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Abstract The rapid evolution of the Internet has been appealing for effective recommender systems to pinpoint useful

information from online resources. Although historical rating data has been widely used as the most important information in

recommendation methods, recent advancements have been demonstrating the improvement in recommendation performance

with the incorporation of tag information. Furthermore, the availability of tag annotations has been well addressed by

such fruitful online social tagging applications as CiteULike, MovieLens and BibSonomy, which allow users to express their

preferences, upload resources and assign their own tags. Nevertheless, most existing tag-aware recommendation approaches

model relationships among users, objects and tags using a tripartite graph, and hence overlook relationships within the

same types of nodes. To overcome this limitation, we propose a novel approach, Trinity, to integrate historical data and tag

information towards personalised recommendation. Trinity constructs a three-layered object-user-tag network that considers

not only interconnections between different types of nodes but also relationships within the same types of nodes. Based

on this heterogeneous network, Trinity adopts a random walk with restart model to assign the strength of associations to

candidate objects, thereby providing a means of prioritizing the objects for a query user. We validate our approach via a series

of large-scale 10-fold cross-validation experiments and evaluate its performance using three comprehensive criteria. Results

show that our method outperforms several existing methods, including supervised random walk with restart, simulation of

resource allocating processes, and traditional collaborative filtering.

Keywords recommender system, tag-aware recommendation, random walk with restart, heterogeneous network, social

tag

1 Introduction

Exponential growth of data in the Internet chal-

lenges what data are perceived as useful[1], where

the useful data can be discovered from the emerg-

ing sources[2-3], and how the data are processed for

recognizing personalised interests and improving user

experiences. To achieve these goals, various rec-

ommender systems have been proposed to provide

personalized nomination of resources, with successful

examples including online recommendation of books[4],

movies[5-6], commodities[7], bookmarks[8], news[9], TV

programmes[10], microblogs[11] and many others.

A recommender system is typically designed based

on the collaborative filtering strategy. For example,

a user-based method works around historical data to

calculate discriminant scores of candidate objects from

similarities between users[12-13]. An item-based design

is rendered formally equivalent to its user-based coun-

terpart by exchanging roles of users and objects[10]. A
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more information intensive approach, i.e., the content-

based method, uses properties of items to characterize

their similarities[14]. To advance these approaches, hy-

brid methods have also been proposed[15]. Recently,

model-based approaches, such as non-negative matrix

factorisation[16], singular value decomposition[17] and

their variants[18], have been well recognized for their

ability to capture hidden relationships between users

and objects. Network-based formulations have also

been widely adopted to design recommendation algo-

rithms, with the consideration of solving the accuracy

and diversity dilemma[5,19-20].

Although historical rating data has been widely

used as the most important information in recom-

mendation approaches, there are certainly other types

of resources available for characterizing users and ob-

jects. For example, online social tagging applica-

tions, such as CiteULike, MovieLens, BibSonomy, Folk-

sonomy, Del.icio.us, Flickr and Last.fm[21-22], allow

users to easily express their personalized preferences

for objects, thereby exposing potential relationships be-

tween users and objects. Incorporating such valuable

tag information into recommender systems, a variety

of tag-aware or social tagging approaches have been

proposed[23-24]. Among these approaches, network-

based methods have been developed successfully and

expanded flexibly[25-34]. For example, network-based

FolkRank[25] and tensor decomposition[31-34] have

demonstrated their superior performance over tradi-

tional methods[26]. By adopting a tripartite graph

to represent relationships among users, objects and

tags, random walk models have also been successfully

adopted for tag-aware recommendations[25-30].

However, the tripartite graph formulation over-

looks relationships within nodes of the same type[30],

thereby potentially impairing the recommendation per-

formance. Intuitively, in a tripartite graph, connections

only exist between different types of nodes. Therefore,

a random walker can only jump from a node of a cer-

tain type (e.g., user) to a node of another type (e.g.,

object). If there exist connections between the nodes of

the same type, the random walker can then take such

shortcuts to perform a more effective journey. With

this understanding, it is natural to ask the question

of how to construct a network that includes the infor-

mation between the nodes of the same type and how

to enhance recommendation performance based on the

resulting object-user-tag network.

To answer these research questions, we propose a

novel approach, Trinity, to integrate tag annotations

with historical data using a three-layered random walk

with restart process. Our method considers not only

relationships between heterogeneous nodes of different

types but also those between homogeneous nodes of

the same type. There are three steps in modelling

this approach: 1) construct an object-user-tag hetero-

geneous network using both historical and tag data; 2)

design a random walk with restart model by simulat-

ing the process that a random walker wanders on the

constructed network; 3) take the steady-state proba-

bilities that the walker stays at candidate objects to

measure the strength of associations between a query

user and the candidate objects. The Trinity method is

validated through a series of experiments by employing

large-scale 10-fold cross-validation. The results show

that our method outperforms many existing methods

in terms of three criteria for evaluating recommenda-

tion performance.

The main contributions of our paper are summa-

rized as follows.

1) We propose to integrate several types of relation-

ship in a single object-user-tag network. Connections

in such a network correspond to relationships between

i) objects, ii) users, iii) tags, iv) objects and users, v)

objects and tags, and vi) users and tags. To the best of

our knowledge, this work is the first one that explores

a recommendation method with such a comprehensive

formulation.

2) We propose a k-nearest neighbour strategy to

construct a reliable object-user-tag network. This stra-

tegy effectively removes weak relationships between the

nodes of the same type (objects, users and tags) and

hence significantly improves the quality of the resulting

heterogeneous network.

3) We propose a three-layered random walk with

restart model for characterizing the strength of associa-

tions between objects and users in the constructed hete-

rogeneous network. This model provides more accurate

predictions for unknown object-user relationships than

many existing methods, including supervised random

walk, simulation of resource allocating processes, and

traditional collaborative filtering.

The rest of the paper is organized as follows. Sec-

tion 2 provides a brief review of prior work relevant

to personalized recommendation methods, especially on

network-based and tag-aware recommendation. In Sec-

tion 3, we give an overview of the proposed method,

the network construction, similarity computation, and

validation and evaluation methods as well as meth-

ods for comparison. We then provide experimental re-
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sults in Section 4, including the similarity correlation,

performance improvement, contributions of individual

elements and robustness of parameters across different

datasets. Finally, we conclude the paper in Section 5.

2 Related Work

2.1 Ordinary Collaborative Filtering

A personalized recommendation method targets

ranking a set of candidate objects for a given query user

such that objects preferred by the user appear among

top positions in the ranking list. In mathematics, this

is typically done by calculating discriminant scores for

candidate objects and then sorting the objects in non-

ascending order according to their scores. In particu-

lar, as the most widely used recommendation method,

a user-based collaborative filtering method (i.e., USim)

is formulated as follows. Given the historical preference

of u users on o objects, represented as a binary matrix

A = (aij)o×u, where aij = 1 means that the i-th object

is preferred by the j-th user in history and 0 otherwise,

one calculates a user similarity matrix S = (sij)u×u,

where

sij =

∑

16k6o akiakj
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The above formulation can also be done in a user-based

manner by simply exchanging the roles of users and ob-

jects. As a result, a resource redistribution matrix for

users E = (eij)u×u can be derived as

eij =

o
∑

k=1

akiakj
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a b c

1 0.04 0.10 0.11

2 0.09 0.11 0.04

3 0.08 0.04 0.11

4 0.08 0.04 0.04

a 0.16 0.10 0.10

b 0.10 0.16 0.11

c 0.09 0.10 0.15

I 0.04 0.07 0.14

II 0.04 0.11 0.03

III 0.09 0.07 0.02

IV 0.09 0.04 0.14

V 0.10 0.08 0.03

a b c

1 0.00 0.06 0.06

2 0.04 0.06 0.00

3 0.04 0.00 0.06

4 0.04 0.00 0.00

a 0.10 0.05 0.05

b 0.04 0.09 0.05

c 0.04 0.05 0.09

I 0.00 0.04 0.09

II 0.00 0.08 0.00

III 0.06 0.04 0.00

IV 0.06 0.00 0.09

V 0.06 0.04 0.00

O 1 2 3 4 U a b c T I II III IV V

1 0.00 0.50 0.50 0.00 a 0.00 0.50 0.50 I 0.00 0.00 0.00 0.50 0.50

2 0.41 0.00 0.00 0.59 b 0.45 0.00 0.55 II 0.00 0.00 0.41 0.29 0.29

3 0.41 0.00 0.00 0.59 c 0.45 0.55 0.00 III 0.00 0.50 0.00 0.00 0.50

4 0.00 0.50 0.50 0.00 IV 0.50 0.50 0.00 0.00 0.00

V 0.29 0.29 0.41 0.00 0.00

A a b c B I II III IV V C I II III IV V

1 0 1 1 1 1 0 0 1 0 a 0 0 1 1 1

2 1 1 0 2 0 1 1 0 1 b 1 1 1 0 1

3 1 0 1 3 0 1 0 1 0 c 1 0 0 1 0

4 1 0 0 4 1 0 0 0 1

1 2 3 4 a b c I II III IV V

1 0.00 0.25 0.25 0.00 0.00 0.13 0.13 0.13 0.00 0.00 0.13 0.00

2 0.21 0.00 0.00 0.29 0.13 0.13 0.00 0.00 0.08 0.08 0.00 0.08

3 0.21 0.00 0.00 0.29 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00

4 0.00 0.25 0.25 0.00 0.25 0.00 0.00 0.13 0.00 0.00 0.00 0.13

a 0.00 0.08 0.08 0.08 0.00 0.25 0.25 0.00 0.00 0.08 0.08 0.08

b 0.13 0.13 0.00 0.00 0.22 0.00 0.28 0.06 0.06 0.06 0.00 0.06

c 0.13 0.00 0.13 0.00 0.22 0.28 0.00 0.13 0.00 0.00 0.13 0.00

I 0.13 0.00 0.00 0.13 0.00 0.13 0.13 0.00 0.00 0.00 0.25 0.25

II 0.00 0.13 0.13 0.00 0.00 0.25 0.00 0.00 0.00 0.21 0.15 0.15

III 0.00 0.25 0.00 0.00 0.13 0.13 0.00 0.00 0.25 0.00 0.00 0.25

IV 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.25 0.25 0.00 0.00 0.00

V 0.00 0.13 0.00 0.13 0.13 0.13 0.00 0.15 0.15 0.21 0.00 0.00

AA BB

CCA’A'

B’B' CC'

OO

UU

TT'
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characterize tags used to annotate objects. The inter-

connections between the user and the tag layers (C)

reflect the preference of users in using the tags. It is

clear that such an object-user-tag network is hetero-

geneous, not only in the sense that it contains three

types of nodes (objects, users and tags), but also be-

cause edges in such a network can be classified into six

different types according to the nodes connecting to the

edges.

Secondly, in the random walk simulation step, we

simulate the process that a random walker wanders in

the constructed object-user-tag network. As illustrated

in Fig.1(c), the walker can either move from one node to

another in the same layer, or jump from one layer to an-

other. Specifically, this process is determined by a tran-

sition matrix and a set of initial probabilities (a vector

for a single user and a matrix for multiple users). The

transition matrix can be partitioned into nine blocks,

corresponding to the three layers (O, U and T ) and

their interconnections (A, B, C and their transposes)

as illustrated in Fig.1(d). The initial probability vec-

tor/matrix reflects probabilities that the walker starts

its journey and can be partitioned into three blocks,

corresponding to the three layers (object, user and tag)

from the top to the bottom, as illustrated in Fig.1(g).

Thirdly, upon finishing simulation, we extract

steady-state probabilities that the walker stays in can-

didate objects and prioritize these objects accordingly.

Specifically, as depicted in Fig.1(f), the steady-state

probability vector can also be partitioned into three

blocks. From top to bottom, these blocks correspond

to probabilities that the walker stays in the object, user

and tag layers, respectively. By extracting the upper

block and performing normalization, we are able to ob-

tain discriminant scores for candidate objects, which

provide a means of prioritizing the objects, as illus-

trated in Fig.1(e).

Detailed descriptions of these steps will be further

given in Subsection 3.2 and Subsection 3.3. The nota-

tions for Trinity and its computation procedure can be

found in Table 1.

3.2 Construction of the Object-User-Tag

Heterogeneous Network

An object-user-tag network is a three-layered net-

work composed of an object layer, a user layer, a

tag layer and interconnections between these layers.

The object layer is constructed as a nearest neighbour

network according to object similarities derived from

known associations between objects and users. More

specifically, given the preference of u users on o objects,

represented as an association matrix A = (aij)o×u,

where aij = 1 if object i is preferred by user j and

0 otherwise, we calculate the similarity between two

objects i and j as the cosine of the angle between the

corresponding row vectors. With all pairwise similari-

ties calculated, we remove for each object a fraction of

the weakest relationships and obtain a nearest neigh-

bour network of objects. This is done by sorting each

column of the object similarity matrix and setting simi-

larities for objects ranked lower than α×o to zero. Here

α is a free parameter. We denote such a filtered object

similarity matrix as O = (oij)o×o.

The user layer is also constructed as a nearest neigh-

bour network according to user similarities derived from

known associations between objects and users. With

the association matrix A = (aij)o×u, we calculate the

similarity between two users i and j as the cosine of

the angle between the corresponding column vectors in

this matrix. With all pairwise similarities calculated,

we also keep for each user a fraction of α strongest re-

lationships and obtain a nearest neighbour network of

users. We denote the weight matrix for this network as

U = (uij)u×u.

The tag layer is again constructed as a nearest

neighbour network according to tag similarities derived

from known associations between objects and tags.

Given the annotations of o objects in terms of t tags,

represented as an association matrix B = (bij)o×t,

where bij = 1 if object i is annotated with tag j and 0

otherwise, we calculate the similarity between two tags

i and j as the cosine of the angle between the corre-

sponding column vectors in this matrix. With all pair-

wise similarities calculated, we again keep for each tag

a fraction of α strongest relationships to obtain the tag

network and denote the weight matrix for this network

as T = (tij)t×t.

The interconnections between the object and the

user layers are represented as the association matrix

A = (aij)o×u. The interconnections between the ob-

ject and the tag layers are represented as the association

matrix B = (bij)o×t. The interconnections between the

user and the tag layers are represented as the associa-

tion matrix C = (cij)u×t, where cij = 1 if user i has

used tag j to annotate some object and 0 otherwise.

Putting the above matrices together, we describe

an object-user-tag network using a 6-tuple H =

(O,U ,T ,A,B,C), where O, U and T are weight ma-

trices of the object, user and tag layers, respectively,
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andA, B andC adjacency matrices for the object-user,

object-tag and user-tag relationships, respectively.

3.3 Random Walk with Restart on an

Object-User-Tag Network

We propose a random walk with restart model on

the constructed object-user-tag network to facilitate the

recommendation of candidate objects in an attempt to

simulate the process that a random walker wanders in

such a heterogeneous network. Given a query user, a

random walker starts a journey in the object-user-tag

network with some initial probability p(0). Then, in

each step of the journey, the walker may select to start a

new journey with probability λ or move on with proba-

bility 1 − λ. When moving on, the walker may select

to stay in the same layer with probability β or jump to

one of the other two layers with probability (1 − β)/2.

When wandering about, the walker moves to one of its

direct neighbours in the same layer. After a number

of steps, the probability that the walker stays in each

node of the object-user-tag network will reach a steady

state p(∞), from which we can extract the strength of

the association between the query user and candidate

objects.

Formally, let π = (πij)3×3 be the transition matrix

when the random walker jumps between different layers

of the object-user-tag network, where πij is the proba-

bility of jumping from the i-th layer to the j-th layer

(i = 1, 2, 3 for object, user and tag layers, respectively).

To simplify the problem, we put two constraints on this

matrix: 1) probabilities of staying in the same layer

should be equal (πii = β for i = 1, 2, 3), and 2) proba-

bilities of jumping from one layer to another should be

equal (πij = γ for i, j = 1, 2, 3, i 6= j). It is then

evident that γ = (1−β)/2, and hence β is the only free

parameter in this matrix. For a matrix X = (xij)m×n,

we define the row-normalised matrix as X̃ = (x̃ij)m×n

with x̃ij = xij/
∑n

k=1 xik and the column-normalised

matrix as X
∼

= (x
∼
ij)m×n with x

∼
ij = xij/

∑m

k=1 xkj . We

can then define the un-normalized transition matrix Ŵ

as

Ŵ =











βÕ γÃ γB̃

γA
∼

T βŨ γC̃

γB
∼

T γC
∼

T βT̃











,

and perform row-normalization to obtain the transi-

tion matrix W = (wij)(o+u+t)×(o+u+t), where wij =

ŵij/
∑o+u+t

j=1 ŵij .

Given a query user indexed by q, we denote the ini-

tial probabilities for the object layer as o(0) = (o
(0)
i )o×1

and obtain o(0) by assigning equal probabilities to ob-

jects that have been selected by the query user histor-

ically. It is then evident that o(0) is equivalent to the

q-th column of the column-normalized association ma-

trix (A
∼

). Let u(0) = (u
(0)
i )u×1 be the initial probability

for the user layer. We assign probabilities to direct

Table 1. Notations for Trinity
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neighbours of the query user according to their similar-

ities. It then follows that u(0) is equivalent to the q-

th column of the column-normalized matrix (U
∼

). Let

t(0) = (t
(0)
i )t×1 be the initial probability for the tag

layer. We assign equal probabilities to tags that have

been used by the query user. It then follows that t(0)

is equivalent to the q-th column of the transposition of

the column-normalized association matrix (C
∼

T). We

then write the un-normalized initial probability vector

as p̃(0) = ((o(0))T, (u(0))T, (t(0))T)T and further nor-

malize it to obtain the initial probability vector p(0).

Let p(t) contain probabilities that the walker stays

at each node at time t. We have the iterative formula:

p(t+1) = (1− λ)WTp(t) + λp(0).

Repeating the iteration for a number of steps until p(t)

is stable (e.g., the L1 norm of ∆p = p(t+1)−p(t) is less

than a small positive number ε), we obtain the steady-

state probability p(∞), which can be decomposed into

an object part o(∞), a user part u(∞) and a tag part

t(∞), say p(∞) = ((o(∞))T, (u(∞))T, (t(∞))T)T. The

object part, o(∞), after normalization, can then be used

to score the strength of association between the user

and the candidate objects. It has been shown that the

random walk model is not sensitive to the parameters

involved in the model. We therefore, for the sake of sim-

plicity, set default values for the parameters as β = 0.5,

λ = 0.5 and ε = 10−4.

An alternative approach is to obtain steady-state

probabilities directly. Since p(∞) = (1 − λ)WTp(∞) +

λp(0) represents the steady state, we solve this linear

equation and obtain p(∞) = λ(I − (1 − λ)WT)−1p(0)

where I is the identity matrix. In literature, the simu-

lation method is more frequently used. However, we

do not see any distinguishable difference between the

results obtained by these two strategies in most situa-

tions, except that the method of matrix inversion is

typically two or three times faster.

3.4 Validation Methods and Evaluation

Criteria

We perform 10-fold cross-validation experiments

to validate our method and evaluate its performance

against three criteria. For this purpose, we partition

known associations between objects and users at ran-

dom into 10 subsets of almost equal size. In each vali-

dation run, we use nine subsets as training data to cal-

culate discriminant scores and adopt the remaining one

as test data for assessment. Repeating such a valida-

tion run 10 times until every subset is served as the test

data once, we collect the results and derive three crite-

ria to measure recommendation performance, as shown

below.

The first criterion is the mean rank ratio (MRR).

In the validation experiment, we collect for each user a

set of test objects that are preferred by the user in the

test data and a set of control objects that are not pre-

ferred by the user in either training or test data. We

then repeatedly sort a test object against the control

ones to obtain its rank. In the case that multiple ob-

jects have equal scores, we break the tie by assigning

equal ranks to these objects. With ranks of all test ob-

jects collected, we divide them by the total number of

test and control objects to obtain rank ratios and the

average over all ratios to obtain the mean rank ratio.

The second criterion is the area under the rank re-

ceiver operating characteristic curve (AUC). At a cer-

tain threshold of the rank ratio, we define the sensi-

tivity as the fraction of test objects ranked above the

threshold and the specificity as the fraction of control

objects ranked below the threshold. Varying the thresh-

old from 0 to 1, we are able to plot a rank receiver op-

erating characteristic (ROC) curve (sensitivity versus

1-specificity) and further calculate the area under this

curve as the AUC score.

The third criterion is the hit rate (HIT) at a rank

threshold T (with default value 10 in this paper). With

all test objects ranked, we count the number of test ob-

jects ranked among top T and divide this number by

the total number of test objects to obtain the hit rate

at threshold T . Clearly, a method with high recom-

mendation performance tends to have a small mean

rank ratio, a large AUC score and a large hit rate.

4 Experimental Results

4.1 Data Sources

Three large-scale datasets from the Koblenz Net-

work Collection 1○ were obtained for the validation of

our approach.

The first dataset of CiteULike contains 153 277 tags

assigned to 731 769 publications by 22 715 users[51]. Fo-

cusing on publications annotated by five or more tags,

users having annotated 10 or more publications, and

tags being used 10 or more times, we obtained 4 633

publications that were annotated by 7 463 users with

the use of 6 703 tags. We further identified 35532 links
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between the publications and the users, 45 679 links be-

tween the publications and the tags, and 266841 links

between the users and the tags.

The second dataset of MovieLens contains 16 528

tags assigned to 7 601 movies by 4 009 users[52]. Fo-

cusing on movies annotated by two or more tags, users

having annotated two or more movies, and tags being

used two or more times, we obtained 3 856 movies that

were annotated by 1 165 users with the use of 2 785 tags.

We further identified 24 754 links between the movies

and the users, 23 906 links between the movies and the

tags, and 14 137 links between the users and the tags.

The third dataset of BibSonomy contains 204 673

tags assigned to 771 290 publications by 5 794 users[53].

Focusing on publications annotated by five or more

tags, users having annotated 10 or more movies, and

tags being used 10 or more times, we obtained 1 442

publications that were annotated by 1 968 users with

the use of 4 972 tags. We further identified 11 152 links

between the publications and the users, 23 300 links be-

tween the publications and the tags, and 139399 links

between the users and the tags.

4.2 Correlation Between Similarities

We validated whether the derived user similarity

was correlated with object similarity according to anno-

tated associations between objects and users. Focusing

on the CiteULike dataset, we derived a user similarity

matrix and an object similarity matrix using the cosine

measure. We then derived a quantity named mean ob-

ject similarity by calculating for each pair of users the

average pairwise similarity between their associated ob-

jects. Next, we analyzed the relationship between user

similarity and mean object similarity by partitioning

mean object similarity values into 30 bins of equal size

and averaging over both mean object similarity values

and corresponding user similarity values in each bin.

As summarized in Fig.2(a), the results show the

positive correlation between user similarity and mean

object similarity. For example, for user pairs with weak

mean object similarities (e.g., no more than 0.10), the

corresponding user similarities are also low (i.e., no

more than 0.05). For user pairs with relatively strong

mean object similarities (e.g., about 0.2), the corre-

sponding user similarities are also relatively strong (i.e.,

about 0.1). Furthermore, it is clear that, with an in-

crease in mean object similarity, user similarity also

increases, suggesting that users having selected simi-

lar objects also tend to be similar. We then derived

two vectors, one composed of mean similarities of user

pairs in the bins and the other consisting of corre-

sponding mean object similarities, and calculated the

correlation coefficient of these two vectors to quantita-

tively measure their relationship. Results show that the

Pearson’s and Spearman’s correlation coefficients are

0.951 1 (p-value = 8.88× 10−16) and 0.936 4 (p-value =

3.7× 10−8), respectively, revealing that user similarity

positively correlates with mean object similarity with

strong statistical significance.
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be explained using a regression through the origin model. (b)
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We further performed a regression analysis using the

user similarity as the response and the mean object

similarity as the predictor. Results show that the re-

sulting model is a good fit (r2 = 0.901 1). The slope co-

efficient is estimated as 0.455 7 and is statistically signif-
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icant (p-value = 8.15×10−16 by one-sided t test), while

the intercept coefficient is almost zero (0.007 5) and is

not significant (p-value = 0.132 by one-sided t test). We

therefore discarded the intercept and fitted a regression

through the origin model. Results show that the result-

ing model is a good fit (r2 = 0.975 2), and the slope co-

efficient is estimated as 0.493 3 (p-value < 2.20× 10−16

by one-sided t test). These results demonstrate that

mean object similarity implies user similarity.

In a similar way, we validated whether the derived

object similarity was correlated with tag similarity ac-

cording to annotated associations between objects and

tags. To achieve this goal, we calculated a tag similarity

matrix using the cosine measure and derived a quantity

named mean tag similarity by calculating for each pair

of objects the average pairwise similarity between their

associated tags. We then analyzed the relationship be-

tween object similarity and mean tag similarity using

the aforementioned method. Results, as summarized in

Fig.2(b), show that the object similarity increases with

the increase in the mean tag similarity, and the Pear-

son’s and Spearman’s correlation coefficients between

them are 0.844 2 (p-value = 2.41 × 10−9) and 0.819 0

(p-value = 7.76 × 10−7), respectively. Furthermore, a

regression through the origin model fits the data well

(r2 = 0.914 9) with the slope coefficient estimated as

0.7346 (p-value < 2.20 × 10−16 by one-sided t test).

These results demonstrate that mean tag similarity im-

plies object similarity.

4.3 Improvement of Recommendation

Performance

We investigated proportions of test objects that

were ranked among top positions in the cross-validation

experiment on the CiteULike dataset (with α = 1.5%,

β = 0.5, γ = 0.5, λ = 0.5). As shown in Fig.3(a), our

approach is able to rank 4.42% test objects at the top

on average. Since a random guess procedure can only

rank 1/(4 633 − 35 532/7 463)× 100% ≈ 0.021 6% test

objects at the top on average, the effectiveness of our

method is strongly supported.

We then compared the ranking performance of our

method with that of SWalk, ODiff (with λ = 0.4), UD-

iff (with λ = 0.7), OSnn (with α = 10%) and USnn

(with α = 10%). Note that the parameters involved

in these methods are determined by grid search pro-

cedures to maximize the performance of these meth-

ods. We observe that SWalk ranks 4.19% of objects

at the top, 0.23% less than our method. ODiff ranks

3.93% of objects at the top, 0.49% less than our ap-

proach. One-sided chi-squared tests suggest that the

proportion of test objects ranked at the top by our

method is significantly larger than those by SWalk (p-

value = 5.92×10−4) and ODiff (p-value = 5.92×10−4).

We also observe that UDiff, OSnn, USnn rank 3.39%,

2.49% and 2.89% of objects at the top, respectively,

and 1.03%, 1.93% and 1.53% less than our approach,

respectively. One-sided chi-squared tests also suggest

that our method ranks more test objects at the top

than other methods after the Bonferroni correction for

multiple comparison (p-values < 2.27× 10−9).

We calculated the proportion of test objects ranked

higher than or equal to a position to obtain the empiri-

cal cumulative distribution of top ranked test objects.

As shown in Fig.3(b), the cumulative distribution curve

of our method clearly stays above those of the other

methods, suggesting the superior performance of this

approach. In detail, our method ranks 22.47% of test

objects among the top 10, while SWalk, ODiff, UDiff,

OSnn and USnn rank 19.33%, 21.82%, 16.94%, 12.23%
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and 14.76% of test objects among top 10, respectively.

Pairwise one-sided chi-squared tests suggest that the

proportion of test objects ranked among the top 10 by

our method is significantly larger than those by the oth-

ers (p-values < 0.05).

We then performed an object-wise comparison of

ranking performance for different methods by testing

whether rank positions of test objects produced by one

method are significantly higher than those yielded by

another through a one-sided Wilcoxon rank sum test.

Results suggest that our method outperforms all the

other methods in comparison (p-values < 2.20×10−16).

We further performed a user-wise comparison of rank-

ing performance via a binomial exact test. For a certain

user, we claimed that method A outperforms method

B if rank positions of more than half test objects gene-

rated by the former are ahead of those provided by the

latter. We then counted the number of users for whom

method A outperforms B and tested whether the rela-

tive frequency of such users is greater than 0.5 using a

one-sided binomial exact test. Results suggest that our

method outperforms all the other methods in compari-

son at the statistical significance level of 10−8 (with the

Bonferroni correction applied for multiple comparison),

consistent with the results obtained from the object-

wise comparison.

We further assessed the performance of each method

using the criteria defined in the method section, and

summarized the results in Table 2 and Fig.4, from which

we observe that our approach in general outperforms all

the other methods. For example, our method achieves

a mean rank ratio (MRR) of 4.73%, suggesting that

on average a test object can be ranked at about 4∼5

out of 100 candidates. In comparison, SWalk (SW),

as the method with the second highest performance,

only achieves an MRR of 6.07%. ODiff (OD), UD-

iff (UD), OSnn (OS) and USnn (US) achieve MRRs

of 8.00%, 8.35%, 13.56% and 13.68%, respectively. A

one-sided Wilcoxon rank sum test based on 10 inde-

pendent repeats of the validation experiments suggests

that MRR of our method is significantly smaller than

that of SWalk (p-value = 9.13× 10−5), which is in turn

significantly smaller than those of the other methods.

Table 2. Performance of Different Methods
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16.94%, 12.23% and 14.76%, respectively. One-sided

Wilcoxon rank sum tests again support the statistical

significance of the superiority of our method (p-values

< 9.13× 10−5).
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Fig.5. ROC curves of different methods. The curve of Trinity
climbs much faster towards the top left corner of the plot than all
the other methods, indicating the high performance of Trinity.

4.4 Contributions of Individual Components

An object-user-tag heterogeneous network H =

(O,U ,T ,A,B,C) is composed of an object layer

O, a user layer U , a tag layer T and interconnec-

tions between these layers (A, B and C). The ini-

tial probability in the random walk model p̃(0) =

((o(0))T, (u(0))T, (t(0))T)T consists of probabilities in

the object layer (o(0)), the user layer (u(0)) and the

tag layer (t(0)). It is therefore necessary to assess con-

tributions of these components to the final performance

of our method.

We first removed information regarding objects

from the transition matrix by setting components O,

Ã, A
∼

, B̃ and B
∼

to zero. The resulting model therefore

simulated random walking on a two-layered heteroge-

neous network that was composed of users and tags

only. Results, as shown in Table 3 and Fig.6, which

have the same method index, unsurprisingly suggest

the ineffectiveness of this model in making recommen-

dations, due to the fact that the steady-state probabil-

ity of staying in any object will always be zero with this

model. In detail, MRR is as high as 49.98%, while AUC

and HIT are as low as 50.00% and 0.17% respectively,

all similar to the results of a random guess procedure.

Table 3. Contribution of Individual Components
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as 8.46%, while AUC and HIT are as low as 91.53% and

17.70%, respectively. Nevertheless, we also see an obvi-

ous drop in performance when comparing these results

with those of the original model (MRR = 4.73%, AUC

= 95.27% and HIT = 22.47%), suggesting the impor-

tance of the tag information in making recommenda-

tions.

We then removed information regarding tags from

the transition matrix by setting components T , B̃, B
∼

,

C̃ and C
∼

to zero, resulting in a model that simulates

random walking on a two-layered object-user heteroge-

neous network. Results, as shown in Table 3 and Fig.6

(MRR = 9.31%, AUC = 90.69% and HIT = 13.95%),

suggest the mediocre performance of this model and

verify the importance of the tag information in our

three-layered random walk model.

We further removed object information from the ini-

tial probability by setting o(0) to zero. Results, as

shown in Table 3 and Fig.6 (MRR = 4.86%, AUC =

95.13% and HIT = 18.65%), are not significantly dif-

ferent from those of the original method, suggesting

that, with the presence of both user and tag informa-

tion in the initial probability, the importance of object

information is limited. Similarly, the removal of the

user information by setting u(0) to zeros also results in

a model (MRR = 4.67%, AUC = 95.33% and HIT =

18.39%) that is not significantly different from the origi-

nal one, suggesting the limited importance of the user

information to the initial probability. Furthermore, the

removal of the tag information from the initial proba-

bility by setting t(0) to zero also results in a model

(MRR = 5.15%, AUC = 94.85% and HIT = 17.07%)

that is not significantly different from the original one,

again suggesting the limited importance of the tag in-

formation to the initial probability.

With the above analysis, we conclude that the infor-

mation of objects, users and tags in the transition ma-

trix has a larger contribution to the final performance of

our approach than that in the initial probability vector.

In the transition matrix, information regarding objects

has the highest contribution, followed by information

about tags and then that about users. In the initial

probability vector, information about tags has the high-

est contribution, followed by information about objects

and that about users. All these results support the use-

fulness of tag information in a recommender system.

4.5 Robustness to Parameters

There are three parameters in our method: the

number of nearest neighbours (α), the probability of

staying in the same layer (β) and the restart probabi-

lity (λ). By default, these parameters α, β and λ are

set to 1.5%, 0.5 and 0.5, respectively. It is therefore

necessary to assess how these parameters influence the

performance of our method.

We first varied the number of nearest neighbours,

α, from 1.0% to 2.0% with step 0.1%, while setting the

other parameters to their default values. The perfor-

mance of our method at different values of this parame-

ter, as shown in Fig.7(a), clearly suggests the robust-
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ness of our method to this parameter in a wide range.

For example, as the parameter values increase, MRR

improves slowly from 4.74% at α = 1.0%, to 4.73% at

α = 1.5%, and then stabilizes afterwards. Similarly,

as the parameter values increase, AUC improves slowly

from 95.26% at α = 1.0% to 95.27% at α = 1.5%,

and then stabilizes afterwards. Furthermore, as the

parameter values increase, HIT improves slowly from

22.16% at α = 1.0% to 22.47% at α = 1.5%, and then

stabilizes afterwards. However, when considering the

variance in validation experiments, differences in HIT

at different α values are not statistically significant. We

therefore conclude that the performance of our method

is very robust regarding this parameter. This property

is crucial to a good model in that one can simply select

the parameter at the default value without losing the

high performance. For the sake of simplicity, we select

α = 1.5% by default in this paper.

We then varied probability β of walking in the same

layer from 0.1 to 0.9 with step 0.1 while fixing the other

parameters to their default values. The performance

of our method at different values of this parameter is

shown in Fig.7(b). Taking the mean rank ratio as an

example, when β = 0.5, MRR is 4.73%. When β de-

creases towards small values, MRR decreases to 4.67%

at β = 0.1, suggesting that values of β in this range do

not significantly affect the performance. On the other

hand, when β increases towards large values, MRR in-

creases to 6.31% at β = 0.9, suggesting a preference

for small β values. The criterion of AUC demonstrates

an opposite pattern to MRR, due to the fact that these

two criteria are obviously negative correlation. When β

decreases towards small values, AUC increases slightly

from 95.27% at β = 0.5 to 95.56% at β = 0.1, suggest-

ing that large values of β are preferred. On the other

hand, when β increases towards large values, AUC de-

creases slowly to 93.68% at β = 0.9, suggesting a prefe-

rence for small values of β. The criterion of HIT, how-

ever, shows a different pattern. When β increases from

0.1 to 0.5, HIT increases from 20.23% to 22.47%. After-

wards, HIT drops towards 19.11% at β = 0.9. Taking

all the above observations into consideration, we con-

clude that neither small nor large values of β are pre-

ferred. Therefore, we take the middle value β = 0.5 as

the default.

We finally varied the restart probability, λ, from

0.1 to 0.9 with step 0.1 while setting the other parame-

ters to their default values. The performance of our

method at different values of this parameter, as shown

in Fig.7(c), again suggests the robustness of our method

to this parameter in a wide range at large values. Tak-

ing the mean rank ratio as an example, MRR is 4.73%

at λ = 0.5. When λ decreases towards small values,

MRR increases to 6.55% at λ = 0.1, suggesting that

small values of this parameter are not preferred. On

the other hand, when λ increases towards large values,

MRR shows only fluctuations, suggesting the stability

of this parameter in this region. AUC demonstrates an

opposite pattern to that of MRR. AUC is 95.27% at

λ = 0.5. When λ decreases towards small values, AUC

decreases to 93.45% at λ = 0.1. When λ increases

towards large values, AUC exhibits a stable pattern,

showing only reasonable fluctuations. Therefore, ac-

cording to this criterion, we also have the conclusion

that small values of this parameter are not preferred

while large values do not significantly affect the perfor-

mance. HIT demonstrates a similar pattern as AUC,

though the highest value is achieved at λ = 0.4. In

detail, HIT is 22.54% at λ = 0.4. When λ decreases to-

wards small values, HIT decreases to 20.04% at λ = 0.1.

When λ increases towards large values, HIT decreases

slightly to 21.58% at λ = 0.9. Taking all the above

into consideration, we have the conclusion that neither

small nor large values of λ are preferred. Therefore, we

take the middle value λ = 0.5 as the default.

4.6 Consistency Across Different Datasets

We finally asked the question whether the excellent

recommendation performance achieved by our method

is consistent between different datasets. To answer this

question, we replaced the CiteULike dataset with the

MovieLens dataset (1 165 users, 3 856 objects and 2 785

tags) and repeated the validation experiments. The pa-

rameters for the methods are optimized by grid search

as, Trinity (α = 1.5%, β = 0.5, λ = 0.5), ODiff

(λ = 0.4), UDiff (λ = 0.9), OSnn (α = 10%) and

USnn (α = 10%). Results, as shown in Table 4 and

Figs.8(a)∼8(c), suggest that the excellent performance

achieved by our method on the MovieLens dataset is

consistent with that exhibited on the CiteULike one.

More specifically, our method achieves an MRR of

13.27%, an AUC of 86.72% and an HIT of 17.66%,

while ODiff, as the best existing method, only achieves

an MRR of 15.15%, an AUC of 84.83% and an HIT

of 14.52%. These results suggest the superiority of our

method over the existing methods.

We further replaced the CiteULike dataset with the

BibSonomy one (1 968 users, 1 442 objects and 4 972

tags) and repeated the validation experiments. The pa-

rameters for the methods are optimized by grid search
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as, Trinity (α = 1.0%, β = 0.5, λ = 0.6), ODiff

(λ = 0.4), UDiff (λ = 0.9), OSnn (α = 10%) and

USnn (α = 10%). Results, as shown in Table 5 and

Figs.8(d)∼8(f), again suggest that the excellent perfor-

mance achieved by our method on this dataset is con-

sistent with that exhibited on the CiteULike one. For

example, our method achieves an MRR of 18.85%, an

AUC of 81.13% and an HIT of 12.58%, while ODiff,

as the best existing method, only achieves an MRR

of 23.08%, an AUC of 76.89% and an HIT of 11.82%.

These results further support the superiority of our

method over the existing methods.

Table 4. Results on the MovieLens Dataset
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The success of the Trinity method can be attributed

to a combination of several aspects. First, the near-

est neighbour strategy for constructing networks in dif-

ferent layers of the object-user-tag network effectively

removes weak relationships that may adversely affect

the correct calculation of discriminant scores. Second,

the random walk with restart model utilizes informa-

tion in a more effective way than most of the exist-

ing approaches, such as those based on the ordinary

collaborative filtering principle. Third, the combined

use of not only relationships between objects but also

those between users and tags in a single object-user-tag

network improves the performance over methods that

rely on only one or two types of relationship. As a re-

sult, Trinity achieves significant improvements in over-

all recommendation performance over existing meth-

ods.

Certainly, our approach can be further investigated

from the following aspects. First, although we demon-

strated the effectiveness of the random walk model, it

is certainly not the only choice. Recently, graph algo-

rithms such as the maximum flow and statistical models

such as the regression analysis have all been success-

fully used in the analysis of biological networks. The

possibility of introducing these methods in the design

of recommender systems is then worth noting. Second,

there are other types of information available for de-

scribing relationships between objects and users. For

example, social networks have been shown to be a rich

resource for relationships between users, while contents,

annotations and comments can all be used to infer simi-

larities between objects. How to integrate such valuable

information towards to a recommender system of even

higher performance will be a direction worth pursuing.

Finally, the code start problem has been well recog-

nized as one of the major obstacles to the improve-

ment of recommendation performance. Although ad-

dressing this problem is already beyond the scope of

our method, recent studies do suggest the possibility of

overcoming the cold start problem from the viewpoint

of semi-supervised co-training[54]. The incorporation

of their ideas into our method to further enhance the

performance of Trinity is one of our immediate goals.
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