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Abstract The distance-based outlier is a widely used definition of outlier. A point is distinguished as an outlier on

the basis of the distances to its nearest neighbors. In this paper, to solve the problem of outlier computing in distributed

environments, DBOZ, a distributed algorithm for distance-based outlier detection using Z-curve hierarchical tree (ZH-tree) is

proposed. First, we propose a new index, ZH-tree, to effectively manage the data in a distributed environment. ZH-tree has

two desirable advantages, including clustering property to help search the neighbors of a point, and hierarchical structure

to support space pruning. We also design a bottom-up approach to build ZH-tree in parallel, whose time complexity is

linear to the number of dimensions and the size of dataset. Second, DBOZ is proposed to compute outliers in distributed

environments. It consists of two stages. 1) To avoid calculating the exact nearest neighbors of all the points, we design a

greedy method and a new ZH-tree based k-nearest neighbor searching algorithm (ZHkNN for short) to obtain a threshold

LW . 2) We propose a filter-and-refine approach, which first filters out the unpromising points using LW , and then outputs

the final outliers through refining the remaining points. At last, the efficiency and the effectiveness of ZH-tree and DBOZ

are testified through a series of experiments.

Keywords outlier detection, multi-dimensional, distributed, large dataset

1 Introduction

Outlier detection is an important issue in the area

of data management, and it has a lot of practical appli-

cations in many fields, such as credit card fraud detec-

tion and environment monitoring. According to the

description of Hawkins[1], “an outlier is an observa-

tion that deviates so much from other observations as

to arouse suspicion that it was generated by a differ-

ent mechanism”. The outlier detection techniques have

been studied for years and several definitions of outliers

have been proposed. The model-based outlier was pro-

posed by the statistics community[2-3]. The data is as-

sumed to follow a parametric distribution. An object is

considered as an outlier if it shows significant deviation

from the assumed distribution. However, this approach

is not suitable for the datasets with a large number

of dimensions because finding a good model is often a

difficult problem. To overcome the above limitations,

researchers have turned to studying the non-parametric

or model-free approaches. Among them, the distance-

based outlier is one of the most widely used definitions.

1.1 Distance-Based Outliers

The basic idea for the distance-based outliers is that

if the distances of a point to its neighbors are large, this

point is an outlier. According to this foundation, three



1234 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

types of distance-based outliers have been presented:

• Othres outlier
[4]: given two parameters k, r, a point

p is an Othres outlier if the number of points within a

distance r from p is smaller than k;

• Okmax outlier
[5]: given two parameters k, n, Okmax

outliers are the top-n points that have the largest dis-

tances to their respective k-th nearest neighbor in the

dataset;

• Oksum outlier[6]: given two parameters k, n, the

weight of a point is the sum of the distances to its k

nearest neighbors. Oksum outliers are the top-n points

with the largest weights.

In this paper, we study the Oksum outlier in dis-

tributed environments, because this definition shows

distinct advantages compared with the others. Specifi-

cally, Ramaswamy et al.[5] pointed out two weaknesses

of Othres outlier
[4]. 1) It requires users to specify a dis-

tance r that is difficult to determine. 2) It lacks a rank-

ing for the outliers. Thus, they proposed Okmax outlier

to address the drawbacks above. Later, Angiulli and

Pizzuti[6-7] found that for any point p, Okmax outlier

only considers the k-th nearest neighbor of p but not

all p’s k nearest neighbors; thus they proposed Oksum

outlier as an improved version of Okmax outlier.

Fig.1 shows a simple example of Okmax outlier and

Oksum outlier. For k = 6, p1 and p2 have the same

probability to be an outlier if we use the Okmax outlier

definition. However, indeed, we can hardly consider p1
and p2 to be outliers in the same way. If we adopt

the Oksum outlier definition, the problem above can be

avoided.

p1 p2

(a) (b)

Fig.1. Example of Okmax outlier and Oksum outlier (p1 and p2
have the same distance to their respective 6th nearest neighbor).
(a) p1 and its neighbors. (b) p2 and its neighbors.

1.2 Contributions

A number of prominent outlier detection algorithms

have been designed based on the assumption that the

whole dataset is centralized in a single computational

node. Recently, many scholars have gradually realized

that the performance of a centralized algorithm is too

limited to deal with the issue of the continuously in-

creasing data scale. Consequently, some researchers

turn to studying distributed algorithms in order to

improve the computation speed. In this paper, we

study the Oksum outlier problem in distributed envi-

ronments and propose DBOZ, a distributed algorithm

for distance-based outlier detection using ZH-tree (Z-

curve hierarchical tree). The essence of Oksum outlier

detection is searching the k nearest neighbors (kNNs)

of points. Our contributions are summarized as follows.

1) We propose a new index, ZH-tree, to effectively

manage the data in a distributed environment. ZH-tree

has two advantages. First, ZH-tree shows cluster pro-

perty. The close points have similar Z-addresses, which

contributes to kNN searching. Also, it makes the calcu-

lations centralized on the local node and avoids a large

amount of network overhead. Second, ZH-tree takes

on a hierarchical structure, which makes our ZH-tree

support space pruning. Compared with other spatial

index structures (e.g., R-tree, M-tree, grid), our ZH-

tree is established by a bottom-up approach. Hence,

the time cost of building ZH-tree is O(d × |P |), where
|P | is the size of the dataset and d is the dimensiona-

lity. Notice that the time complexities of other spatial

indexes (e.g., R-tree, grid) are exponential with respect

to d. From this point of view, our ZH-tree index is

suitable for various environments, even for the dataset

with dozens of dimensions.

2) The Oksum outlier detection aims to find n points

with the maximum weights. In order to avoid calculat-

ing the exact weight of every point, we design a greedy

method (in Subsection 6.1.1) to select some appropriate

filtering points to prune the dataset. Through reserv-

ing some node information when generating the ZH-

tree, these filtering points can be obtained with a time

complexity of O(n). Then, we design a ZH-tree based

kNN searching algorithm (ZHkNN for short) to quickly

search the exact kNNs for each filtering point by taking

full advantages of ZH-tree.

3) We design a filter-and-refine approach to calcu-

late the final Oksum outliers. Plenty of points are di-

rectly filtered out using the ZH-tree index and the fil-

tering points selected by the greedy method. The re-

maining points form a candidate set. Utilizing the early

termination conditions, a large number of candidates

are disposed quickly. The remnent candidates can be

processed using ZHkNN algorithm.
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The rest of this paper is organized as follows. Sec-

tion 2 briefly reviews the related work of outlier detec-

tion. Section 3 states the problem of distance-based

outlier detection in a distributed environment. Sec-

tion 4 overviews the algorithms proposed in this paper.

Section 5 describes the preprocess phase. Section 6 de-

tails the DBOZ algorithm. Section 7 analyzes the ex-

perimental results. Finally, we conclude this paper in

Section 8.

2 Related Work

First, we briefly overview the existing outlier defi-

nitions and the centralized methods for outlier mining.

Second, we summarize the approaches for distributed

outlier detection.

2.1 Centralized Outlier Detection

Outlier detection is an important task in the data

management area and it has been studied extensively

by many researchers[8-9].

The model-based outliers are first proposed by the

statistics community[2-3]. In this type of definitions, the

objects in the dataset are modeled as a distribution. An

object is considered as an outlier depending on how this

object deviates from the assumed distribution. How-

ever, building a reasonable distribution is almost an

impossible task for the data with large dimensionalities.

To overcome the drawbacks of the previous definitions,

several model-free approaches[10] have been proposed,

including distance-based outliers[4-6], density-based

outliers[11] and clustering-based outliers[12]. Among

them, the distance-based outlier is one of the most

widely used definitions, which has been recognized by

many researchers.

There exist lots of studies focusing on developing

efficient methods to compute distance-based outliers,

and most of them are built on the assumption that

the overall dataset is centralized in a single machine.

The simple nested loop (NL) algorithm proposed by

Knorr and Ng[4] is a well-known basic method to com-

pute distance-based outliers, which gives a good per-

formance without any index for the dataset. ORCA

is an improved nested loop approach proposed by Bay

and Schwabacher[13]. The algorithm randomizes the

dataset before computing outliers in order to efficiently

prune the points that cannot be outliers. Angiulli and

Fassetti[14] proposed DOLPHIN that needs only two

scans to detect all the outliers through maintaining a

small portion of the dataset in main memory.

A number of existing studies target at utilizing spa-

tial indexes to improve the computational efficiency.

Knorr and Ng[4] proposed a cell-based algorithm to de-

tect outliers. The algorithm works well only for low-

dimensional datasets since the computation complexity

is exponential w.r.t. the number of dimensions. Spatial

indexes are also used in several outlier detection meth-

ods, e.g., R-tree[15], M-tree[16]. However, the searching

time of these indexes increases exponentially with the

number of dimensions[4,17]. Some researches focus on

detecting outliers in specific application scenarios, such

as uncertain data[18-19], temporal data[20], and so on.

2.2 Distributed Approaches for Outlier

Computing

In order to deal with large-scale datasets, a few re-

searchers attempt to use multiple machines to accele-

rate outlier mining, and several distributed approaches

have been proposed[21].

Hung and Cheung[22] proposed PENL, which is a

parallel version of Knorr and Ng’s NL algorithm[4].

PENL is not suitable for large-scale datasets because

the whole dataset needs to be transmitted many times

across the network during the processing. Moreover,

the algorithm is designed for Othres outliers; thus it

cannot be used in this work. Lozano and Acuna[23] pro-

posed a parallel algorithm based on Bay’s method[13],

which needs many iterations and lots of network trans-

mission.

The state-of-the-art approach is DSS algorithm pro-

posed by Angiulli et al.[24], which focuses on the same

problem with ours. DSS is implemented on a cluster

constituted by a single supervisor node and multiple

work nodes. The computing process contains a num-

ber of iterations. At the first iteration, the supervisor

node collects a small candidate set C1 from the overall

dataset, and broadcasts C1 to the work nodes. Each

work node computes the local k nearest neighbors of

each point in C1, and sends them back to the supervi-

sor node to compute the weights of these points. At the

second iteration, the supervisor node collects another

candidate set C2 from the remaining points, and com-

putes the weights of the points in C2 in the same way,

and so on. At each iteration, the supervisor node uses

the point weights that have been computed to prune the

dataset. Points that are filtered out are marked as “un-

promising” and they cannot be selected into the candi-

date set. The algorithm finishes when all the points are

checked. Clearly, the DDS algorithm needs many itera-

tions, and a nested-loop is required at each iteration
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because each of the points in the candidate set needs to

be compared with all the points in the whole dataset.

Therefore, the computational efficiency is not satisfac-

tory. Especially when the data scale is large, both the

iterative calculation and the nested-loop become very

time-consuming.

3 Problem Definition

Table 1 summarizes the mathematical notations

used in this paper.

Table 1. Summary of Notations
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first group of p13’s Z-address is “01”, which means p13
locates in the top-left quad of the first partition.
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Fig.2. Example of Z-order curve. (a) Z-order curve in a 2-
dimensional space. (b) Z-address. Dim.: dimension.

Based on Z-addresses, the Z-order curve provides

a clustering property as follows: points ordered by Z-

addresses are clustered into regions. In other words, a

point and its neighbors are very likely to have similar

Z-addresses. For example in Fig.2, p3 and its neighbor

p4 are quite close, and they share the same Z-address.

Consequently, the clustering property of Z-order curve

contributes to kNN searching.

4.2 Computational Sketch

4.2.1 Preprocessing Phase

Before using DBOZ to detect outliers, we prepro-

cess the original dataset and build the related ZH-tree.

First, we sort the points of the dataset in parallel ac-

cording to their Z-addresses. When the sort operation is

finished, each work node reserves a subset of the points.

Second, we design a bottom-up approach to build a lo-

cal Z-curve hierarchical tree (ZH-tree for short) for the

points on each work node, which can be used to accel-

erate the kNN searching.

4.2.2 Outlier Computing Phase (DBOZ)

Obviously, to detect outliers in a large dataset,

we need to compute the weights of a large number

of points. A simple strategy used in [24] can signifi-

cantly improve the computational efficiency, which is

described below.

Lemma 1. Suppose that the weights of n points

are known. Let LW be the smallest value of these n

weights. Then, a point p cannot be an Oksum outlier if

the upper bound of p’s weight is smaller than LW .

Proof. If the weight of p is less than LW , there ex-

ist at least n points whose weights are larger than that

of p. Hence, according to Definition 2, p cannot be an

Oksum outlier. �

A point is called a safe point if it meets Lemma 1.

Clearly, we can filter out all the safe points, instead

of computing their exact weights. This simple idea in-

spires us that points with large weights should be found

as soon as possible so that we can acquire a larger LW

to achieve a good filtering effect.

Therefore, in DBOZ, 1) we first use a greedy algo-

rithm to select n points that possibly have large weights

on each node, and seek their exact k nearest neighbors

using a novel ZH-tree based kNN searching algorithm

(ZHkNN). After that, the selected points are aggre-

gated to the supervisor node, and the n points with

the largest weights are obtained. We set the threshold

LW as the smallest value of these n weights. 2) We at-

tempt to compute the weights of the remaining points

on each work node. If the weight upper bound of a

point is smaller than LW , the kNN searching for this

point stops. Otherwise, the exact weight has to be com-

puted. The supervisor node keeps tracking the top-n

points with the largest weights that we have ever found.

If a point’s weight is larger than the current LW , we

transmit this point to the supervisor node and a new

LW is generated. After all the points are checked, the

n points on the supervisor node are the Oksum outliers.

5 Preprocessing Phase

5.1 Distributed Sorting According to

Z-Addresses

Given the depth of Z-order curve h, after h itera-

tions of partitions, each dimension is split into 2h

ranges, and the length of each range is 2−h. Note

that for each point p in a d-dimensional space, we can

easily calculate the Z-address of p, with no need to

actually partition the space into 2hd subspaces. For

example in Fig.2, given h = 3, each dimension is split
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into eight ranges whose lengths are 0.125. For a point

p13 = (0.4, 0.7), it is in the 4th range with bit string

“011” at the first dimension, because ⌈0.4/0.125⌉ = 4.

Similarly, the bit string at the second dimension is

“101”. After two division operations, the Z-address of

p13 is acquired. Therefore, the time complexity of cal-

culating all points’ Z-addresses is O(d × |P |), but not

exponential w.r.t. d or h.

Based on the Z-addresses, we sort the points in P

in parallel. The technique of distributed sorting has

been widely studied and several excellent approaches

have been proposed. Here we adopt the method in [27]

and the process sketch is described as follows. First, we

randomly extract a small subset of P to the supervisor

node and compute the Z-addresses of these points. We

select m− 1 Z-addresses to partition the Z-addresses of

the points in the subset into m intervals, and guarantee

that the number of points in each interval is the same.

Second, each work node scans its local points. A point

is sent to the i-th work node if it falls into the i-th inter-

val. At last, each work node sorts the received points

according to Z-addresses, and the distributed sorting is

completed.

In Fig.3, suppose the cluster includes three work

nodes and we have selected the Z-addresses of “010000”

and “100111” as the partition values. Then, the points

with Z-addresses smaller than “010000” are transmit-

ted to work node N1. The points with Z-addresses be-

tween “010000” and “100110” are sent to work node

N2. The rest points are sent to N3. After each work

node sorts the received points, the distributed sorting

is completed.

5.2 ZH-Tree Index Generation

After the distributed sorting operation, each work

node needs to build a ZH-tree, which is a tree-like in-

dex structure whose height is h. Specifically, the root

node at level 0 is corresponding to the whole data space.

Each non-leaf node e at level i (i ∈ [1, h)) is labeled by

a bit string and related to an individual subspace that

is generated by the i-th iteration of partition. The chil-

dren of e are the nodes relevant to the subspaces gene-

rated from e in the (i+ 1)-th iteration. Each leaf node

at level h is labeled by the Z-address of the points in it

after h iterations of partitions. Fig.3 shows the ZH-tree

index for the points in Fig.2. e16 is a non-leaf node la-

beled by “0001” and generated by the second iterative

partition, which has only one child node e1, because the

other subspaces generated from e16 are empty.

Clearly, in order to efficiently build a ZH-tree index

in a multi-dimensional space, it is inadvisable to actua-

lly perform h iterations of partitions and generate all

the subspaces, because the number of subspaces is expo-

nential w.r.t. h and d. For instance, for a dataset with

108 points in a 10-dimensional space, if we set h = 5,

total 250 subspaces will be created, which is far beyond

the computational and storage capabilities of a cluster.

However, we can easily observe that 250 >> 108, which

means in a high dimensional space, most of the sub-

spaces are useless, since no point is located in them.

This observation inspires us to develop a new bottom-

up algorithm to build ZH-tree indexes, whose time cost

is linear to the number of points but not exponential

with h or d.

Before describing the bottom-up algorithm, we first

introduce some data structures, including node and

nodeList.

• node is a tuple representing a tree node in a ZH-

Root
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Fig.3. ZH-tree index of the points in Fig.2.
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tree index, which consists of five attributes. 1) label is

the bit string that can identify the tree node. 2) father

is a pointer to the father of this node. 3) childern is a

list that contains all the children of this node. 4) num

is an integer variable recording the number of points

falling in this node. 5) isLeaf is a boolean variable

to determine whether this is a leaf or non-leaf node,

whose default value is true. Note that a non-leaf node

e is called as a virtual-leaf node if the number of points

in e is smaller than the parameter kmax (the max value

of k). We treat this kind of nodes as leaf nodes in the

rest of this paper.

• nodeList is a list of nodes. In the bottom-up algo-

rithm, we create total h+1 nodeLists, L0, L1, L2, ..., Lh.

Li (i ∈ [1, h]) is responsible to store all the nodes in level

i. L0 is a special list only containing the root node.

Algorithm 1 illustrates the details of the bottom-up

algorithm. We first initialize h + 1 nodeLists to store

the nodes, and an integer i to indicate the current level

that we are dealing with (lines 1, 2). Second, we scan

the sequence of the points ordered by their Z-addresses

(line 3). For each Z-address, we create a relevant leaf

node and insert the node into Lh (lines 4∼7). Then,

h iterations are performed (lines 8∼20). At each iter-

ation, we generate the nodes at level i − 1 (i ∈ [1, h])

their

c

based on the nodes in Li. For each node e in Li, we use

a function prefix(e.label) to return to the bit string str

of e’s father (line 10). Specifically, the function com-

putes the length ls of e.label and returns the first ls−d

bits of e.label. If Li−1 is empty or the last node in Li−1

is not the father of e, we insert a new node etemp into

Li−1 as e’s father (lines 11∼14). Next, we update the

attributes of e and e’s father (lines 15∼19). After h

iterations, the root node of ZH-tree is in L0.
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Fig.4. ZH-tree index of points on N2. (a) Points on N2. (b)
Related Z-order curve. (c) ZH-tree.

For example in Fig.3, we build the ZH-tree index on

work node N2. The parameter kmax = 3. First, we scan

the sequence of points ordered by their Z-addresses and

create seven leaf nodes in L3, including e4, e5, . . . , e10.
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Then we use L3 to produce the nodes in L2. When

scanning e4, there is no node in L2. Thus we insert a

new node e18 into L2 as the father of e4, and set the

label of e18 as prefix(e4.label) (“0100”). Similarly, we

produce the other nodes in the ZH-tree index. Among

them, e18, e20 and e21 are virtual leaf nodes because the

number of points in each of them is smaller than kmax.

The ZH-tree of the points on work node N2 is shown in

Fig.4.

Advantage Analysis. First, ZH-tree has two charac-

ters that are quite helpful for kNN searching. 1) ZH-

tree inherits the clustering property of Z-order curve.

2) ZH-tree provides spatial filtering ability. If the mini-

mum distance from a point p to a tree-node e is larger

than the upper bound of wk(p), we do not need to scan

any of the points in e. Second, since the bottom-up

algorithm needs h iterations to produce a ZH-tree and

each iteration scans at most |P |/m nodes, the time com-

plexity is O(d× |P |/m) (h is considered as a constant),

which is not exponential with d.

6 DBOZ Description

To find all the Oksum outliers, we need to compute

the weights of points. Lemma 1 provides an efficient

technique to speed up the computations. Specifically,

a point p is a safe point if wk(p) is smaller than LW

(it is the smallest value of the weights of n points), and

we do not need to calculate the exact weights of safe

points. Consequently, in this phase, we first select n

points with large weights to obtain a large LW . Then,

a filter-and-refine approach is designed to detect out-

liers using LW .

6.1 Obtaining LW

In order to obtain a large LW , we select n filtering

points on each work node and calculate their weights,

respectively. After that, all the selected points are sent

to the supervisor node, and then LW can be produced

simply. In this process, the real tasks that we concern

about are 1) how to select n appropriate points effi-

ciently and 2) how to compute the weights of points

utilizing the ZH-tree index.

6.1.1 Point Selection

On one hand, we want to find n filtering points hav-

ing large weights to acquire a large LW . On the other

hand, finding the actual top-n points with the largest

weights in P is not practicable because of the expen-

sive time cost. Considering the trade-off, we design a

greedy method for point selection. In this method, the

node density is used to estimate the weights of points

located in the corresponding leaf node.

Definition 3 (Node Density). For each leaf node

e at level i in the ZH-tree index, the node density of e

(e.den) is the ratio of the number of points in e (e.num)

and the volume of e.

e.den =
e.num
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point s.max (top-right point). Then for a point p /∈ s,

the minimum distance between p and s: disnotin(p, s) =
√
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As shown in Figs. 3 and 5, given a point p14 which is

located in e21, its forward node is e20 and its backward

node is e28. Both of them are in the boundary of e21.

According to the locality principle, e20 is chosen to be

visited. We reserve p13 and p12 as p14’s 2NNs. Next, we

scan node e7 and calculate the new kNNs of p14 as p13
and p10. We update the 2NNs of p14 to p8 and p5 after

visiting e6. Next, we scan e5. The minimum distance

between p14 and e5 is 0.334 and the distance between

p14 and p5 (the second-nearest neighbor of p14) is 0.25.

Since 0.334 > 0.25, we do not need to process e5 on the

basis of Theorem 1. Similarly, e18 is filtered out. Now

the forward node e3 is out of the boundary, and thus

we begin to process the backward nodes e28, e13, e14 in

sequence. All of them can be filtered out according

to Theorem 1. By now, all the nodes in e21’s bound-

ary are processed. According to Theorem 2, the min-

imum distance between p14 and the boundary side is

0.75 − 0.45 = 0.3 > 0.25, which satisfies the stop con-

dition. The 2NNs of p14 are p8, p5, and its weight is

0.473.

On each work node, we select n points to calculate

their weights, and then send them to the supervisor

node. On the supervisor node, top-n points with the

largest weights are obtained, and we set the thresh-

old LW as the smallest weight of these n weights. As

shown in Fig.2, given n = 2, we select p17 and p18 from

work node N1, p2 and p14 from N2, p15 and p16 from

N3, and send the weights of them to the supervisor

node. Next, two points with maximum weights (p14
and p15) are reserved on the supervisor node. Because

wk(p15) > wk(p14), the weight of p14 is set as the value

of LW (LW = wk(p14) = 0.473).

kNN Searching of p Using ZHkNN

N

N

e↼⊲↽

e↼⊲↽
↼<⊲↽

e↼⊲↽
↼<⊲↽

e↼⊲↽

↼>⊲↽

e↼⊲↽

↼>⊲↽

e↼⊲↽

↼>⊲↽

e↼⊲↽

↼<⊲↽

e↼⊲↽

↼>⊲↽

dis (p֒ p↽/⊲
dis (p֒ p↽/⊲

dis (p֒ p↽/⊲
dis (p֒ p↽/⊲

dis (p֒ p↽/⊲
dis (p֒ p↽/⊲
dis (p֒ p↽/⊲

p֒ p

p֒ p

p֒ p

⊳

⊳

⊳

⊳

⊳

Fig.5. kNN searching of p14 in Fig.4 using ZHkNN (k = 2).

6.2 Filter-and-Refine Approach

6.2.1 Filtering Unpromising Points

In the first step, we traverse the ZH-tree in a top-

down order and filter out the unpromising points that

cannot be Oksum outliers using the threshold LW . The

remaining points form a candidate set. In detail, while

traversing the ZH-tree, for each node e, if e satisfies the

theorem below, the points in e cannot be Oksum outliers

and we do not need to further visit the children of e.

Theorem 3. For a node e at level i in the ZH-

tree, if the number of points in e is larger than k and

k× 2−i ×
√



Xi-Te Wang et al.: Distributed Outlier Detection in Large Datasets 1243

As illustrated in Fig.4, given n = 2 and k = 2,

LW = 0.473 has known. e5 can be filtered out ac-

cording to Theorem 3. This is because the largest dis-

tance between any two points in e5 must be smaller

than 0.125×
√
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• PRE. It is the preprocessing phase described in

Section 5, which consists of a distributed sorting opera-

tion and ZH-tree generation. For a given large dataset,

this method needs to be performed only once to gene-

rate the ZH-tree regardless of varies of outlier queries.

Therefore, we do not pay close attention to the cost of

this phase.

• DSS. It is the algorithm for distributed outlier de-

tection proposed by Angiulli et al.[24] The sketch has

been introduced in Section 2.

We evaluate the performance of the algorithms us-

ing a real dataset and varies of synthetic datasets. The

experiments are executed in a cluster where each work-

station consists of a Intel Core i3 2100 @ 3.1 GHz CPU,

8 GB main memory and 500 GB hard disk. We set the

depth of Z-order curve h as max{
⌊

log
2
|P |−log

2
kmax
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the time cost of DBOZ is only linear to but not expo-

nential with the dimensionality. Similarly, the amount

of data transmitted across the network (ADT) increases

with the increase of dimensionality.
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Fig.6. Effect of data scale. (a) Time cost vs |P |. (b) Transmis-
sion vs |P |.

We test the impact of the number of work nodes

in Fig.8. As more work nodes are employed, the re-

sponse time for both DBOZ and DSS becomes shorter.

Meanwhile, the ADT for DBOZ changes very slightly,

whereas the ADT for DSS increases more sharply. This

is because to search the kNNs of a point p, DSS needs to

send p to all the work nodes, and more work nodes lead

to more network communications. As a result, DBOZ

is more suitable for a large-scale cluster than DSS.

We evaluate the performance using different values

of n and k in Figs.9 and 10, respectively. With larger

n, LW becomes smaller, thus fewer points can be fil-

tered out using Lemma 1. Therefore, both the time

cost and the ADT for the two algorithms increase. The

same situation happens in Fig.10. No matter what the

parameters are, DBOZ always exhibits better perfor-

mance than DSS.
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Fig.7. Effect of dimensionality. (a) Time cost vs d. (b) Trans-
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Fig.10. Effect of parameter k. (a) Time cost vs k. (b) Trans-
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In Table 4, we analyze the details of DBOZ. While

an outlier query is processed, we record the size of the

candidate set outputted by Algorithm 3 and the num-

ber of LW updating during refining the candidate set,

which can reflect the effectiveness of LW . We can see

that for total 108 points, only a small number of points

are inserted into the candidate set after the filtering

step. In the refining step, the number of LW chang-

ing is quite small. Therefore, the LW computed by

the method in Subsection 6.1 is very close to the real

one, and it has a satisfying filtering capacity. This is an

important reason of the good performance of DBOZ.

Table 4. Detailed Analysis
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As for the future work, we will focus on developing

a general distributed processing framework to support

multiple definitions of distance-based outliers.
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