
Liu T, Liu Y, Li Q et al. SEIP: System for efficient image processing on distributed platform. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 30(6): 1215–1232 Nov. 2015. DOI 10.1007/s11390-015-1595-1

SEIP: System for Efficient Image Processing on Distributed Platform

Tao Liu (), Yi Liu (), Member, CCF, Qin Li (), Xiang-Rong Wang (), Fei Gao ()
Yan-Chao Zhu (), and De-Pei Qian (), Fellow, CCF

School of Computer Science and Engineering, Beihang University, Beijing 100191, China

E-mail: thomasball@126.com; yi.liu@buaa.edu.cn; {qin.li, xiangrong.wang, fei.gao, yanchao.zhu}@jsi.buaa.edu.cn
E-mail: depeiq@buaa.edu.cn

Received May 15, 2015; revised October 13, 2015.

Abstract Nowadays, there exist numerous images in the Internet, and with the development of cloud computing and

big data applications, many of those images need to be processed for different kinds of applications by using specific image

processing algorithms. Meanwhile, there already exist many kinds of image processing algorithms and their variations, while

new algorithms are still emerging. Consequently, an ongoing problem is how to improve the efficiency of massive image

processing and support the integration of existing implementations of image processing algorithms into the systems. This

paper proposes a distributed image processing system named SEIP, which is built on Hadoop, and employs extensible in-

node architecture to support various kinds of image processing algorithms on distributed platforms with GPU accelerators.

The system also uses a pipeline-based framework to accelerate massive image file processing. A demonstration application

for image feature extraction is designed. The system is evaluated in a small-scale Hadoop cluster with GPU accelerators,

and the experimental results show the usability and efficiency of SEIP.

Keywords big data, distributed system, image processing, GPU, parallel programming framework

1 Introduction

In the era of big data, demands for massive file

processing grow rapidly, in which image data occupies

considerable proportion, such as pictures embedded in

web pages, photos released in social network, pictures

of goods in shopping websites, and so on. Commonly,

these images need to be processed for different kinds of

applications, like content-based image retrieval (CBIR),

image annotation and classification, and image con-

tent recognition. Due to the volume of images and the

complexity of related algorithms, it is necessary to use

distributed systems with accelerators (e.g., GPU) to

process these massive images. According to [1], there

are four advantages of distributed systems over isolated

computers: 1) data sharing, which allows many users or

machines to access a common database; 2) device shar-

ing, which allows many users or machines to share their

devices; 3) communications, that is, all the machines

can communicate with each other more easily than iso-

lated computers; 4) flexibility, i.e., a distributed com-

puter can spread the workload over the available ma-

chines in an effective way. Compared with the single-

node environment, by employing distributed systems,

we can obtain increased performance, increased relia-

bility, and increased flexibility[2].

To support efficient data processing in distributed

systems, there exist some representative programming

models, such as MapReduce[3], Spark[4], Storm 1○, all of

which have open source implementations and are suita-

ble for different application scenarios. The MapRe-

duce framework is considered as an effective way for

big data analysis due to its high scalability and the

ability of parallel processing of non-structured or semi-

structured data[3]. Multitudinous applications are re-

1216 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

lying on the MapReduce framework, especially on the

open source implementation of MapReduce framework

— Hadoop[5], which provides a platform for users to de-

velop and run distributed applications. Spark[4] is de-

veloped by UC Berkeley, which is a kind of in-memory

computing parallel framework and suitable for iterative

computations, such as machine learning and data min-

ing. RDDs (resilient distributed datasets) that can be

persisted in memory across computing nodes[6] are uti-

lized by Spark. Storm 2○ is an open source distributed

real-time computation system, which makes it easy to

reliably process unbounded streams of data, and does

for real-time processing what Hadoop does for batch

processing. Storm 2○ is suitable for real-time analy-

tics, online machine learning, continuous computation,

and more[5]. To consider the application scenarios that

these distributed systems are suitable for, it is more

suitable to employ Hadoop for massive image files pro-

cessing.

Most image processing algorithms have high com-

plexities and are suitable for accelerators, especially

general purpose graphic process unit (GPGPU or GPU

for short). In recent years, GPGPU has been widely

used in parallel processing. With support of CUDA 3○

and other parallel programming models for GPU, such

as Brook+ 4○ and OpenCL 5○, parallel programming on

GPU has become convenient, powerful and extensive.

On processing massive image files with distributed

platform and accelerators, two issues need to be ad-

dressed. Firstly, massive image processing is both

I/O intensive and computing intensive, which should

be managed concurrently through multi-threading with

multi-core processors or GPU in-node, while simplify-

ing parallel programming. In addition, to avoid that

file I/O becomes the overall system bottleneck, data

transfer between CPU and GPU should be optimized.

Secondly, there exist considerable image processing al-

gorithms and their variations for different kinds of

image-related applications, while new algorithms are

still emerging. Most of them were implemented as pro-

totypes when they were proposed, and some of them

have GPU-version implementations. A kind of sys-

tem architecture which can easily integrate the exist-

ing CPU/GPU image processing algorithms can be pro-

posed to deal with the above two issues. In other words,

we should use available resource as much as possible

rather than write everything by ourselves.

This paper proposes a distributed image process-

ing system named SEIP (System for Efficient Image

Processing on Distributed Platform), which is designed

based on Hadoop[5] derived from MapReduce[3]. SEIP

supports GPU-acceleration for image processing algo-

rithms and can integrate existing CPU/GPU imple-

mentations of various kinds of algorithms. To make

the system basically usable, basic image processing al-

gorithms such as transformation of image size and color

space are already integrated into the system. Two

typical image feature extraction algorithms, LBP (Lo-

cal Binary Patterns)[7-8] and SURF (Speeded-Up Ro-

bust Features)[9], are implemented both in CPU and

GPU. A demonstration application for image feature

extracting is also implemented. Additionally, SEIP uses

a pipeline-based framework proposed in this paper to

simplify parallel programming in application layer and

accelerate I/O operations in image file processing.

In brief, our SEIP system has following characteris-

tics.

1) SEIP employs extensible in-node architecture to

support various kinds of image processing algorithms

on distributed platform with GPU accelerators. By us-

ing general-purpose interfaces, image processing mod-

ules at bottom layer are extensible or pluggable; hence,

various kinds of algorithm implementations for single

nodes can be integrated into the system.

2) SEIP uses a pipeline-based framework for massive

image file processing, in which files can be processed in

parallel in multiple stages with transparent prefetching

in each node by using simplified programming inter-

face. Based on the framework, users can define their

own image processing logic by re-writing several call-

back functions.

The rest of this paper is organized as follows. Sec-

tion 2 presents the in-node architecture of the system

and the implementation of two typical image feature

extraction algorithms, and the in-node architecture cor-

responds to the first characteristic of SEIP. Section 3

brings a pipeline-based framework for massive file pro-

cessing, corresponding to the second characteristic of

SEIP. Section 4 details the design of SEIP system, and

shows a demonstrated application. Section 5 evaluates

Tao Liu et al.: SEIP: System for Efficient Image Processing on Distributed Platform 1217

the system. Section 6 introduces related work. Finally,

conclusions are given in Section 7.

2 Acceleration of Image Processing

2.1 In-Node Extensible Architecture for Image

Processing Algorithms

Currently, there exist many kinds of image process-

ing algorithms and their variations, while new algo-

rithms are still emerging. Most of them were imple-

mented as prototypes when they were proposed or de-

signed. Even more, some of them have implementations

on GPU accelerators.

In this background, one focus of the SEIP system is

how to integrate existing implementations of algorithms

rather than to implement them one by one by ourselves

or application developers. To achieve this goal, the

SEIP system employs extensible in-node architecture

to support various kinds of image processing algorithms

on distributed platform with GPU accelerators.

Fig.1 shows the in-node extensible architecture

of SEIP. Map/Reduce tasks, written in Java, invoke

image processing algorithms via JNI 6○ and SEIP

adaptive interface, which provides unified interface for

image processing modules, such as basic algorithms,

. . .

Image Processing Algorithms

GPUsCPUs

JNI

SEIP Adaptive Interface

Map/Reduce Map/Reduce

Task

Unified Interface

Task
. . .

Basic
Algorithms SURF LBP SIFT Daisy

Fig.1. In-node extensible architecture for image processing al-
gorithms.

LBP[8], SURF[9], SIFT (Scale-Invariant Feature

Transform)[10], Daisy[11], and so on. The image pro-

cessing modules can be extended or substituted by cus-

tomizing existing third-party implementations of algo-

rithms and re-encapsulating them with the SEIP uni-

fied interface. The implementation of algorithms can

be CPU-version, GPU-version, or both.

The benefit of the architecture is that users can eas-

ily integrate their own or third-party implementations

of algorithms into the system, while the system provides

implementations of classic algorithms on both CPU and

GPU, which can be used or modified to meet the re-

quirements of specific applications.

2.2 Implementation of LBP and SURF

Algorithms on GPU

To demonstrate the extensibility of the system and

make the system basically usable, we implement two

typical image feature extraction algorithms, LBP[7-8]

and SURF[9] with CUDA 7○, and integrate them into

the system. The data transfers between CPU and GPU

are also optimized by using asynchronous mode.

LBP is a type of image feature used for classifica-

tion in computer vision[8] 8○. This algorithm compares

each pixel in an image with the surrounding ones and

saves the result as sets of binary numbers. This paper

accelerates LBP with GPU by using multiple CUDA

threads to deal with thousand of pixels, i.e., computing

the sets of binary numbers of all the pixels with ato-

micAdd in CUDA 4.0 9○. Finally, all the binary num-

bers are analyzed, and the results are constructed into

an LBP histogram.

SURF[9] is an improved algorithm of classical

SIFT[10], which “is faster than SIFT and has good per-

formance as the same as SIFT”[12]. According to the

algorithm, the integral image is firstly calculated based

on original image, and then convolutions are calculated

with integral image data by box filter to build scale

spaces. Thus, the Hessian matrixes of pixels in all the

scale spaces are obtained. From the Hessian matrixes of

pixels, the feature points are chosen by the method of

NMS (Non-Maxima Suppression). Finally, according

to the Haar wavelet responses of each feature point’s

neighborhood, the dominant orientation and the SURF

descriptor for one feature point are estimated. The

1218 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

count of feature points in each image is uncertain based

on the Hessian threshold value, and the lower this value

is, the more feature points could be described. We set

Hessian threshold value to 100 on both GPU and CPU

versions of SURF program. The acceleration of SURF

with GPU mainly focuses on building scale spaces, es-

timating the dominant orientations and the SURF de-

scriptor of all the feature points.

The GPU-version SURF program is written with

CUDA 4.0 10○ and modified from the implementations

in OpenCV SURF GPU 11○ and SURF 12○.

Furthermore, to avoid that frequent data transfers

between CPU and GPU become system bottleneck, this

paper employs asynchronous transfer for multiple im-

ages between GPU and the CPU, which is an optimiza-

tion for GPU-version implementation.

Image processing in the GPU device can be divided

into three stages. In the first stage, image data is trans-

ferred from the host to the GPU memory. In the second

stage, CUDA kernels are executed in the GPU device

to process the image, e.g., image feature extraction,

image content recognition, and image detection. The

third stage is responsible to transfer results back to the

host. To reduce the number of transmissions between

the host and the GPU, processing results of multiple

images can be transferred together.

Fig.2 shows the sequential execution and the asyn-

chronous parallel execution of six images in GPU. In

sequential execution, the first two stages must be exe-

cuted in sequence, and the third stage of the six im-

ages can be executed at one time. In asynchronous

parallel execution, three CUDA streams are created to

process the six images. The first two stages among dif-

ferent images can be executed concurrently in CUDA

streams. For example, when image 0 has been trans-

ferred into GPU memory by CUDA stream 0, it is not

required to wait for the completion of CUDA kernel of

this image, and image 1 can enter its first stage by em-

ploying CUDA stream 1. Similarly, other images can

also be processed concurrently, and the degree of paral-

lelism depends on the number of created CUDA steams.

Thus, multiple images can be processed concurrently in

asynchronous execution, which takes full advantage of

the asynchronies between the host and the GPU device,

and is more efficient than sequential execution.

0 0 01 1 12 2 23 3 34 4 45 5 5

Time
(a)

(b)

CUDA Stream 0
0 0 3 3 0 3

CUDA Stream 1

CUDA Stream 2

1 1 4 4 1 4

2 2 5 5 2 5

Transmit Data
Execute CUDA Kernel
Ready

Return from Kernel

Return Result
Block

Time

Fig.2. (a) Sequential execution vs (b) asynchronous parallel
execution for image processing in GPU.

The original CPU-version codes of LBP and SURF

come from LBP 13○ and OpenCV SURF CPU 14○ respec-

tively. We re-write the codes for GPU and optimize

asynchronous mode.

Table 1 shows the performance of LBP and SURF

on processing 10 000 images in single-node environment,

which is a dual-way x86 server with two Intel Xeon

5650 (6 cores, 12 threads) processors and one NVIDIA

Tesla C2075 (448 cores) 15○. All the images are from

Corel-1k 16○ , which contains 1 000 images (256 × 384

pixels) and we duplicate the images 10 times to obtain

10 000 images. TCPU, TGPU and TGPUAsync indicate

the processing time (millisecond) of CPU, GPU and

GPU asynchronous versions respectively. The speedup

of GPU version algorithm over CPU version is indi-

cated by SpeedupGPU, and that of GPU asynchronous

Table 1. Performance Comparison: GPU vs GPU Stream

Versions of LBP and SURF

Tao Liu et al.: SEIP: System for Efficient Image Processing on Distributed Platform 1219

version algorithm over CPU version is indicated by

SpeedupGPUAsync.

For LBP algorithm, the speedup of GPU-version

over CPU is 4.39x, and that of GPU asyn-

chronous version over CPU is 5.12x. The effi-

ciency ratio of GPU asynchronous version over GPU

((1/TGPUAsync)/(1/TGPU)) is about 1.17. For the

SURF algorithm, the speedup of the GPU-version over

CPU is 34.13x, and that of GPU asynchronous version

over CPU is 36.30x. The efficiency ratio of GPU asyn-

chronous version over GPU is about 1.06. The above

results show that GPU can achieve better performance

than CPU on LBP and SURF algorithms, and the asyn-

chronous optimization on GPU has further performance

improvements.

2.3 Unified Interface

According to the unified interface, to add an exist-

ing implementation of an algorithm to the system, users

just need to re-encapsulate their source code by defin-

ing an interface function, insert the function name into

the dispatch list AlgorithmDispatcher, and define a

number for the algorithm in the enum algorithmNum.

After that, MapReduce applications that are written in

Java at upper layer can invoke the algorithm by calling

the entry of unified interface AlgorithmEntry with the

algorithm number just defined. The brief C code is as

what Fig.3 shows.

 /* define algorithm number*/

enum algorithmNum{

ALGORITHM _LBP_CPU;

ALGORITHM _LBP_GPU;

ALGORITHM _SURF_CPU;

ALGORITHM _SURF_GPU;

…

};

/* dispatch list of interface functions */

void (*AlgorithmDispatcher[])(char *, void *)

={

LbpCalledBySEIP _CPU,

LbpCalledBySEIP _GPU,

SurfCalledBySEIP_CPU,

SurfCalledBySEIP_GPU,

…

};

/* entry of the unified interface */

AlgorithmEntry (int algorithm,

char *imageNames[], void *params){

/* call interface function of

specified algorithm */

(*AlgorithmDispatcher[algorithm])(

imageNames , params);

}

Fig.3. Example of adding existing implementations of algo-
rithms to the system.

3 Acceleration of Massive File Processing

Images are commonly stored as individual files. To

process a large number of image files efficiently, two

problems need to be considered. The first problem is

the coordination between parallelism and system I/O

bottleneck. It is obvious that programmers should ac-

celerate image processing through high parallelism by

using multi-core processors in-node. However, blindly

increasing the number of working processes/threads

will bring numerous file accesses, which may aggravate

system I/O bottleneck. Moreover, multiple parallel

working processes/threads that access files simultane-

ously may interfere with each other and cause extra per-

formance loss. The second problem is the complexity of

in-node parallel programming. Compared with sequen-

tial programming, writing multi-threaded programs is

always an extra burden for programmers.

SEIP uses a pipeline-based framework for massive

image files processing, in which files can be processed

in parallel in multiple stages with transparent prefetch-

ing in each node by using simplified programming in-

terface. Based on the framework, users can define their

own image processing logic by re-writing several call-

back functions.

3.1 In-Node Pipeline Framework for Massive

Image Files

According to the design of pipeline-based frame-

work, the processing of an image file is composed of

following stages.

1) Stage 1: prefetching stage, which is responsible

for loading the image file into in-node memory. In mas-

sive image files processing, the application knows the

name and location of each file, which guarantees the ac-

curacy of prefetching. Prefetching can be divided into

two categories: predictive prefetching and informed

prefetching[13]. Predictive prefetching is implemented

at the file system level and predicts future read/accesses

based on past I/O system call patterns. Predictive

prefetching remains application-independent. Informed

prefetching informs the file system of future data ac-

cording to the hints provided by applications. Com-

pared with predictive prefetching, informed prefetching

is more accurate because of the support from applica-

tions.

2) Stage 2: image processing stage, which is respon-

sible for processing the image.

3) Stage 3: result generation stage, which is respon-

sible for accumulating and saving processing results.

1220 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

Image Processing

I/O 1 I/O 2I 1

I 1 I 2 I 3

P 1 P 2 P 3

R 1

R 1 R 2 R 3

I 2 R 2 I/O 3 I 3 R 3

I/O Reading Result Generation Time
(a)

(b)
Time

Result Generation Stage

Prefetching Stage

Image Processing Stage
Image 1

Image 2

Image 3

Fig.4. (a) Normal image processing vs (b) pipelining image processing. I/O: I/O reading; P: prefetching stage; I: image processing
(stage); R: result generation (stage).

Normal image processing and pipelining image pro-

cessing are demonstrated in Fig.4. In normal image

processing, every image goes through I/O reading, im-

age processing, and result generation in turn. When

the image is in I/O reading or result generation, most

of computing resources in the node are idle, which de-

grades the system performance. In comparison, we di-

vide the entire process into prefetching stage, image

processing stage, and result generation stage in pipelin-

ing image processing. Multiple images are handled in

parallel in different stages, e.g., when image 1 is in im-

age processing stage, image 2 has been prefetched into

memory.

Image 1

Stage 1
Prefetching Stage

Stage 2
Image Processing

Stage

Stage 3
Result Generation

Stage

Image 2

Image 3

Image 4

Image 5

Image 1

Image 2

Image 3

Image 4

Image 1

Image 2

Image 3

Image 4 Image 5 Image 6

Stage 2 (Sub-Stage 1)

Image Processing

Stage

Stage 2 (Sub-Stage 2)

Image Processing

Stage

Stage 2 (Sub-Stage N)

Image Processing

Stage

Image 1

Image 2

Image 3

Image 4

Image 1

Image 2

Image 3

Image 4

Image 1

Image 2

Image 3 Image 5

Time

Fig.5. Images in the pipeline framework.

As shown in Fig.5, pipeline for massive file process-

ing has the ability to handle multiple images simulta-

neously. If the complexity of the algorithm is high,

the image processing stage could be divided into mul-

tiple sub-stages. Working processes/threads could run

in stages to process images concurrently, and combine

with the effect of file prefetching. In this way, in-node

multi-core resources can be utilized more efficiently.

3.2 Programming Interface

The pipeline-based framework provides a simplified

programming interface in Java for upper-layer applica-

tions, in which class MIP is the main class and methods

of the class are listed in Table 2.

Table 2. Methods in Class MIP

Tao Liu et al.: SEIP: System for Efficient Image Processing on Distributed Platform 1221

External Storage

Prefetching Stage

..
.

...

Image 1
Image 2
Image 3
Image 4
Image 5

..
.

..
.

..
.

Image
Processing

Logic

Image
Processing

Logic

Image
Processing

Logic

Image
Processing

Logic

Result
Generation

Logic..
.

Result Generation
Stage

Image Processing
Stage

Sub-Stage 1 ... Sub-Stage N

Fig.6. Parallel framework for massive images processing.

from external storage into double-end queue by dedi-

cated thread according to the list of image files, and

the size of queue is decided by users when initializing

the pipeline framework. Image processing stage fetches

data from the prefetching double-end queue. If image

processing is complex, this stage can be divided into

sub-stages, in which image data is also pipeline pro-

cessed, such as sub-stage 1, sub-stage 2, and sub-stage

N . It is noted that, whether dividing image process-

ing stage and the number of sub-stages are decided by

users, and the programming interfaces for dividing have

been offered by the pipeline framework. In result gener-

ation stage, users can handle image processing results.

Users can define their own image processing logic by

rewriting several callback functions, as shown in the

shaded parts in Fig.6. Callback functions can be writ-

ten through invoking CallbackFunc interface provided

by the pipeline framework.

3.3 CPU and GPU Co-Processing in the

Pipeline Framework

SEIP uses hybrid CPU-GPU architecture to pro-

cess massive image data, in which CPU and GPU can

compute simultaneously. In image processing stage of

the pipeline framework, applications can invoke CPU-

version algorithms, GPU-version algorithms, or both.

As shown in Fig.7, the prefetched images can be pro-

cessed by both CPU and GPU resources in the image

processing stage.

CPU

Image Processing
Stage

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8. . .

Next Stage

Prefetching
Queue

Image Processing
Algorithm Library

(CPU)

Image Processing
Algorithm Library

(GPU)

GPU

Fig.7. Hybrid CPU-GPU architecture in SEIP.

3.4 Application Development

Implementing an application or integrating an exi-

sting one in SEIP involves two parts of work.

1) Integrating Image Processing Algorithms into the

System. There are two cases according to the imple-

mentation status of the algorithms used by the ap-

plication. In the first case, if the algorithms have

CPU-/GPU-version source codes for single-node envi-

ronment, which is common for classic algorithms, the

integration can be done by simply re-encapsulating the

original source code with the entry functions of SEIP.

By employing the entry functions of SEIP, users do not

need to design, write and test complex adaptation codes

to interact with the upper code in the distributed sys-

tem anymore. In the second case, if the algorithm is

totally novel and there is no implementation, the in-

tegration needs to be started by writing codes for the

algorithm. This case also has another situation that

the algorithm only has CPU-version code while users

want to use GPU to accelerate image processing. In

1222 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

this situation, users need to write GPU-version codes

by their own, which is a fairly complicated work due

to the programmability of GPUs, and one thing worth

noting is that GPU-version code is not mandatory in

the system.

2) Writing Upper-Layer Program in MapReduce

Style. The program can accelerate the processing of

massive image files by employing the pipeline frame-

work of the system, and invoking low-layer image pro-

cessing algorithms via unified interface. The pipeline

framework is an option for users, who may choose to use

serial programs or write multi-threaded programs in the

node by their own. By using this pipeline framework,

the I/O limitation from the distributed file system to

memory may be alleviated.

4 System Architecture and Implementation

4.1 System Architecture

SEIP is built on Hadoop, and consists of one master

and multiple workers in a cluster, and the master and

workers are also namenode and datanodes of HDFS[14]

respectively. The master controls multiple workers by

allocating tasks to them, and workers equipped with

GPU and multi-core processors make massive image

data processing concurrently.

Fig.8 shows the system architecture of SEIP, where

modules in ellipse are application-specific and need

to be programmed or customized for an application,

and modules in rectangle are generally application-

independent.

The master in SEIP is responsible for image data

pre-processing, and parallel task allocation and schedul-

ing. Image pre-processing includes image normalization

in size, color space, etc. Users can add individual ex-

ternal service into the application service module, for

example, crawling images from the Internet. The mod-

ule “combine massive image files” is an optimization

of the splits for small-size files by combining multiple

image files together so that a task can process multiple

images at one time. The module “parallel task alloca-

tion and scheduling” provides MapReduce framework

to applications by allocating tasks to multiple workers

and collecting final results.

Workers in SEIP are responsible for image pro-

cessing by invoking the GPU/CPU processing modules

at bottom layer through the unified interface. Under

the control of the master, the “parallel task manage-

ment” modules in workers receive tasks from the mas-

ter and start the processing. The “pipeline framework”

module supports pipeline processing of image files for

map/reduce tasks.

Hadoop

Software in Worker

Parallel Processing Cluster

Master
GPUGPUGPU

Linux

Worker 1 Worker 2

Software in Master

Linux

Combine
Massive

Image Files

Parallel Task

Allocation and

Scheduling

Parallel Task Management

Worker N

Hadoop

Pipeline
Framework

SEIP Adaptive

Interface

. . .
Image File

Preprocessing

Application Services

Map/Reduce

Task

Map/Reduce

Task

Image Processing
Modules (CPU/GPU)

Fig.8. SEIP system architecture.

Tao Liu et al.: SEIP: System for Efficient Image Processing on Distributed Platform 1223

4.2 Image Data Processing

Image processing mainly consists of pipeline frame-

work, parallel task allocation and scheduling.

4.2.1 Pipeline Framework in SEIP

As shown in Fig.9, a number of images can be pac-

kaged into one split by the module “combine massive

image files”, and then this split is allocated to a map

task, which means that one map task can process thou-

sands of images at one time. When packaging and allo-

cating the splits, the module “combine massive image

files” has taken into account the locality of image files.

The system combines the pipeline framework for

massive image processing with MapReduce framework.

The pipeline framework is implemented in the map. As

described in Section 3, in the prefetching stage, image

files are prefetched from HDFS to the memory based on

the spilt allocated to the map task. If the image pro-

cessing is complex, the image processing stage can be

divided into multiple sub-stages, in which image data is

also pipeline-processed, such as sub-stage 1, sub-stage

2, and so on. In this stage, different kinds of image

processing algorithms at bottom layer are invoked. In

the last stage, the result generation stage, processing re-

sults are assigned to reduce tasks by the master. Shuffle

is not involved in image data processing.

It is noted that the pipeline framework is an op-

tion for users, who may choose to use serial programs

or write multi-threaded programs in the node by their

own.

4.2.2 Parallel Task Allocation and Scheduling

Parallel task allocation and scheduling in SEIP is

mainly implemented on MapReduce framework, shown

in Fig.10.

1) Master. The master in SEIP is responsible for

image data pre-processing, parallel task allocation and

scheduling, and controlling data transmissions among

workers. The module “combine massive image files” is

implemented in the master to manage the input split for

processing thousands of images at one time by one map

task. The input split includes the image information in

HDFS.

2) Workers (Map/Reduce). After receiving the

splits from the master, workers (Map) process the im-

ages by using in-node pipeline framework and image

processing modules (CPU/GPU). The workers (Map)

communicate the status with the master during the

entire process, and the processing results are assigned

to workers (Reduce) by the master. The result is in

the form of key/value pair, such as (image address

in HDFS, image processing result). All the key/value

pairs are clustered and stored by workers (Reduce).

3) Adaptive Interface. The adaptive interface

provides unified interface for upper-layer applications

to invoke different kinds of image processing algo-

rithms at bottom layer. The applications in workers

(Map/Reduce) invoke the entry function of adaptive in-

terface with arguments including image addresses, the

specified algorithm and related parameters, and the

adaptive interface dispatches the function call to the

interface function of the corresponding algorithm. By

using the corresponding algorithms, the images are pro-

HDFS

Combine Massive
Image Files

Image List

Combine Massive

Image Files

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9

...

...

...

...

Map

Map

Image 1
Image 2
Image 3

Sub Image
List

...

Image n
Image n⇁
Image n⇁

Result Generation Stage
Pipeline Framework

Prefetching Stage

Image Processing Stage R 1 R 2 R 3 R 4

I 1 I 2 I 3 I 4

P 1 P 2 P 3 P 4

Result Generation Stage
Pipeline Framework

Prefetching Stage

Image Processing Stage R 1 R 2 R 3 R 4

I 1 I 2 I 3 I 4

P 1 P 2 P 3 P 4

HDFS

Reduce

Reduce

Sub Image
List

Fig.9. In-node parallel image processing under MapReduce framework.

1224 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

HDFS

Map

(Cluster & IndexWrite)

Image Processing Modules (CPU/GPU)

Master

Combine Massive

Image Files

Pipeline
Framework

<Image Addresses,

Image Processing Results>

Control Flow

Data Flow

JNI

SEIP Adaptive Interface

Map

Reduce

Reduce

Worker

(Cluster & IndexWrite)

Worker

Pipeline
Framework

Worker

(Image File Processing)

Worker

(Image File Processing)

⊲
⊲
⊲

⊲
⊲
⊲

Fig.10. Parallel task allocation for image processing under the MapReduce framework.

cessed, and then results are returned to upper-layer ap-

plications.

4.3 Demonstrated Application

SEIP provides a general-purpose architecture to dif-

ferent kinds of image-related applications. As a demon-

stration, we develop an application, which simultane-

ously extracts LBP and SURF features of massive im-

ages, and then clusters and stores the image features.

The application can be used as a backend system for

applications such as content-based image retrieval, im-

age annotation and classification, image content recog-

nition, and so on.

The result of each image file includes its HDFS ad-

dress, LBP feature data, and SURF feature data. Ex-

amples of HDFS address and LBP feature data are

shown in Fig.11, which are expressed as String and float

respectively[10].

For SURF feature data, because this kind of feature

 hdfs://namenode:9000/data/picture/281.jpge,

0.02233867,0.04260894,0.01723662,0.03998897,0.17367622,

0.18360452,0.07246277,0.09107833,0.21883619,0.13816878

Fig.11. Examples of HDFS address and LBP feature data.

has many feature points, the result just saves the ten

strongest SURF feature points, including their scales

and orientation determined during the descriptor ex-

traction process. For example, one SURF feature

point’s position and scale (vector (cv::KeyPoint)) are

shown in Fig.12(a), and its SURF feature descriptor

((cv::Mat)) is shown in Fig.12(b).

 1.5515529632568359e+01, 3.0457647705078125e+02, 20.,

2.9893371582031250e+02, 2.1044113281250000e+04, 1, -1,

 2.29092943e-03, 1.02277030e-03, 3.82741797e-03,3.51991830e-03,

-2.01794710e-02, 1.83875617e-02, 2.01794710e-02,1.83875617e-02,

-9.30161215e-03, 3.50645324e-03, 1.13981832e-02,6.75009191e-03,

4.57128137e-03, -3.26982234e-03, 5.72825689e-03,3.80155258e-03,

2.33589765e-02, -3.64588685e-02, 2.33589765e-02, 3.71857435e-02,

2.09339112e-01, -3.25226411e-02, 3.14705640e-01,2.99012333e-01,

-1.62219882e-01, 1.92898318e-01, 1.64862931e-01, 2.54309475e-01,

3.05538252e-03, 4.46586451e-03, 3.16889137e-02,1.86142288e-02,

1.28854187e-02, 3.62768956e-03, 1.37294801e-02,8.88268184e-03,

4.12445664e-01, -4.13150005e-02, 4.12445664e-01,1.74366385e-01,

-2.05291346e-01, 1.31799774e-02, 2.49552369e-01, 3.29077810e-01,

-3.96939320e-03, 1.50407488e-02, 3.26431170e-02, 6.06870390e-02,

1.42121245e-03, -9.14069358e-04, 1.43858779e-03, 5.91992587e-03,

3.61681581e-02, -3.66259068e-02, 4.24261875e-02,6.07904494e-02,

2.99054524e-03, -4.76840660e-02, 1.77362487e-02,5.17117009e-02,

-1.48533692e-03, -3.86029435e-03, 7.67699769e-03,6.56409469e-03,

(a)

(b)

Fig.12. Description of SURF feature point. (a) SURF feature
point’s position and scale. (b) SURF feature descriptor.

Tao Liu et al.: SEIP: System for Efficient Image Processing on Distributed Platform 1225

5 Evaluation

We evaluate SEIP with the demonstration applica-

tion mentioned above. In this section, we will briefly

introduce the experimental setup that includes the test

platform, methods and data we use. Then we show the

performance of SEIP with different optimizations and

performance comparison with GPU pipeline framework

and GPU multi-threading. Result verification and over-

head evaluation are also given at the end.

5.1 Experimental Setup

The experimental system is a 4-node cluster con-

nected with Gigabit Ethernet. Each node is a dual-way

x86 server equipped with two Intel Xeon 5650 (6 cores,

12 threads) processors, 16 GB memory, eight 300 GB

enterprise disks (10000 RPM, 32 MB cache), and one

NVIDIA Tesla C2075 (448 cores) 17○. One server is used

as both master and worker, and the other three servers

are only used as workers. Linux (Redhat 5.6 Enter-

prise Edition, 64-bit) and Hadoop (version 0.20.203.0)

are used in the evaluation.

All the experiments are based on the demonstra-

tion application in Subsection 4.3 to evaluate the per-

formance of the system by simultaneously extracting

LBP and SURF features of massive images (by 10 000

increments from 10 000 to 100 000) with four different

optimizations including: 1) CPUs and pipeline frame-

work; 2) only GPUs; 3) GPUs and pipeline framework;

4) CPU-GPU hybrid computation and pipeline frame-

work. The four optimizations are compared with the

unoptimized program, which simultaneously extracts

LBP and SURF features with only CPUs in the clus-

ter, rather than GPUs and pipeline framework. In ad-

dition, to evaluate the efficiency of our in-node pipeline

framework, we also test a hand-coded multi-threading

program with pipeline framework.

Images used in the evaluation come from Corel-

1k 18○, which contains 1 000 images (256× 384 pixels),

and we duplicate the images repeatedly to obtain

100 000 images. Three kinds of resolutions, 256× 384

pixels, 400× 400 pixels and 800× 800 pixels, are used

in the evaluation, and the latter two kinds are enlarged

from original Corel-1k 18○.

5.2 Results

The demonstrated application speedup in this pa-

per means the ratio of the execution time of the unop-

timized program and that of the optimized program.

The labels of different programs are shown in Table

3. Four speedups can be expressed as: “Cluster (CPU

Pipeline) vs Cluster (CPU)”, “Cluster (NVIDIA-GPU)

vs Cluster (CPU)”, “Cluster (NVIDIA-GPU Pipeline)

vs Cluster (CPU)”, and “Cluster (NVIDIA-GPU+CPU

Pipeline) vs Cluster (CPU)”.

Table 3. Label of Different Programs

1226 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

is longer than file prefetching time. Consequently, the

prefetching has almost no effect in this situation.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Image Number

(256× 384 Pixels)

 Cluster (NVIDIA-GPU + CPU Pipeline) vs Cluster(CPU)
 Cluster (NVIDIA-GPU Pipeline) vs Cluster(CPU)
 Cluster (NVIDIA-GPU) vs Cluster(CPU)
 Cluster (CPU Pipeline) vs Cluster(CPU)

D
e
m

o
n
st

ra
ti
o
n
 A

p
p
li
c
a
ti
o
n
 S

p
e
e
d
u
p

(Τ104)

1 2 3 4 5 6 7 8 9 10

Fig.13. Speedup of different optimizations vs Cluster (CPU)
(256× 384 pixels).

The processing time bars of different optimizations

vs Cluster (CPU) on images with 256× 384 pixels

are shown in Fig.14. As shown in Fig.14, Clus-

ter (CPU) is the most time-consuming, and Cluster

(CPU pipeline) takes the second time-consuming place.

From Fig.13 and Fig.14, we can see that for images

0

1

2

3

4

5

6

Image Number

(256× 384 Pixels)

P
ro

c
e
ss

in
g
 T

im
e
 (

s)

 Cluster (CPU)
Cluster (NVIDIA-GPU)

 Cluster (CPU Pipeline)
Cluster (NVIDIA-GPU Pipeline)
Cluster (NVIDIA-GPU+CPU Pipeline)

(Τ104)

(Τ103)

1 2 3 4 5 6 7 8 9 10

Fig.14. Processing time of different optimizations vs Cluster
(CPU) (256× 384 pixels).

(256× 384 pixels), the efficiency ranking of different

programs (from the highest to the lowest) is that:

Cluster (NVIDIA-GPU+CPU pipeline) >

Cluster (NVIDIA-GPU pipeline) >

Cluster (NVIDIA-GPU) >

Cluster (CPU pipeline) >

Cluster (CPU).

Fig.15 shows the speedup of different optimizations

vs Cluster (CPU) on images with larger size, i.e.,

400× 400 pixels. As shown in the figure, the CPU-

GPU hybrid computation with pipeline framework also

achieves the highest performance with average speedup

16x, which is higher than that in Fig.13. The reason is

that the computation complexity of feature extraction

is in proportion to the size of the images, that is, the

more pixels the images have, the higher the computa-

tion complexity is, and the more benefits the CPU-GPU

hybrid computation gains. The processing time of dif-

ferent optimizations vs Cluster (CPU) on images with

400× 400 pixels is shown in Fig.16.

From Fig.15 and Fig.16, we can see that for

400× 400 pixels images, the efficiency ranking of dif-

ferent programs is the same as that of 256× 384 pixels

images.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

 Cluster(NVIDIA-GPU + CPU Pipeline) vs Cluster(CPU)
 Cluster(NVIDIA-GPU Pipeline) vs Cluster(CPU)
 Cluster(NVIDIA-GPU) vs Cluster(CPU)
 Cluster(CPU Pipeline) vs Cluster(CPU)

D
e
m

o
n
st

ra
ti
o
n
 A

p
p
li
c
a
ti
o
n
 S

p
e
e
d
u
p

Image Number
(400× 400 Pixels)

(Τ104)

1 2 3 4 5 6 7 8 9 10

Fig.15. Speedup of different optimizations vs Cluster (CPU)
(400× 400 pixels).

Fig.17 and Fig.18 show results on images with

further larger size, 800× 800 pixels, where the aver-

age speedup of CPU-GPU hybrid computation with

pipeline framework rises to 25x. The efficiency rank-

ing of different programs is still the same as that of

256× 384 pixels images.

Tao Liu et al.: SEIP: System for Efficient Image Processing on Distributed Platform 1227

0

1

2

3

4

5

6

7

8

9

P
ro

c
e
ss

in
g
 T

im
e
 (

s)

Cluster (CPU)
Cluster (NVIDIA-GPU)
Cluster (CPU Pipeline)
Cluster (NVIDIA-GPU Pipeline)
Cluster (NVIDIA-GPU+CPU Pipeline)

Image Number
(400× 400 Pixels)

(Τ104)

(Τ103)

1 2 3 4 5 6 7 8 9 10

Fig.16. Processing time of different optimizations vs Cluster
(CPU) (400× 400 pixels).

0

2

4

6

8

10

12

14

16

18

20

22

24

26

 Cluster (NVIDIA-GPU + CPU Pipeline) vs Cluster(CPU)
 Cluster (NVIDIA-GPU Pipeline) vs Cluster(CPU)
 Cluster (NVIDIA-GPU) vs Cluster(CPU)
 Cluster (CPU Pipeline) vs Cluster(CPU)D

e
m

o
n
st

ra
ti
o
n
 A

p
p
li
c
a
ti
o
n
 S

p
e
e
d
u
p

Image Number
(800× 800 Pixels)

(Τ104)

1 2 3 4 5 6 7 8 9 10

Fig.17. Speedup of different optimizations vs Cluster (CPU)
(800× 800 pixels).

As mentioned in Subsection 3.4, when writing

programs for map tasks, users may choose to write

multi-threaded programs by their own instead of using

pipeline framework. To evaluate effects of these two

options, hand-coded multi-threading programs are also

tested and compared with the pipeline framework. In

the evaluation, we use three threads to process image

files concurrently.

0

5

10

15

20

25

30

P
ro

c
e
ss

in
g
 T

im
e
 (

s)

Cluster (CPU)
Cluster (NVIDIA-GPU)
Cluster (CPU Pipeline)
Cluster (NVIDIA-GPU Pipeline)
Cluster (NVIDIA-GPU+CPU Pipeline)

Image Number
(800× 800 Pixels)

(Τ104)

(Τ103)

1 2 3 4 5 6 7 8 9 10

Fig.18. Processing time of different optimizations vs Cluster
(CPU) (800× 800 pixels).

Fig.19 shows the performance comparison be-

tween pipeline framework and multi-threading with

different kinds of images. The lines in the sub-

figures refer to the speedups of pipeline frame-

work over multi-threading, which are calculated as

TCluster(multi-threading)/ TCluster(pipeline framework).

As shown in the sub-figures (Fig.19(a), Fig.19(b)

and Fig.19(c)), the speedup value is 1.38x for 256× 384

pixels, 1.31x for 400× 400 pixels and 1.25x for 800× 800

pixels, respectively. The reason is that multiple paral-

lel working processes/threads that access files and use

GPU resource simultaneously may interfere with each

other, which causes extra performance loss. Meanwhile,

pipeline framework does not run into this problem.

5.3 Results Verification

The results of demonstration application are veri-

fied. Because the test dataset is expanded from

Corel-1k 19○ (includes 1 000 pictures, 256× 384 pix-

els), we only need to extract LBP and SURF fea-

tures of Corel-1k 19○ simultaneously in single-node

environment, by employing CPU and GPU ver-

sion programs. The CPU-version programs are

from OpenCV SURF GPU 20○ and OpenCV SURF

1228 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

67

114

146

184

216

269
279

341

379 372

101

154

205

252

294

333

395

450

505

568

0

100

200

300

400

500

600
 Cluster (Pipeline Framework)
 Cluster (Multithreading)

P
ro

ce
ss

in
g
 T

im
e

(s
)

S
p
ee

d
u
p
 o

f
P
ip

el
in

e
F
ra

m
ew

o
rk

o
v
er

 M
u
lt
it
h
re

a
d
in

g

0

1

2

 Speedup of Pipeline Framework
over Multithreading

Image Number
(256× 384 Pixels)

88

123

174

212

277
304

355

393

432

489

99

176

238

288

350

389

463

540
582

657

0

100

200

300

400

500

600

700

800
 Cluster (Pipeline Framework)
 Cluster (Multithreading)

P
ro

ce
ss

in
g
 T

im
e

(s
)

S
p
ee

d
u
p
 o

f
P
ip

el
in

e
F
ra

m
ew

o
rk

o
v
er

 M
u
lt
it
h
re

a
d
in

g

0

1

2

 Speedup of Pipeline Framework
over Multithreading

Image Number
(400× 400 Pixels)

161

253

372

462

570

677

791

897

1005

1116

191

317

462

603

754

834

961

1102

1248

1416

0

200

400

600

800

1000

1200

1400

P
ro

ce
ss

in
g
 T

im
e

(s
)

S
p
ee

d
u
p
 o

f
P
ip

el
in

e
F
ra

m
ew

o
rk

o
v
er

 M
u
lt
it
h
re

a
d
in

g

 Cluster (Pipeline Framework)
 Cluster (Multithreading)

0

1

2

 Speedup of Pipeline Framework
over Multithreading

Image Number
(800× 800 Pixels)

(a)

(b)

(c)

(Τ104)

(Τ104)

(Τ104)1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Fig.19. Performance comparison between pipeline framework
and multithreading. (a) 256× 384 pixels images. (b) 400× 400
pixels images. (c) 800× 800 pixels images.

CPU 21○, which are provided by the algorithm founders

or widely approved by third-party library, and results

are certainly correct and can be the correct standards,

while GPU-version ones are implemented by ourselves.

The two kinds of results (GPU-version, CPU-version)

from single-node environment are the same by com-

parison. Further, we simultaneously extract LBP and

SURF features of Corel-1k 22○ in SEIP, by implementing

five programs. The programs include Cluster (CPU),

Cluster (CPU pipeline), Cluster (NVIDIA-GPU), Clus-

ter (NVIDIA-GPU pipeline), and Cluster (NVIDIA-

GPU+CPU pipeline). Five kinds of results are ob-

tained. Finally, we compare the results with the ones

from single-node environment by employing euclidean

distance, and all the results are equal.

Furthermore, the pictures expanded from Corel-

1k 22○ with 400× 400 pixels and 800× 800 pixels are all

compared in the same way, and the results from SEIP

are also equal to the ones from single-node environment.

5.4 Overhead Evaluation

The using of pipeline framework may bring some

overhead, due to its stage interactions mainly. This

subsection makes an evaluation on it with different im-

age sets and numbers. The overhead of pipeline frame-

work includes the time of pipeline initialization and that

of stage interactions. Pipeline initialization needs to be

done only once at the beginning, while stage interaction

is along with every file that goes through the pipeline

framework. Because these two kinds of overhead are

tiny, we test every kind of overhead for several hun-

dreds or thousands times, and take the average value

for an overhead. The overhead of pipeline framework is

given in Table 4 and the unit of time is millisecond.

Table 4. Overhead of Pipeline Framework

Tao Liu et al.: SEIP: System for Efficient Image Processing on Distributed Platform 1229

Table 5. Overhead of Pipeline Framework in Processing Time

1230 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

has been widely used in considerable domains, such as

big data processing[22] and data mining[23]. There are

several classical MapReduce implementations, in which

Hadoop is an open source implementation for clus-

ter computing[5] developed by Apache Software, and

Phoenix is an implementation for shared-memory sys-

tems with multi-core chips[24].

Recently, there are a couple of studies focusing on

image processing in distributed systems. Moise et al.[25]

made use of the MapReduce paradigm for image simi-

larity search, which provides good practices and recom-

mendations to image processing in Hadoop. Mills et

al.[26] paid attention to large-scale feature matching

in image processing. Moreover, they implemented the

large-scale feature matching on distributed platform

and GPU. Teodoro et al.[27] proposed a practical GPU-

CPU hybrid system to make efficient collaborative use

of CPUs and GPUs on a parallel system to accelerate

large-scale image analysis. Teodoro et al.[28] also uti-

lized the system proposed in [27] to analyze large-scale

microscopy images for brain cancer studies. Hua et

al.[29] proposed a near real-time scheme, called FAST.

Sixty million images were analyzed by FAST, which

could demonstrate the efficiency and efficacy of this

methodology, and Liu et al.[30] made similar work.

There are also a series of systems that implement

MapReduce on GPUs[31-35] for general purpose appli-

cations. Mars[31] is a GPU-based MapReduce system

that utilizes GPU’s power for MapReduce applications.

Mars also employs Hadoop streaming technology 26○ to

integrate their framework into Hadoop. MapCG pro-

vides a framework that offers source code level porta-

bility between CPU and GPU[32]. By using MapCG’s

APIs, developers can write programs that execute

on both CPU and GPU automatically. Lit[33] is a

MapReduce-like framework based on CPU/GPU clus-

ter, which provides an annotation approach to gen-

erating CUDA codes from Java codes in Hadoop.

MGMR[34] is a MapReduce framework that utilizes

multiple GPUs to manage large-scale data. Moreover,

an upgrade version of MGMR, MGMR++, has been

proposed to eliminate GPU memory limitation in old

version[35]. Both systems were tested on one or two

servers, and each server was equipped with two GPUs.

I/O limitations from distributed file systems to

memory and from GPU to CPU have been concerned.

Wittek and Darányi[36] accelerated text mining work-

loads in MapReduce-based distributed GPU environ-

ment, which focuses on the limitations of device mem-

ory and I/O problem in CPU-GPU hybrid systems.

The solution is that I/O-bound operations are run on

the CPU, while computation-intensive tasks are exe-

cuted on the GPU.

Compared with the related work, the system pro-

posed in this paper focuses on processing massive im-

ages on distributed platform with GPU accelerators,

and can be easily extended or customized by integrat-

ing existing implementations of various kinds of image

processing algorithms. In addition, the system employs

a pipeline-based framework to process image files in

parallel with transparent prefetching by using simpli-

fied programming interface.

7 Conclusions

With the demands of the rapidly growing of massive

image processing in recent years, this paper proposed

a distributed image processing system named SEIP to

support efficient image processing on distributed plat-

forms.

The system is built on Hadoop distributed platform

with GPU accelerators, and employs extensible in-node

architecture to support the integration of existing im-

plementations of various kinds of image processing al-

gorithms. In addition, the system uses a pipeline-based

framework to simplify in-node parallel programming in

application layer while improving the efficiency of mas-

sive image file processing. A demonstration application,

which extracts LBP and SURF features of massive im-

ages, and then clusters and stores the image features,

was also developed. The system is evaluated in a small

cluster with GPU accelerators, and the evaluation re-

sults show the usability and efficiency of SEIP.

The system will be improved continually, and our

future work will focus on more flexible pipeline frame-

work with load-balancing, not only among stages, but

also between CPUs-GPUs.

References

[1] Tanenbaum A S, Van Steen M. Distributed Systems: Prin-

ciples and Paradigms. Upper Saddle River, NJ: Prentice

Hall, 2007, pp.7-8.

[2] Fleischmann A. Distributed Systems: Software Design and

Implementation. Springer-Verlag Berlin Heidelberg, 2012,

pp.4-5.

[3] Dean J, Ghemawat S. MapReduce: Simplified data process-

ing on large clusters. Communications of the ACM, 2008,

51(1): 107-113.

Tao Liu et al.: SEIP: System for Efficient Image Processing on Distributed Platform 1231

[4] Zaharia M, Chowdhury M, Franklin M J et al. Spark: Clus-

ter computing with working sets. In Proc. the 2nd USENIX

Conference on Hot Topics in Cloud Computing, Jun. 2010.

[5] White T. Hadoop: The Definitive Guide (1st edition).

O’Reilly Media, Jun. 2009.

[6] Zaharia M, Chowdhury M, Das T et al. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory clus-

ter computing. In Proc. the 9th USENIX Conference on

Networked Systems Design and Implementation, Apr. 2012,

pp.15-28.

[7] Ojala T, Pietikainen M, Harwood D. Performance evalua-

tion of texture measures with classification based on Kull-

back discrimination of distributions. In Proc. the 12th Inter-

national Conference on Pattern Recognition (ICPR), Oct.

1994, Volume 1, pp.582-585.

[8] Ojala T, Pietikainen M, Mäenpää T. Multiresolution gray-

scale and rotation invariant texture classification with local

binary patterns. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2002, 24(7): 971-987.

[9] Bay H, Tuytelaars T, Van Gool L. SURF: Speeded-up ro-

bust features. In Proc. the 9th ECCV, May 2006, pp.404-

417.

[10] Ng P C, Henikoff S. SIFT: Predicting amino acid changes

that affect protein function. Nucleic Acids Research, 2003,

31(13): 3812-3814.

[11] Tola E, Lepetit V, Fua P. DAISY: An efficient dense de-

scriptor applied to wide-baseline stereo. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2010, 32(5):

815-830.

[12] Juan L, Gwun O. A comparison of SIFT, PCA-SIFT and

SURF. International Journal of Image Processing (IJIP),

2009, 3(4): 143-152.

[13] Lewis J, Alghamdi M, Assaf M A et al. An automatic

prefetching and caching system. In Proc. the 29th IEEE

International on Performance Computing and Communi-

cations Conference (IPCCC), Dec. 2010, pp.180-187.

[14] Shvachko K, Kuang H, Radia S et al. The Hadoop dis-

tributed file system. In Proc. the 26th IEEE Symposium

on Mass Storage Systems and Technologies (MSST), May

2010.

[15] Lindholm E, Nickolls J, Oberman S et al. NVIDIA Tesla: A

unified graphics and computing architecture. IEEE Micro,

2008, 28(2): 39-55.

[16] Hartley T D R, Catalyurek U V, Ruiz A et al. Author’s

retrospective for biomedical image analysis on a coopera-

tive cluster of gpus and multicores. In Proc. the 25th ACM

International Conference on Supercomputing Anniversary

Volume, Jun. 2014, pp.82-84.

[17] McGaffin M G, Fessler J. Edge-preserving image denoising

via group coordinate descent on the GPU. IEEE Transac-

tions on Image Processing, 2015, 24(4): 1273-1281.

[18] Zhu L, Jin H, Zheng R et al. Effective naive Bayes near-

est neighbor based image classification on GPU. Journal of

Supercomputing, 2014, 68(2): 820-848.

[19] Cornelis N, van Gool L. Fast scale invariant feature de-

tection and matching on programmable graphics hardware.

In Proc. IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW),

June 2008, pp.1-8.

[20] Wu C. SiftGPU: A GPU implementation of scale in-

variant feature transform (SIFT). http://cs.unc.edu/∼

ccwu/siftgpu, Oct. 2015.

[21] Prisacariu V, Reid I. fastHOG — A real-time GPU imple-

mentation of HOG. Technical Report 2310/09, Department

of Engineering Science, University of Oxford, January 2012.

[22] Jiang D, Chen G, Ooi B C et al. epiC: An extensible and

scalable system for processing big data. Proceedings of the

VLDB Endowment, 2014, 7(7): 541-552.

[23] Zhang X, Yang L T, Liu C et al. A scalable two-phase top-

down specialization approach for data anonymization using

MapReduce on cloud. IEEE Transactions on Parallel and

Distributed Systems, 2014, 25(2): 363-373.

[24] Ranger C, Raghuraman R, Penmetsa A et al. Evaluating

MapReduce for multi-core and multiprocessor systems. In

Proc. the 13th IEEE International Symposium on High

Performance Computer Architecture (HPCA), Feb. 2007,

pp.13-24.

[25] Moise D, Shestakov D, Gudmundsson G et al. Terabyte-

scale image similarity search: Experience and best practice.

In Proc. IEEE International Conference on Big Data, Oct.

2013, pp.674-682.

[26] Mills S, Eyers D, Leung K C et al. Large-scale feature

matching with distributed and heterogeneous computing.

In Proc. the 28th IEEE International Conference of Image

and Vision Computing New Zealand (IVCNZ), Nov. 2013,

pp.208-213.

[27] Teodoro G, Kurç T M, Pan T et al. Accelerating large

scale image analyses on parallel, CPU-GPU equipped sys-

tems. In Proc. the 26th IEEE International on Parallel and

Distributed Processing Symposium (IPDPS), May 2012,

pp.1093-1104.

[28] Teodoro G, Pan T F, Kurç T M et al. High-throughput

analysis of large microscopy image datasets on CPU-GPU

cluster platforms. In Proc. the 27th IEEE International on

Parallel and Distributed Processing Symposium (IPDPS),

May 2013, pp.103-114.

[29] Hua Y, Jiang H, Feng D. FAST: Near real-time search-

able data analytics for the cloud. In Proc. the International

Conference for High Performance Computing, Networking,

Storage and Analysis (SC), Nov. 2014, pp.754-765.

[30] Liu J, Huang Z, Cheng H et al. Presenting diverse loca-

tion views with real-time near-duplicate photo elimination.

In Proc. the 29th IEEE International Conference on Data

Engineering (ICDE), Apr. 2013, pp.505-516.

[31] Fang W, He B, Luo Q et al. Mars: Accelerating MapReduce

with graphics processors. IEEE Transactions on Parallel

and Distributed Systems, 2011, 22(4): 608-620.

[32] Hong C, Chen D, Chen W et al. MapCG: Writing parallel

program portable between CPU and GPU. In Proc. the 19th

ACM International Conference on Parallel Architectures

and Compilation Techniques (PACT), Sept. 2010, pp.217-

226.

[33] Zhai Y, Mbarushimana E, Li W et al. Lit: A high per-

formance massive data computing framework based on

CPU/GPU cluster. In Proc. IEEE International Confer-

ence on Cluster Computing (CLUSTER), Sept. 2013.

[34] Jiang H, Chen Y, Qiao Z et al. Accelerating MapRe-

duce framework on multi-GPU systems. Cluster Comput-

ing, 2014, 17(2): 293-301.

1232 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

[35] Jiang H, Chen Y, Qiao Z et al. Scaling up MapReduce-

based big data processing on multi-GPU systems. Cluster

Computing, 2015, 18(1): 369-383.

[36] Wittek P, Darányi S N. Accelerating text mining work-

loads in a MapReduce-based distributed GPU environment.

Journal of Parallel and Distributed Computing, 2013, 73(2):

198-206.

Tao Liu received his B.E. and M.S.

degrees in computer science and technol-

ogy from Shandong University, Jinan, in

2007 and 2010, respectively. Currently,

he is a Ph.D. candidate in the School

of Computer Science and Engineering,

Beihang University, Beijing. He is a

member of Sino-German Joint Software

Institute at Beihang University. His research interests in-

clude parallel computing and high performance computing.

Yi Liu received his B.S., M.S. and

Ph.D. degrees in computer science

from Xi’an Jiaotong University, Xi’an,

in 1990, 1993 and 2000, respectively.

Currently, he is a professor of Beihang

University, and vice director of Sino-

German Joint Software Institute at

Beihang University. His research inter-

ests include computer architecture and high performance

computing.

Qin Li received his B.E. and M.S.

degrees in computer science and

technology from Beihang University,

Beijing, in 2012 and 2015, respectively.

His research interests include dis-

tributed system and high performance

computing.text text text text text text

text text text text text text text text

text text text text

Xiang-Rong Wang received her

B.E. degree in computer science and

technology from Xi’an Jiaotong Uni-

versity, Xi’an, in 2011, and M.S. degree

in computer science and technology

from Beihang University, Beijing, in

2014. Her research interests include

image processing algorithm and high

performance computing.

Fei Gao received her B.E. and

M.S. degrees in computer science and

technology from Beihang University,

Beijing, in 2012 and 2015, respectively.

Her academic interests include image

processing algorithm and high perfor-

mance computing.text text text text

text text text text text text text

Yan-Chao Zhu received his B.E.

degree in computer science and technol-

ogy from Beihang University, Beijing, in

2012. Currently, he is a Ph.D. candidate

in the School of Computer Science and

Engineering, Beihang University. He is

a member of Sino-German Joint Soft-

ware Institute at Beihang University.

His research interests include distributed system and high

performance computing.

De-Pei Qian graduated from Xi’an

Jiaotong University in 1977 and from

North Texas State University in 1984

with his M.S. degree. He worked at

Xi’an Jiaotong University from 1977

to 2010 and joined Beihang University

in 2000. He is currently a professor

and the director of Sino-German Joint

Software Institute at Beihang University. He has been

involved in the activities of the expert group for the

National High Technology Research and Development

Program (the 863 Program) since 1996 and led three key

projects on high-performance computing. His current

research interests include high-performance computer

architecture and implementation technologies, distributed

systems, and multicore/many-core programming support.

He has published over 300 papers.

