merging, and splitting the models and keeping

the consistency between feature mapping and models.

However, they do not consider changes that take place

in the feature model in their work. We include this type

of changes in our paper.

Alves et al.[6] discussed the inadequacy of tra-

ditional approaches for performing SPL refactoring.

They suggested some refactorings which are applicable

on the SPLs. They introduced some refactorings in fea-

ture models and assessed them through a case study[6].

The differences between our framework and the work

of Alves et al.[6] lie in the way we find the refactor-

ing opportunities. We used the product configurations

along with the feature model to find the refactoring op-

portunities while they only used feature models to find

them. The integrity constraints between the features

of the feature model are not considered in the work of

Alves et al.[6], while we used them to find refactoring

opportunities in the feature model. The feature based

refactoring is mentioned in [4]. We proposed a mecha-

nism for variant-preserving refactoring, which preserves
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the validity of the SPL.

Schulze et al.[4,48] proposed an approach to refac-

toring delta-oriented SPLs. They cataloged some refac-

torings applicable on delta-oriented SPLs. The delta-

change done on the SPL is a basis for the definition

of the refactoring catalogs in their work. While we

used the product configurations and the changes per-

formed on them to find the refactoring opportunities,

they used the delta changes that come from the domain

engineering activities. The problem with their refactor-

ing framework is that their proposed framework cannot

suggest some refactoring opportunities such as remov-

ing dead features or removing extra constraints in the

feature model.

A formal representation for software product line

and feature model was proposed by Borba et al.[49] Sev-

eral types of refinement on SPL are proposed in their

research. Some types of refactoring on the feature map-

ping model are introduced in their paper. The purpose

of our framework differs from that of Borba et al.[49]

While our main goal is to define and catalog several

refactoring patterns on the feature models using a for-

mal definition, the main purpose of Borba et al. is

to provide a common notion for defining refactoring

on the feature model. They did not provide a com-

plete list of refactoring patterns and did not discuss

how the refactoring patterns should be implemented.

Fenske et al.[16] derived a taxonomy that distinguishes

and relates reengineering activities on the SPL. They

proposed definitions for the main branches of this tax-

onomy and finally classified a corpus of existing work.

Thum et al.[21] introduced several types of edits

that can be done on a feature model. They categorized

edits into four categories including 1) refactoring, 2)

generalization, 3) specialization, and 4) arbitrary edit.

They used propositional formulae to analyze the fea-

ture model and introduced an algorithm (which we also

used in Appendix A.3) to evaluate the performance of

the approach. Compared with our approach they did

not catalog the refactoring patterns applicable to fea-

ture models and did not use product configurations for

finding refactoring opportunities in the feature models.

Our work uses the feature model as a tool to find

refactoring opportunities in the whole SPL. The ad-

vantage of our work over other refactoring approaches

is that our model retains the consistency of the fea-

ture model with the feature mapping, product configu-

rations, and reference architecture at different levels of

abstractions. Our framework does the refactoring on a

larger domain including the reference architecture, de-

sign and code, and uses feature mapping as a tool to

track changes and find the locations of the changes.

Keeping the consistency of the feature model and

other artifacts at different levels of abstraction is a chal-

lenge that the refactoring approaches face. Only Seidl

et al.[47] and Borba et al.[49] considered this challenge

in their refactoring definitions. We also tried to keep

the consistency between the feature model and artifacts

at different levels of abstraction by using feature map-

ping. For example, along with the deletion of a fea-

ture, our framework searches for the related artifacts

at different levels of abstraction and suggests remov-

ing or keeping them to maintain consistency. However,

our proposed framework does not ensure that consis-

tency is maintained because the activities for keeping

the consistency are not formally defined in it.

8 Conclusions and Future Work

Refactoring consists of small steps which, when ac-

cumulated, can effect large-scale changes in the SPL,

and result in features being added to, eliminated from,

or modified in the SPL. In this research, a feature

model based framework for performing refactoring on

the SPL artifacts, from code level to the reference archi-

tecture to the feature model, was developed. Upcoming

products, which are indicative of SPL evolution strate-

gies, were taken into account in performing refactoring,

apart from current products.

While some refactorings, such as changing an op-

tional feature into a mandatory one, only affect the

feature model, some others, such as adding a feature to

the feature model, have a wider effect on the SPL ar-

tifacts. As a result, SPL refactoring may cause incon-

sistencies between artifacts in SPL. Keeping the con-

sistency among SPL artifacts at different levels of ab-

straction is complicated. One needs to know about the

relation between features and other SPL artifacts to

maintain the consistency among them. One of the ap-

propriate ways to find the relationship between features

and SPL artifacts is to use feature mapping.

Our framework provides a mechanism for finding

refactoring opportunities in SPL and performing them

on SPL. It uses the feature model to locate the refac-

toring opportunities in SPL. In this research, we pro-

vided several types of refactoring which are applicable

on SPL. However, performing refactoring on SPL may

give rise to some drawbacks for companies. It is pos-

sible that a feature that is removed from the feature

model is required by some clients sometime later, or
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the computed IR for a feature is false-positive, result-

ing in a feature being moved to the core assets in an

uneconomical manner.

One interesting line of work is using artifacts in

other levels of abstraction to find refactoring oppor-

tunities in the SPL. For example, at the code level, it

is possible that one can extract new features from the

code of the existing features’ code, or find a dead block

of code that causes some artifacts such as some features

of the feature model and some components of the ref-

erence architecture to be removed from the SPL. How-

ever, refactoring is not limited to only one level and

because of the tight relation of the artifacts in SPL,

performing refactoring in one level can open new refac-

toring opportunities in other levels.

One of the approaches for performing refactoring on

SPL and the feature model is to use the model-to-model

(M2M) transformation languages. M2M transforma-

tion languages have been successfully used to perform

refactoring on models. Wimmer et al.[50] introduced

a catalog of refactorings for M2M transformations in

their research. Using M2M transformations to perform

refactoring is a new trend in this area. Utilizing M2M

transformations to perform refactoring is another line

of research, which currently is underway by the authors

of this paper.

Finally, one future work is to identify opportunities

for optimization of the approach and also evaluating

scalability. Evaluating the framework in the context

of another existing product line can be another future

work of this paper.
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Appendix

A.1 Computational Complexity of Algorithms

Time complexity is the primary measure to bear

in mind when one engages in algorithm design. In

most cases, an exponential running time means very

limited applicability for an algorithm. When a large

time complexity in the worst case seems inevitable for

any algorithm for a particular problem, one has to re-

lax the requirement for the worst-case optimality of the

designed algorithm. Heuristic, approximation, and ran-

domized algorithms could enter the frame in these sce-

narios (though their use is by no means limited to these

cases).

We calculate the complexity of the reasoning algo-

rithm and show that this algorithm is reasonably effi-

cient. In the following, we shall use m to denote the

maximum tree degree, n to indicate the number of fea-

tures in the feature model, k to show the number of

current and upcoming products, and p to denote the

number of primitive features.

A.1.1 Complexity of CreateP Algorithm

In this algorithm, the result of the execution on the

sub-trees is kept in memory and used later for comput-

ing the propositional formulas of the parent. The worst

case of the algorithm occurs in the case of the alterna-

tive group. In the alternative case, the algorithm makes

all mutual combinations of the children. The number of

mutual combinations of children is O(m2). The num-

ber of iterations of the algorithm is n−p (the number of

recursions in the algorithm). Consequently, the comple-

xity of this situation is O((n − p)m2) = O(nm2).

A.1.2 Complexity of EvaluateP Algorithm

The computational complexity of this algorithm is

the time it takes to find the presence or the absence

of a feature in a configuration model (log n) multiplied

by the number of propositions in the P string, which is

O(n2) in the worse case. The JavaBDD method on

true and false values can be implemented by an al-

gorithm having linear complexity (with regard to the

size of the string)[51]. In this case, the complexity

of JavaBDD equals the maximum size of P , which is

O(n2). In general, the complexity of the algorithm is

O(n2 logn + n2) = O(n2 logn).

A.1.3 Complexity of CheckMandatoryP and Check-
OptionalP Algorithms

In these algorithms, P is computed just once. The

complexity of the foreach block is the multiplication of k

by EvaluateP complexity, or O(kn2 logn). The comple-

xity in general (assuming a constant number of prod-

ucts) is O((n − p)m2 + kn2 logn) = O(nm2 + n2 logn).

A.1.4 Complexity of CheckAlternativeP Algorithm

The worst case in this algorithm is when ε con-

tains all features in the feature tree. In this case, the

complexity of the algorithm is the complexity of Cre-

ateP algorithm plus the complexity of EvaluateP al-

gorithm multiplied by the number of iterations in the

two nested foreach loops. This makes the complexity

of the algorithm to be O(k ×m × (nm2 + n2 logn)) =

O(nm3 +mn2 logn).

A.1.5 Complexity of CheckExclude and CheckInclude
Algorithms

The complexity of these algorithms equals the num-

ber of products in SPL, or k. Assuming a constant num-

ber of products, the complexity of these algorithms is

O(1).
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A.1.6 Complexity of CheckOpportunity and

NotExisitNode Algorithms

The complexity of these algorithms is the number of

products in SPL or k, multiplied by the number of fea-

tures in the feature model or n. Thus, the complexity

of these algorithms is O(kn) = O(n).

A.1.7 Complexity of Reasoning1 Algorithm

The foreach loop in this algorithm is executed n

times (recursively). In each iteration, one of the if con-

ditions is true. The complexity of the algorithm is the

number of features multiplied by the maximum comple-

xity in the if conditions.

The complexity of checking the mandatory (line 5)

and the optional (line 13) feature types in the worst

case is O(nm2 + n2 logn).

The complexity of checking alternative group

(line 25) is the number of iterations in the foreach

loop (line 26) which is m in the worst case. The

complexity of CheckOptionalP is O(nm2 + n2 logn).

Thus, the complexity of the foreach loop in line 26 is

O(nm3 + mn2 logn). The complexity of if in line 34

is O(nm3 + mn2 logn). And finally the complexity

of the foreach in line 37 is the number of siblings

of a feature or m multiplied by the complexity of

the CheckAlternativeP and CheckOptionalP methods,

which is O(m((nm3 +mn2 logn)+ (nm2 +n2 logn))) =

O(nm4 +m2n2 logn). The overall complexity of check-

ing the alternative-group and OR-group (line 25) is

O(nm4 +m2n2 logn).

The complexity of checking the OR-group (line 43)

is the addition of the complexities of the foreach in

line 44 and the complexity of if in line 51. Their comple-

xity is the number of iterations of the foreach loop

which is m multiplied by the complexity of the Check-

OptionalP method which is O(nm2 + n2 logn). The

overall complexity of these foreach loops is O(nm3 +

mn2 logn). The complexity of if (line 51) is O(nm3 +

mn2 logn). Thus the overall complexity of the OR-

group checking is O(nm3 +mn2 logn).

It can be readily checked that the worst-case run-

ning time of the Reasoning1 algorithm is O(n(nm4 +

m2n2 logn)) = O(m4n2+m2n3 logn). Ifm is a constant

value, the complexity of the algorithm is O(n3 logn).

If m is in the order of
√
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e) UNFM : developers component unfamiliarity

level.

AAM =
⎧⎪⎪
⎨
⎪⎪⎩

AA+AAF (1+(0.02×SU×UNFM)
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In the end, three valid current products with log p

features, and two valid upcoming products with logp

features are created.

A.3.3 Random Edit Algorithm

The random edit algorithm is given a feature model,

a set of product configurations, and a number of desired

changes on the feature model C as input, and produces

C changes in the feature model. The edits are in the

form of converting optional to mandatory, mandatory

to optional, alternative to OR-group, and OR-group to

alternative-group[35]. The probability of each type of

edit is the same.

A.3.4 Experimental Result

Fig.A1 shows the execution time of the reasoning

algorithm in the feature models with 10 up to 10 000

features and five random edits in these feature models.

This figure indicates that with the enlargement of a fea-

ture model and a fixed number of edits in the feature

model, the runtime growth rate decreases. This can be

attributed to the fact that a subtree is increasingly more

likely to be pruned as one moves down from the root

(this is because the chance of finding an error in a more

deeply rooted subtree is smaller, and consequently, the

subtree is more likely to be pruned away).

We have done two simulations to find the run-time

complexity of our algorithms. The first keeps the num-

ber of edits fixed and varies the size of the feature model

(Fig.A1), and the second explores the effect of apply-

ing a variable number of edits to a feature model with

a fixed number of features (Fig.A2).
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Fig.A1. Experimental results of running reasoning algorithm in
order to find refactoring opportunities in a feature model with
five random edits, based on the feature model size.
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Fig.A2. Experimental results of running reasoning algorithm in
order to find refactoring opportunities in a feature model of the
size of 1 000, based on the number of edits made in the feature
model.


