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Abstract The increasing requirements of intensive interoperaterbility among the distributed nodes desiderate the high

performance network connections, owing to the substantial growth of cloud computing and datacenters. Network I/O

virtualization aggregates the network resource and separates it into manageable parts for particular servers or devices,

which provides effective consolidation and elastic management with high agility, flexibility and scalability as well as reduced

cost and cabling. However, both network I/O virtualization aggregation and the increasing network speed incur higher

traffic density, which generates a heavy system stress for I/O data moving and I/O event processing. Consequently, many

researchers have dedicated to enhancing the system performance and alleviating the system overhead for high performance

networking virtualization. This paper first elaborates the mainstreaming I/O virtualization methodologies, including device

emulation, split-driver model and hardware assisted model. Then, the paper discusses and compares their specific advantages

in addition to performance bottlenecks in practical utilities. This paper mainly focuses on the comprehensive survey of state-

of-the-art approaches for performance optimizations and improvements as well as the portability management for network

I/O virtualization. The approaches include various novel data delivery schemes, overhead mitigations for interrupt processing

and adequate resource allocations for dynamic network states. Finally, we highlight the diversity of I/O virtualization besides

the performance improvements in network virtualization infrastructure.
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1 Introduction

The past decade has witnessed the rapid develop-

ment of cloud computing and datacenter infrastruc-

tures, and meanwhile, more and more intensive data

exchanges are required among the distributed servers

in order to accomplish complex event processing[1],

business-related data processing[2], decision support,

video conferencing, map-reduce and graph computing

tasks[3], etc. According to a Cisco report, the amount

of global datacenter IP traffics will nearly quadruple

over the next five years, growing at a compounded an-

nual growth rate of 31%[4]. High intensive collabora-

tive workloads require higher physical bandwidth con-

sumption, thereby high performance network devices

are widely adopted in datacenter networks. Currently,

10 Gigabit per second (Gbps) Ethernet network inter-

face cards (NICs) have become the mainstream network

devices in the cloud computing and datacenters[5-6] and

40 Gbps∼100 Gbps NICs are in the development or

close to deployment[7].

Input/output (I/O) virtualization abstracts upper-

layer protocols from physical connections and dynam-

ically shares the high-speed interconnect among vari-

ous requirements without any restrictions on physical

port counts[8]. I/O virtualization consolidates many

connection traffics to a single physical link to achieve

high network resource utilization, and simplifies the

management of the I/O devices with software-based
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configuration 1○ 2○. These densified traffics can effec-

tively use fewer cards, cables, and switch ports, so as

to significantly reduce datacenter server-to-network and

server-to-storage cabling by more than 70 percent 3○,

and significantly lower the cost, complexity, and power

requirements 4○, accordingly. Therefore, I/O virtualiza-

tion technology achieves outstanding behaviors in terms

of greater flexibility, greater utilization and faster pro-

visioning compared with the traditional NIC and HBA

(host bus adapter) card architectures 5○.

The continuously increasing speed and density of

network traffics result in a higher amount of data move-

ment and higher frequency of network event notifica-

tions through the network transmission path. More-

over, the multiplexing of virtual machines (VMs) on

sharing physical server resource causes frequent context

switch. This costly overhead inflicts the network I/O

efficiencies and responsiveness seriously. Therefore, the

effectiveness and the efficiency of high performance net-

work virtualization are critical for virtualization-based

cloud computings and datacenter systems[9]. To this

end, novel network data transmission schemes, effective

network event notification processing mechanisms and

dynamic system scheduling methods are highly desired

to improve the network I/O virtualization performance,

especially for 10 Gbps Ethernet NICs and higher speed

NICs connections[10].

Generally speaking, I/O virtualization can be classi-

fied into three methods according to the network virtua-

lization process, namely the device emulation model,

the split driver model, and the hardware assisted model.

In the full virtualization scheme, the hypervisor emu-

lates device hardware with clean abstraction, but the

I/O operation of guest operating system (OS) needs a

costly and complicated trap-and-emulation process to

execute the lowest level of the conversation[11]. The

para-virtualization (PV) scheme employs split driver

model to set up a more efficient cooperation channel be-

tween the guest OS and the hypervisor 6○. However, the

guest in PV needs to be modified to be aware of its vir-

tualized status, while the guest OS in full virtualization

is unaware of virtualization and requires no changes to

work[12]. More recently, hardware assisted I/O virtuali-

zation offloads the device emulation functions to spe-

cific hardware, and provides natively shareable devices

for each VM with direct access to I/O device without

VMM involvement, such as single- and multi-root I/O

virtualization proposed by Peripheral Component In-

terconnect Special Interest Group (PCI-SIG) 7○.

In this survey, we comprehensively and profoundly

discuss the challenges for high performance network vir-

tualization and the requirements according to specific

high performance network virtualization architectures.

Also, we make a detailed survey of the state-of-the-

art approaches for performance optimizations based on

data moving, interrupt handling and resource alloca-

tion. Besides, we state the management enhancement

as well as the diversity of I/O virtualization.

The remainder of the paper is organized as fol-

lows. Section 2 introduces the basic I/O virtualiza-

tion models and their different I/O properties. After-

wards, we conclude the performance bottlenecks and

challenges in Section 3. Section 4 concludes and sum-

marizes the state-of-the-art research strategies about

performance optimizations and improvements for net-

work I/O virtualization, as well as discusses the diver-

sity of I/O virtualization. Finally, we conclude this

paper in Section 5.

2 Network I/O Virtualization Models

Virtualization technology has a long development

history for logically dividing the system resources

provided by mainframe computers between different

applications[13-14]. I/O virtualization is a critical com-

ponent to achieve the successful and effective virtua-

lized servers. It is recognized that 75% of virtualized

servers require seven or more I/O connections per de-

vice, and require more frequent I/O reconfigurations 8○.
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In what follows, we will introduce three I/O virtual-

ization models: the device emulation model, the split

driver model and the hardware assisted model.

2.1 Device Emulation

The device emulation method for I/O virtualization

is normally employed in full-virtualization, which mim-

ics I/O operations of the physical devices by virtualiz-

ing sensitive and privileged instructions in virtual ma-

chine monitor (VMM) layer. This effect fully abstracts

and decouples the underlying hardware from guest OS

with the combination of binary translation and direct

execution techniques. The device emulation method

offers the best performance isolation and security for

I/O operations, and simplifies migration and portabil-

ity as guest OS instance and user level instructions

run unmodified without the awareness of virtualization.

The device emulation method using binary translation

has become the de facto standard in VMware product

series, such as VMware Workstation[15] and VMware

ESX Server[16]. In addition, QEMU[17] of Xen[12] and

KVM[18] can also be configured to deploy the device

emulation method for I/O virtualization.

However, the device emulation method provides a

weak fault isolation because VMM needs to translate

all operating system instructions on the fly and caches

the results, so that a malfunction of VMM device driver

will lead to the I/O outages of all guests. Moreover, it

causes the performance challenges owing to the costly

trap-and-emulation of these sensitive and privileged in-

struction requests at runtime. It is reported that every

typical trap-and-emulation for an I/O operation will re-

sult in the context switch between guest OS and VMM

that costs around 3 000∼5000 CPU cycles[19]. In prac-

tice, it significantly degrades the I/O throughput and

scalability, and loses the effective utilization of physical

line rate. For example, a virtual 1 Gbps Ethernet NIC

can only achieve about 250 Mbps throughput with the

full utilization of a CPU core[20]. This challenge pre-

vents the device emulation method from being deployed

for high performance network in cloud computing and

datacenters equipped with modern NIC (e.g., 10 Gbps

NIC).

2.2 Split Driver Model

To alleviate high overhead of VMM intervention,

the split driver model of PV was first developed by Xen

group[12,21]. KVM’s virtio[18,22], VMware tools and vir-

tual machine interface[23] can also support split driver

model for PV.

The split driver model of Xen PV is illustrated in

Fig.1, which consists of a front-end driver, a back-end

driver, and event notification channels between the do-

mains. Every guest domain runs one or more virtua-

lized network interfaces, called front-end drivers, to re-

quest the network access from driver domain (dom0).

Each front-end driver works cooperatively with the

back-end driver in dom0. The front-end driver and the

back-end driver communicate with virtual descriptor

queues, which are implemented with shared rings and

memory pages, to exchange requests and responses.
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Driver
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Fig.1. I/O virtualization architecture of split driver model.

The split driver model employs the efficient I/O

communication channel (I/O channel) in order to re-

duce the hypervisor intervention for emulating port I/O

and memory mapped I/O functions. Consequently, the

split driver can take advantage of host device capabili-

ties to offer more throughput and less CPU utilization

than the device emulation method. Even when PV re-

quires deep OS kernel modifications, the split driver

model shows its great flexibility in supervision and mi-

gration, and support in modern hypervisors and guest

domains[11,24].

2.3 Hardware Assisted I/O Virtualization

The device emulation and split driver models are

both classified into software-based I/O virtualization

which enables a rich set of features and simplified mana-

gement. However, they suffer from high overhead stem-

ming from either excessive trap-and-emulations or bulk

data movements[21,25].

Consequently, the hardware assisted I/O virtualiza-

tion model was developed for natively shareable de-

vices, which inherits direct I/O technology through

the use of I/O memory management unit (IOMMU)

to offload memory protection and address translation.

The PCI-SIG gives the specifications to standardize
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the ways of bypassing the VMM’s involvement in data

movement by providing independent memory space, in-

terrupts, and DMA streams for each VM. Typically,

single root I/O virtualization (SR-IOV)[26] was created

by PCI-SIG, which designs a set of hardware enhance-

ments for the PCIe device to remove major VMM in-

terventions for data movement, such as packet classifi-

cation and address translation.

The SR-IOV virtualization architecture is shown in

Fig.2, where an SR-IOV-capable device can be confi-

gured by the VMM to appear in the PCI configuration

space as multiple virtual functions (VFs). The SR-

IOV-capable device provides configurable numbers of

independent VFs, each VF with its own configuration

space completed with base address registers (BARs).

The physical function (PF) driver in a service OS (host

OS) is responsible for managing and configuring VFs,

and each VF driver runs in a guest OS as a normal de-

vice driver to access its dedicated VF directly through

IOMMU. Consequently, SR-IOV can bypass the hy-

pervisor to alleviate data moving overhead and enable

lower CPU utilization, reduced system latency and im-

proved networking throughput.

Data Path
Interrupt Path

Service VM

IOVM

PF Driver VF
Driver

VM 2

VF
Driver

VM 1

Virtual Interrupt

Interrupt
Dispatch

Hypervisor

CPU/Memory/Disk/Other
Devices

Physical
Interrupt

PF VF

IOMMU

Layer-2 Switching

SR-IOV NIC

VF

Fig.2. SR-IOV Architecture.

In comparison with software-based I/O virtualiza-

tion, SR-IOV is able to achieve close to native per-

formance by offloading I/O transmission overhead to

the hardware assistance techniques on NIC. However,

there are still some challenges. 1) Interrupt handling

still involves VMM interception with heavy overhead

and excessive frequency[9,27-28]. 2) Hardware assisted

technology limits the scalability since the number of

VF is limited by the feature of SR-IOV capable device.

3) VM with SR-IOV driver has difficulties to be mi-

grated to a remote server, since VF driver’s running

status is partly maintained in hardware, and cannot be

extracted and restored easily on another server. The

detailed challenges will be depicted in the next section.

3 Requirements and Challenges

In the previous section, we have introduced three

models of network I/O virtualization. Note that the

device emulation model and the split driver model

are software-based implementation, while the SR-IOV

model offloads VMM intervention of the packet switch-

ing and data movement from software implementation

to NIC devices with hardware assisted layer-2 switch

and IOMMU for memory protection and address trans-

lation, respectively. Moreover, the virtual interrupt no-

tification and the related event processing procedure

remain similarly in the split driver model and SR-IOV.

In what follows, we will introduce the specific and de-

tailed challenges for I/O virtualization models.

3.1 Preliminary of Network Virtualization

Without loss of generality, network I/O virtualiza-

tion needs to achieve high throughput and low latency

with lightweight system overhead[29-32]. Moreover, net-

work I/O virtualization technology should provide high

scalability to share the physical I/O device to multi-

ple VMs for effective server consolidation. The flexible

manageability and maintainability are also the impor-

tant properties so that the VM with network virtual-

ization can be migrated across the physical server to

attain the efficient power consumption and workload

balancing.

3.2 Challenges of Network Virtualization

The primary overheads of network I/O virtualiza-

tion stem from the data transmission and interrupt

handling, especially for high performance NICs with a

physical line rate of 10 Gbps.

Excessive Interrupt. Both the split driver model

and SR-IOV incur significant notification overhead due

to the intervention of the hypervisor when handling

interrupts[19,33-34]. In native virtualized environments,

each I/O transaction triggers at least three exits: in-

terrupt issue, interrupt injection and interrupt comple-

tion. When guests need to issue I/O transactions, they

have to exit and switch to the hypervisor to send the

privileged I/O notification, and we call this procedure

interrupt issue (guest-to-host). After the completion

of I/O request, guest VMs need to exit to hypervi-

sor again and hypervisor will inject a virtual interrupt

and resume the guests’ execution, called interrupt in-

ject (host-to-guest). While the guests complete han-

dling the virtual interrupt and then signal the comple-

tion of interrupt handler by writing End of Interrupt
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(EOI) register, another exit called interrupt comple-

tion (trap-and-emulation of EOI) is triggered. SR-IOV

device only triggers two exits: interrupt injection and

interrupt completion, as a VM is able to issue I/O in-

structions directly to the SR-IOV-capable device. The

context switches occur due to the physical interrupts

and the trap-and-emulation on the virtual interrupt

controller. Consequently, an interrupt handling path

is lengthened and the cache is polluted. For exam-

ple, a process of trap-and-emulation EOI costs 8.4K

cycles and 47% of advanced programmable interrupt

controller (APIC) access exits are caused by EOI write

in SR-IOV network[35].

Meanwhile, the interrupt frequency in SR-IOV net-

work increases almost linearly with the number of VMs

increasing, as each VF generates its own interrupts in

parallel[28,35]. In the split driver model, upon pro-

cessing an inbound packet, the back-end driver inter-

rupts a guest OS immediately, causing excessive virtual

interrupts[19].

Data Moving/Transmission. In the split driver, the

data moving involves copying packet not only from NIC

to driver domain, but also from driver domain to guest

domain. Moreover, it is heavy system overhead to exe-

cute the software implementation for I/O delivery func-

tions components, such as Ethernet bridge, back-end

driver. For example, it costs about 18 200 CPU cycles

in a packet delivering[36].

Manageability. On one hand, SR-IOV compromises

the resource control capability of the hypervisor, and

suffers the problem of hardware stickiness. Once the

VF is “initialized” and is assigned to a VM, all packet

processing operations are performed in hardware, and

the VMM needs only to handle I/O interrupts with-

out data moving overheads. Since the device state is

partly retained by hardware, virtualization enabled de-

vice operations like migration and cloning are compli-

cated. On the other hand, current SR-IOV based solu-

tion does not support the dynamic assignment of VFs

to VMs. This static assignment prevents VF from be-

ing dynamically provisioned across VMs to meet SLA

(Service Level Agreement) requirements under different

workload conditions.

Scalability. Even without theoretical configura-

tion limitation, the software-based I/O virtualization

method can only share the physical NIC with a very

limited number of VMs, because of the expensive sys-

tem overheads. In contrast, hardware-assisted I/O vir-

tualization achieves the linear scalability, but PCI-SIG

specification has an upper bound of 64 VF drivers, In-

tel 82576 Gigabit Ethernet controller only supports no

more than 8 VFs[37], and Intel 82599 10 Gigabit Ether-

net NIC supports at most 64 VFs[38].

Due to these challenges for I/O virtualization, many

researchers have dedicated to searching for performance

optimization schemes and flexible management mecha-

nisms. The next section will demonstrate the state-of-

the-art approaches for software-based I/O virtualiza-

tion and SR-IOV, respectively.

4 Overhead Alleviation and Performance

Optimizations

As specific challenges described in Subsection 3.2,

data transmission and excessive interrupts affect net-

work performance, while manageability has enormous

impact on network maintenance and management.

Thus, we survey the network performance improve-

ments for data transmission and excessive interrupts in

Subsection 4.1 and Subsection 4.2, respectively. Meth-

ods for resource allocation speed both data moving and

interrupt handling, and they are summarized in Sub-

section 4.3. Then we briefly survey the improvements

of network manageability in Subsection 4.4 as well as

discuss the diversity of I/O virtualization in Subsec-

tion 4.5.

4.1 Improvements for Data Transmission

SR-IOV bypasses the hypervisor involvement in

data transmission, and achieves near native perfor-

mance with unshrinkable overheads for data transmis-

sion. However, the split driver model has a long data

path during the data transmission, which not only in-

curs significant overheads in extra data copy, but also

poses remarkable expenses to maintain functions of

packet delivery. In this subsection, we introduce the en-

hancement for network performance optimization from

the middle components, including Ethernet bridge, I/O

channel, guest domain, and data copy.

4.1.1 Optimization of Bridge

Bridge in the split driver model is utilized to multi-

plex network traffics for multiple guests. It is discovered

that Linux bridge executes 4K instructions and con-

sumes about 11K cycles to switch one packet, which is

mainly incurred by Netfilter interface to integrate filter

rules of received/transmitted packets[36,39]. The sim-

plified bridges are proposed to bypass most of the func-

tions of Netfilter interface with the re-implementation

of the internal interfaces to minimize extra function
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costs except the bridge itself. Liao et al.[39] verified

that the simplified bridge prototype can increase the

bandwidth by 7% and save 10% in core utilization per

gigabit when the message size is greater than 1 KB.

Martins et al.[40] proposed an efficient software-based

middlebox on Xen platform, named ClickOS, whose key

component is to replace costly Xen’s Ethernet bridge

with ClickOS switch to boost network performance.

4.1.2 Optimization of Front-End Driver

The front-end driver in guest domain posts full page

buffers as fragments in socket buffers, even for normal

size Ethernet frames. This fragment approach thereby

introduces copy overheads and socket buffer memory

allocation overheads. Researchers intended to mod-

ify the front-end driver by pre-allocating socket buffers

and posting those buffers directly into the I/O channel

instead of posting fragment pages[36]. The efficiency

was verified by saving 5% of the total CPU cost dur-

ing a packet delivery. Similarly, researchers provided

the large receive offload (LRO) approach to aggregate

small I/O requests, reducing the guest domain process-

ing cost by 15% (reduced from 4 721 to 4 013 CPU cy-

cles per packet)[41]. Moreover, Menon et al. presented

a virtual driver to offload scatter/gather I/O, TCP/IP

checksum and TCP segmentation[25] to optimize the

I/O performance.

Ram et al. found the costly cache miss penalties

caused by the front-end driver for accessing the packets,

and modified the front-end driver to prefetch packet

headers. This reduces the processing cost per packet

in the guest domain from 4 013 to 3 662 CPU cycles.

Ram et al. also noted that it is wasting to allocate

full 4 KB pages larger than MTU (maximum transmit

unit) of IP traffics, and suggested a half-page alloca-

tion technique (2 KB pages) to reduce TLB miss rate

and improve grant table re-usage, cutting the guest do-

main processing cost from 3 662 to 3 266 cycles for each

packet processing[41].

4.1.3 Optimization of Grant Mechanism

The grant mechanism in Xen enables the driver

domain to access I/O buffers in guest memory

safely without compromising the isolation property.

Researchers[36,41] realized that the grant operations in-

cur massive system cost due to acquiring and releasing

the spin lock, pinning pages, and atomic swap ope-

rations to update grant status. Consequently, they

combined the operations of multiple grants in a single

critical section to reduce the number of spin lock ope-

rations, reused the pages already pinned and mapped

to save pinning overhead, and separated grant fields in

different words to avoid the use of expensive atomic

operations. It is proven that these methods can save

about 4% CPU resource consumptions for each packet

moving cost.

4.1.4 Data Copy Cost Alleviation

Researchers also discovered that the remarkable

CPU overheads are introduced by misaligned data copy

during packet delivery[36], and proposed to use aligned

data copy methods. Of the 18 200 CPU cycles con-

sumed per packet delivery, this approach decreased

1 850 cycles per packet.

Menon et al. recognized that guest domains suffer

from much higher L2 cache miss rate than driver do-

main in [42], and they supported superpage mapping

and global page mapping in virtual I/O environment

for lowering L2 cache miss rates in [25]. Similarly, Liao

et al. proposed the cache-aware scheduler to arrange

the two virtual central processing units (vCPUs) with

data sharing on the two cores sharing L2 cache[39], and

this method increases the bandwidth by 13% and saves

11% core utilization. Moreover, researchers exploited

the facility of inter-domain shared memory provided by

Xen hypervisor to achieve higher performance, such as

XenSockets[43], IVC[44], Xway[45] and Xenloop[46].

4.2 Optimization for Interrupt Handling

Note that the most effective way to decrease the

overhead of packet transmission is to tackle the extra

copy by bypassing the hypervisor involvement with the

help of hardware assistance[47-48]. This method not

only eliminates the extra overhead of data copy, but

also diminishes overheads spent in driver domain, gust

domain and I/O channel. However, the SR-IOV model

treats with I/O event processing similarly to the split

driver model, which remains the critical system over-

head. Therefore, the mitigation methods on excessive

interrupt overheads for both the split driver model and

SR-IOV are concluded in this subsection. The opti-

mizations to alleviate interrupt handling overhead can

be classified into interrupt coalescing, Exit Less Inter-

rupt and event-based polling.

Interrupt Coalescing. Interrupt coalescing is a tech-

nique which triggers a hardware interrupt until a cer-

tain amount of work is pending, or a timeout timer trig-

gers. High performance NIC incurs excessive interrupts
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and many optimization results are obtained with the in-

terrupt coalescing idea[19,49] to throttle interrupts. Its

efficiency can achieve a CPU utilization reduction by

about 71% with the full use of physical line rate[19,33].

Moreover, the adaptive interrupt rate control method

to limit the number of interrupts can further reduce

CPU utilization and retain high throughput, according

to the awareness of practical VM run-time status or

application behaviors[28,35]. The side effect of interrupt

coalescing is that it may lengthen the I/O latency even

with lower CPU consumption.

Exit Less Interrupt. Recalling each interrupt in SR-

IOV network incurs at least two exits: interrupt injec-

tion and interrupt completion in Subsection 3.2. Dong

et al. proposed the direct virtual APIC EOI write em-

ulation to bypass the exit[35] which can reduce 5 900

CPU cycles for each interrupt completion exit. Gordon

et al. proposed ELI (Exit Less Interrupt) scheme[34]

to reduce the exit frequency, by delivering the hard-

ware interrupts directly to a given core with the help of

the guest’s shadow interrupt descriptor table (shadow

IDT) and exposing the EOI register immediately to

the guest. Furthermore, ELVIS (Efficient and Scal-

able Para-Virtual I/O System)[50] enhances the scala-

bility and performance for paravirtual I/O by allevi-

ating the competition among multiple co-hosted I/O-

intensive guests. Similarly, Tu et al. proposed the DID

(Direct Interrupt Delivery) scheme[51] that completely

eliminates most of the exits and priority inversion prob-

lem due to direct EOI write with interprocess interrupt

(IPI) based virtual interrupt injection mechanism.

Event-Based Polling. sEBP[9,27] exploits various

system events such as system calls and exits to imitate

the notification role of I/O interrupts. This completely

eliminates the interrupt virtualization in the critical

I/O path by accompanying events in virtualized envi-

ronment, and achieves up to a 59% performance im-

provement with a 23% higher scalability.

4.3 Resource Allocation

Due to the high dynamic I/O connection fea-

ture, dynamic and enhanced system resource alloca-

tion methods are also employed, such as I/O stealing

scheduling and parallelized driver.

Multicore Scheduling. Dong et al.[19] found that the

single threaded back-end driver in the split driver is not

capable of treating with the packets for 10 Gbps NICs,

and proposed virtual receive side scaling (vRSS)[37]

to effectively leverage multi-core processors. Further,

Huang et al. proposed multi-threaded network driver

(MTND) which allows SR-IOV to make full use of

multi-core resources, improving the throughput by 38%

with an additional 73% CPU cost[28].

I/O Stealing Scheduling. Liao et al. proposed the

dynamic and temporal credit sharing scheme among

vCPUs on Xen platform with I/O split model, and

the scheme assigns the favor of credits to I/O vCPUs

that are busy with processing network packets[39]. This

scheme can improve the network performance by 18%

and save 5% in CPU utilization. Further, researchers

studied the efficiency of SR-IOV, and proposed an ad-

justable credit scheduler. This method monitors the

SR-IOV driver to distinguish I/O intensiveness of ev-

ery VM, and I/O-intensive domains can obtain extra

credits from CPU-intensive domains with a constraint

of a predefined ratio[52-53]. This approach improves I/O

performance, and keeps the fairness of CPU allocation

since I/O-intensive domains may suffer from occasiona-

lly idle network traffic at credit allocation time.

4.4 Manageability Enhancement

Software I/O virtualization supports convenient

management for VM cloning and migration, while SR-

IOV networks suffer from portability issue due to hard-

ware stickiness. Dont et al. proposed HYVI[24], which

obtains efficient packet delivery with SR-IOV driver

between host and guest and achieves flexible network

management with software-based IP network packet fil-

tering mechanism for external network. Also, Dey et al.

presented Vagabond method in [11] which can seam-

lessly and dynamically switch the network between the

split driver model and SR-IOV solutions. They both

combine the high performance of SR-IOV with the flexi-

ble manageability of para-virtualizaiton.

4.5 Diversity of I/O Virtualization

Note that I/O virtualization is the architecture for

general I/O devices, which include Disk, other network

connection such as Infiniband, and other I/O devices

such as graphic card. However, in the article, we mainly

focus on the I/O virtualization for high speed Ether-

net NICs. For example, HyV[54] utilizes hardware as-

sisted I/O virtualization for Infiniband networks. Also,

Younge et al. leveraged IOMMU and SR-IOV tech-

nologies to support NVIDIA Tesla GPUS device[55-56].

There are also other research interests such as network

security and availability, involving in network I/O vir-

tualization. However, in this article, we concentrate on

performance optimizations.
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5 Conclusions

Network I/O virtualization decouples virtual device

function from physical device, which is an effective way

to reduce device cost and provide flexible manageabi-

lity. In this survey, we reviewed existing I/O virtu-

alization architectures, categorized them into the de-

vice emulation model, the split driver model and the

hardware assisted model, and discussed the character-

istics and differences for each model. Afterwards, we

profoundly analyzed the challenges in network virtual-

ization, and gave a detailed survey of the state-of-the-

art optimizations for network performance as well as

network manageability. As we focused on I/O virtu-

alization on Ethernet network’s performance and man-

ageability, we briefly noted that I/O virtualization also

confronts the performance challenges for diverse net-

work connections other I/O devices, as well as the I/O

access security and availability issues, etc.
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