
Zhang X, Zhang D, Traon YL et al. Roundtable: Research opportunities and challenges for emerging software systems.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 30(5): 935–941 Sept. 2015. DOI 10.1007/s11390-015-

1572-8

Roundtable: Research Opportunities and Challenges for Emerging

Software Systems

Xiangyu Zhang 1 (), Dongmei Zhang 2 (), Yves Le Traon 3, Qing Wang 4 (), and
Lu Zhang 5 ()

1Department of Computer Science, Purdue University, West Lafayette, IN 47907, U.S.A.

2Microsoft Research, Beijing 100080, China

3Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg

4Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

5School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

E-mail: xyzhang@cs.purdue.edu; dongmeiz@microsoft.com; yves.letraon@uni.lu; wq@itechs.iscas.ac.cn
E-mail: zhanglu@sei.pku.eu.cn

Received August 9, 2015; revised August 10, 2015.

Abstract For this special section on software systems, several research leaders in software systems, as guest editors for this

special section, discuss important issues that will shape this field’s future directions. The essays included in this roundtable

article cover research opportunities and challenges for emerging software systems such as data processing programs (Xiangyu

Zhang) and online services (Dongmei Zhang), with new directions of technologies such as unifications in software testing

(Yves Le Traon), data-driven and evidence-based software engineering (Qing Wang), and dynamic analysis of multiple traces

(Lu Zhang). — Tao Xie, Leading Editor of Special Section on Software System.

Keywords data processing program, software analytics, online service, software testing, data-driven software engineering,

evidence-based software engineering

1 Engineering Stable Data Processing

Programs (Xiangyu Zhang)

In this Big Data era, data processing is becoming

one of the most prevalent computing tasks. In the mean

time, errors pose a serious threat to output validity

for modern data processing, which is often performed

by computer programs. Raw inputs may be acquired

by physical instruments that have precision limitations,

leading to input errors. Parameters used in data pro-

cessing may be provided by human scientists based on

their experience, leading to uncertainty. Data may not

be precisely represented due to the limited precision

of the machine used, leading to representation errors.

Once these errors get into computation, they may get

propagated and magnified by the operations conducted,

producing unreliable output. It is called the instabi-

lity problem. Instability problems have substantial im-

pact in various aspects. For instance, it could lead

to bogus scientific findings that are costly down the

road, inaccurate long-term weather forecast resulting

in substantial lost, and inaccurate perception of battle

field situation causing casualties. Traditionally, error

analysis is conducted on mathematical models. How-

ever, modern data processing uses more complex mod-

els and relies on computers and programs, rendering

mathematical analysis difficult. As such, developing

stable data processing programs is becoming a promi-

nent challenge for software engineers and software en-

gineering researchers.

Instability problems have unique characteristics,

compared to the traditional functional bugs. They can-

not be completely evaded as such problems are usually

936 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

rooted at the underlying data processing algorithms or

even the requirements. Using higher precision in com-

puting or changing implementation may mitigate the

problems, but cannot completely evade them. Instabi-

lities are highly input dependent. They only occur at

specific input ranges which are usually very very small,

despite that the consequence of such problems may

be devastating. In practice, people are willing to live

with these unstable problems and the entailed risks.

Some recent study has shown that even the widely

used data processing programs in the SPEC-FP bench-

mark set have instability problems while people still

feel comfortable using those programs due to the low

probabilities of the instability problems.

In order to help engineers to build stable data pro-

cessing programs, I foresee that our research community

needs to address the following challenges.

• Develop cost-effective runtime predictors that can

effectively predict if a specific execution is stable. In

most cases, the predictor will report no instability has

occurred and the outcome can be trusted. In the very

rare scenarios where instability does occur, the predic-

tor shall be able to report the output variations in the

presence of errors.

• Develop testing tools that can identify the input

ranges in which instabilities occurs. This would help

users/developers to avoid such ranges or use a higher

precision for such inputs.

• Develop techniques that can statically choose the

right precision for a given data processing problem or

use compiler to inject support for multiple precisions in

the program such that the selection of the right decision

can be performed at runtime.

• Develop verification techniques that prove small

numerical functions are free from instability.

Errors in computing could cause severe problems

in scientific discovery, economy, society, and military

operations. However, people are lacking effective and

efficient automated tools to help them address these

problems. More importantly, due to the nature of these

problems, I foresee many of them can be addressed by

building upon existing software engineering techniques

such as program analysis, testing, and verification.

2 Software Analytics for Online Services

(Dongmei Zhang)

Software services are now widely available impact-

ing various aspects of people’s lives. Due to the enor-

mous user base and highly frequent use, a huge wealth

of different types of data are generated at every moment

throughout the lifecycle of these services. Hidden in the

data is information about the service quality, user ex-

perience, as well as the development dynamics. With

various analytical and computing technologies, such as

machine learning, data mining, information visualiza-

tion, program analysis, and large-scale data comput-

ing, Software Analytics[1-2] enables software practition-

ers to perform effective and efficient data exploration

and analysis, in order to obtain insightful and actiona-

ble information for data-driven tasks in engineering on-

line services.

Data sources are vital to ensuring service quality

and user experience. Service monitoring systems usua-

lly collect huge amount of runtime data including sys-

tem states and service logs. User requests record how

users use the services. In addition, the information on

deployment and configuration as well as service inci-

dents are also recorded. From the user perspective,

customer profiles and their support history along with

commerce data further enrich the data sources. The

common data sources in online services are summarized

in Table 1.

Table 1. Common Data Sources in Online Services

Xiangyu Zhang et al.: Research Opportunities and Challenges for Emerging Software Systems 937

5) Customer support is not well connected to ser-

vice quality management, resulting in unsatisfactory

customer experience and high support cost;

6) The understanding on users and user behaviors is

limited, which in turn limits the contribution to service

quality, customer experience, and business success.

Two pillars need to be firmly established in order to

address the aforementioned challenges. One is integra-

tion and the other is intelligence.

The integration pillar refers to storing different data

sources in a well-designed infrastructure, in order to

enable easy and well-controlled access as well as efficient

computing. More importantly, the data sources should

be properly linked to enable in-depth and cross-source

analysis. Unified instrumentation, consistent schema,

and data models should be used across different ser-

vices to reduce friction in data collection, access, and

analysis.

The intelligence pillar refers to the rich and deep

analyses conducted on the data source. Moreover,

knowledge bases should also be established and evolved

in order to break the expert bottlenecks and speed up

the data-to-insight process.

Based on the scenarios of quality management in dif-

ferent services, a common set of analysis problems can

be identified that fall into three categories: anomaly de-

tection, problem localization and diagnosis, and prob-

lem categorization. For each category of problems, dif-

ferent data analysis techniques can be developed and

applied.

Anomaly detection is the problem of finding pat-

terns in data that do not conform to a model represent-

ing the normal behavior of the data. It is in great need

in service monitoring to detect unexpected behaviors,

e.g., sudden change of KPIs, and rarely seen usage pat-

terns.

Given the symptom of a service issue and a set

of service monitoring data, problem localization helps

scope down the service issue, e.g., to server nodes, ser-

vice components, and certain log patterns. Problem

diagnosis provides useful information for identifying the

root cause of the underlying service issue. Both tech-

niques are important for reducing MTTR (Mean-Time-

To-Recovery) in incident management, as well as mak-

ing root-cause analysis more effective in problem mana-

gement.

In quality management of online services, it is com-

mon that many telemetry signals reflect the same or

similar service issues. In order to correctly understand

and prioritize the actual service issues, problem cate-

gorization techniques need to be used in practice to

group the service issues properly. Categorization not

only provides a basis for reporting and prioritization,

but also helps make the diagnosis effort manageable. It

enables product teams to answer questions like “how

many service issues are found” and “how many of them

are not resolved yet”.

In recent years, increasing amount of research was

published on data-driven quality management for on-

line services, including data analysis techniques as well

as experience reports on applying such techniques in

real practice[3-8]. In the near future, software analy-

tics for online services will continue to be an important

focus for software engineering research and technology

transfer.

3 Unifications in Software Testing (Yves Le

Traon)

Fundamentally, software testing is about detecting

a maximum of defects contained in a software product.

Although historical data in the field has shown that

software testing is a continuous battle, it also reveals

that a substantial amount of knowledge has been accu-

mulated since the early days of computer science. The

question of interest today is: do we fully take benefit

from this knowledge to build cheaper, safer and better

software?

As a generic research domain, software testing ap-

pears to be doomed by the variety of options and con-

straints in the tested subjects. Indeed, software testing

directions may be influenced by the nature and com-

plexity of the software, from embedded or mobile to

cloud software, from desktop or centralized to web or

distributed software. Software testing is also applied

differently according to the different stages in the soft-

ware life cycle, the ever evolving technologies involved,

the design settings and the programming languages.

Considering these moving targets, it is quite remarkable

to note the amount of achievements that have been pro-

duced in the last three decades, for instance, the defi-

nition and application of test coverage and adequacy

criteria, automated test generation and execution en-

vironments, code-based test generation (e.g., concolic

approaches), model-based testing (MBT), test qualifi-

cation techniques such as mutation and so many other

938 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

relevant contributions. Among the other areas of com-

puter science and engineering, software testing research

is especially interrelated and interdependent with in-

dustry, some companies and their developers having

contributed to major achievements in software testing.

Unfortunately, all these positive remarks are counter-

balanced by observing that a vast majority of the con-

tributions have a focus limited to functional testing,

with no definitive progress concerning the oracle ques-

tion, which determines whether a result is correct, and

the continuity from fault detection to repair.

The last decade has seen an interest in investi-

gating more in-depth some of those directions, such

as non- or extra-functional testing (security, per-

formances, consumption), new design/programming

paradigms (aspect-oriented programs, model-driven en-

gineering, software product lines, distributed systems),

and metrics and instruments for qualifying testing tech-

niques (e.g., mutation analysis). All these research

works still require a lot of efforts: security and privacy

are at stake while scalability and performance remain

paramount.

Building on this quick (and probably incomplete)

summary of past research as a baseline, let me list four

longer-term unifications that currently deserve the at-

tention of researchers in the continuation of this past

research.

• Unification of the Process from Requirements to

Testing. The oracle problem is related to the identifica-

tion of what we expect the software to do and not to do,

according to diverse requirements. The translation of

requirements and user-needs into executable test cases

is key, and MBT as well as model-driven traceability are

potential bootstrapping steps in that translation. The

point is to be able to better analyze requirements and

user needs for testing what must be tested according to

those requirements. The entry point can be either ex-

plicit requirements, usually involving natural language,

or implicit requirements. Implicit requirements may be

defined as what the user really needs (and does not

need) but that he/she has not expressed. For implicit

requirements, analytics could be of great help to learn

about software usability and actual usages. Why test

parts that will never be used by anyone? How to test

only what is required? The requirements are multiple

since many diverse aspects are becoming mandatory to

have a valid software: preserving security and privacy is

important, being compliant with regulation is another

requirement, scaling to stress conditions is becoming

key and software not ensuring this requirement is a fail-

ing software that must be fixed.

• Unification of the Process from Defect Detection

to Repair, and from Repair to Suggestions for Improve-

ment. The point here is to consider software testing

as a unified process from detection to fault localiza-

tion and repair, and even to recommending improve-

ments. Many studies are about data mining of real-

program repositories, and as such are not directly re-

lated to the detection of defects, but instead to their lo-

calization, and repairing/fixing. The outcomes of these

studies are not yet assembled with software testing ap-

proaches, enabling a continuous identification of a po-

tential defect, its execution to exhibit it as an actual

defect, and then the recommendation for a fix. A de-

fect not only is the non-satisfaction of a requirement

but also may be seen as an under-satisfaction of a set of

requirements. Code smells, information leakages, and

under-performance code, all these are defects that may

be hunted and then lead to code modification for im-

proving the final software. Along this line comes all

the research related to multi-objective optimization of

a software, multi-dimensional fixing (e.g., blocking an

access to a resource while keeping the functionality un-

changed).

• Unification of Search-Based Software Engineer-

ing (SBSE) Techniques and Deterministic Approaches

for Handling Quasi-Infinite Input Spaces. Software

test selection/generation is about finding the best in-

put data to reveal defects within a very large, quasi-

infinite input space. Exploring such quasi-infinite in-

put domains is challenging, especially with respect to

multiple and potentially conflicting testing objectives,

functional and non-functional ones. An example of

such conflicting objectives comes with the emergence

of highly configurable systems. Software development

is increasingly moving from the production of a sin-

gle, yet configurable, software to the development of

families of software products (Software Product Lines).

The configuration space is growing with the number of

software features that can be combined to build tai-

lored software products. For such systems, the chal-

lenge has been addressed by combining search-based

techniques and constraint solving with very promising

results. In this respect, this unification of SBSE with

formal techniques, when applied efficiently, may lead

to devise hyper-heuristics that generalize to any sys-

tem with well-specified input domains.

Xiangyu Zhang et al.: Research Opportunities and Challenges for Emerging Software Systems 939

• Unification of Dynamic and Static Techniques for

Program Analysis. Program static and dynamic ana-

lyses are complementary tools for detecting, localizing

and fixing defects. Powerful tools are already available

to perform complex analyses, for instance, bytecode se-

curity analysis of Android apps. However, both static

and dynamic analysis face intrinsic limitations, static

analysis may lead to over-approximations while dy-

namic analysis (dynamic testing) may miss some cases

and lead to under-approximations in program analysis

(e.g., detecting leakages in an app). It would be a great

tool, the one that would smartly combine code static

analysis with software testing.

All these unification trends are related to the

consolidation and continuation of well-established re-

search directions. Looking ahead to the new technolo-

gical challenges, it is hard to foresee what may and

will be achieved, and thus to what extent this may mo-

dify software testing. Among many ones, let me men-

tion in bulk: the analytics tools and recommendation

systems, the emergence of new non ACID databases,

the trivialization of very-large scale distributed systems

(IoT, Cyber-Physical Systems), software dematerializa-

tion and dynamic relocation in the “cloud”, and the

development of more and more volatile markets with

the acceleration of time-to-market-to-trash for services

and software. The next years will be overwhelming, by

forcing the testing processes to evolve, the testing tech-

niques to scale and adapt to fast validation, and maybe

weakening the notion of correctness to deal with un-

certainty and approximation. Even basic notions such

as defect/fault/error may be completely redefined with

these new perspectives. There will be no rest for the

testing community, but a huge domain to continue ex-

ploring, and consequently many lessons to learn from

new unforeseen errors.

4 Data-Driven and Evidence-Based Software

Engineering (Qing Wang)

Nowadays, software systems are being developed

and applied in an increasingly wide scope. There are

various emerging types of software systems such as So-

cial Software Service Systems and Software Ecosys-

tems. On the other hand, open and autonomy soft-

ware environments have changed the software develop-

ment methodologies and processes. With these recent

trends, there are three main important challenges to be

addressed by researchers and practitioners.

1) How to process, understand, and leverage the

data produced in the software development process?

There are many data, such as software documents, pro-

cess management data, user feedback and comments,

bug reports, issue and feature requests. These data ex-

ist for some time but most of these data have not been

leveraged well. Especially in open development envi-

ronments, massive data are delivered by various stake-

holders voluntarily with various quality levels. It is very

important to find valuable information out of these data

to assist productivity and quality improvement.

2) How to manage the quality of software? Tra-

ditional software project management based on con-

tracts has been increasingly replaced by community-

based project management, such as project manage-

ment for open source and crowdsourcing. Most of the

developers and testers of a project join the project

based on their interest and willingness, and contribute

their time and effort without being constrained. In ad-

dition, massive users give feedback of their feelings and

preferences freely. It has been increasingly challenging

to manage the quality of software such as collecting,

elaborating, and formalizing the evidence for the qua-

lity of software.

3) How to stimulate collective intelligence of the

software community? In the increasingly open, auto-

nomy software community, the cooperation and the

competition coexist. The data and knowledge of group

wisdom should spring collective intelligence in some

way. It is important to cultivate and encourage positive

collective intelligence to build an active, booming, and

healthy community and to evolve software effectively

and efficiently.

5 Dynamic Analysis of Multiple Traces (Lu

Zhang)

Traditionally, dynamic analysis techniques focus on

analyzing a single execution trace to obtain various

properties specific to the execution trace. Since one

single execution trace may not sufficiently demonstrate

some important properties of the software under analy-

sis, there have been increasing demands in software en-

gineering to analyze multiple execution traces. There

are two paradigms for dynamically analyzing multiple

traces.

• Batch Analysis. In this paradigm, the analyzer

faces a set of traces in the first place. The aim of the

analyzer is to summarize or synthesize properties on

940 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

the basis of analyzing each trace. One typical example

is dynamic specification mining[9].

• One-By-One Analysis. In this paradigm, the an-

alyzer starts with one single trace. Based on analyzing

this trace, the analyzer determines which trace should

be analyzed next (typically by determining the input

to generate the next trace). One typical example is

dynamic symbolic execution[10].

Dynamic analysis of multiple traces typically re-

quires combining program analysis with intelligent

data processing (e.g., data mining and artificial intelli-

gence). In the first paradigm, the summarization pro-

cess mainly relies on some intelligent mining technique.

In the second paradigm, the determination of the next

trace to analyze is actually a decision making process.

Obviously, how to combine such two types of tech-

niques is important. In existing research, it is common

to use coarse combinations. That is to say, it is typical

to use program analysis and intelligent data process-

ing as distinct passes, although there may be several

iterations, each containing both passes.

An interesting new way of combining the two kinds

of techniques is search-based dynamic analysis, which

adopts search-based optimization as both the intelligent

data processing technique and the combination frame-

work. With a meta-heuristic search technique, the exe-

cution of the software under analysis can be treated as

an integral step of the search process. This way of com-

bination is finer because the intelligent data processing

here is no longer a pass independent from the passes of

analyzing one trace. Below, I list two examples, each

belonging to one paradigm: the first piece of research[11]

uses search-based optimization to infer a special kind of

specifications (i.e., metamorphic relations); while the

second piece of research[12] uses search-based optimiza-

tion to find inaccuracies in numerical programs.

References

[1] Zhang D, Dang Y, Lou J G, Han S, Zhang H, Xie T.

Software analytics as a learning case in practice: Ap-

proaches and experiences. In Proc. International Workshop

on Machine Learning Technologies in Software Engineering

(MALETS 2011), Nov. 2011, pp.55-58.

[2] Zhang D, Han S, Dang Y, Lou J, Zhang H, Xie T. Software

analytics in practice. IEEE Software, 2013, 30(5): 30-37.

[3] Fu Q, Lou J G, Wang Y, Li J. Execution anomaly detection

in distributed systems through unstructured log analysis.

In Proc. the 9th IEEE International Conference on Data

Mining (ICDM 2009), Dec. 2009, pp.149-158.

[4] Lou J G, Lin Q, Ding R, Fu Q, Zhang D, Xie T. Soft-

ware analytics for incident management of online services:

An experience report. In Proc. the 28th IEEE/ACM Inter-

national Conference on Automated Software Engineering

(ASE 2013), Experience Papers, Nov. 2013, pp.475-485.

[5] Ding R, Fu Q, Lou J, Lin Q, Zhang D, Xie T. Mining

historical issue repositories to heal large-scale online ser-

vice systems. In Proc. the 44th Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks

(DSN 2014), June 2014, pp.311-322.

[6] Fu Q, Zhu J, Hu W, Lou J, Ding R, Lin Q, Zhang D, Xie

T. Where do developers log? An empirical study on logging

practices in industry. In Companion Proc. the 36th Inter-

national Conference on Software Engineering (ICSE 2014),

May 31-June 7, 2014, pp.24-33.

[7] Shang W, Jiang Z M, Hemmati H, Adams B, Hassan A E,

Marin P. Assisting developers of big data analytics applica-

tions when deploying on Hadoop clouds. In Proc. the 35th

International Conference on Software Engineering, May

2013, pp.402-411.

[8] Malik H, Hemmati H, Hassan A E. Automatic detection of

performance deviations in the load testing of Large Scale

Systems. In Proc. the 35th International Conference on

Software Engineering, May 2013, pp.1012-1021.

[9] Yang J, Evans D, Bhardwaj D, Bhat T, Das M. Perra-

cotta: Mining temporal API rules from imperfect traces.

In Proc. International Conference on Software Engineer-

ing, May 2006, pp.282-291.

[10] Godefroid P, Klarlund N, Sen K. DART: Directed auto-

mated random testing. In Proc. International Conference

on Programming Language Design and Implementation,

June 2005, pp.213-223.

[11] Zhang J, Chen J, Hao D, Xiong Y, Xie B, Zhang L, Mei

H. Search-based inference of polynomial metamorphic re-

lations. In Proc. International Conference on Automated

Software Engineering, Sept. 2014, pp.701–712.

[12] Zou D, Wang R, Xiong Y, Zhang L, Su Z, Mei H. A ge-

netic algorithm for detecting significant floating-point in-

accuracies. In Proc. International Conference on Software

Engineering, May 2015, pp.529-539.

Xiangyu Zhang is an associate

professor at Purdue University, West

Lafayette. He received his Ph.D. degree

in computer science from the University

of Arizona, Tucson, in 2006, and his

M.S. and B.S. degrees in computer

science from University of Science and

Technology of China, Hefei. His re-

search interest lies in dynamic and static program analysis

and their applications in debugging, forensic analysis,

and data processing. He is currently a Purdue University

Scholar. He has received the 2006 ACM SIGPLAN

Distinguished Doctoral Dissertation Award, NSF Career

Award, and a few Best Paper Awards in top conferences.

Xiangyu Zhang et al.: Research Opportunities and Challenges for Emerging Software Systems 941

Dongmei Zhang is a principal

researcher and research manager at the

Software Analytics group of Microsoft

Research Asia (MSRA), Beijing. Her

research interests include data-driven

software analysis, machine learning,

information visualization and large-

scale computing platform. She founded

the Software Analytics group at MSRA in 2009. Since

then, she has been leading the group to research software

analytics technologies. Her group collaborates closely with

multiple product teams in Microsoft, and has developed

and deployed software analytics tools that have created

high business impact.

Yves Le Traon is a professor at Uni-

versity of Luxembourg, in the Faculty of

Science, Technology and Communica-

tion (FSTC). His domains of expertise

are related to software engineering

and software security, with a focus

on software testing and model-driven

engineering. He received his engineering

degree and his Ph.D. degree in computer science at the

“Institut National Polytechnique” in Grenoble, France, in

1997. From 1998 to 2004, he was an associate professor at

the University of Rennes, in Brittany, France. During this

period, Professor Le Traon studied design for testability

techniques, validation and diagnosis of object-oriented

programs and component-based systems. From 2004 to

2006, he was an expert in model-driven architecture and

validation in the EXA team (Requirements Engineering

and Applications) at “France Télécom R&D” company.

In 2006, he became professor at Telecom Bretagne (Ecole

Nationale des Télécommunications de Bretagne) where he

pioneered the application of testing for security assessment

of web-applications, P2P systems and the promotion

of intrusion detection systems using contract-based

techniques. He is currently the head of the Computer

Science Research Unit at University of Luxembourg. He

is a member of the Interdisciplinary Centre for Security,

Reliability and Trust (SnT), where he leads the research

group SERVAL (SEcurity Reasoning and VALidation). His

research interests include software testing, model-driven

engineering, model based testing, evolutionary algorithms,

software security, security policies and Android security.

The current key-topics he explores are related to Internet

of things (IoT), Big Data (stress testing, multi-objective

optimization, models@run.time), and mobile security and

reliability. He is author of more than 140 publications in

international peer-reviewed conferences and journals.

Qing Wang is a professor of the

Institute of Software, Chinese Academy

of Sciences, Beijing. She is the director

of the Lab for Internet Software Tech-

nologies. She has intensive research

and industry experience in the area

of software process, including software

process technologies and quality assurance and require-

ment engineering. She is a member of Cloud Computing

Experts Association under Chinese Institute of Electronics

and a Lead Appraiser of SEI CMMI SCAMPI. Qing Wang

has led and is leading many important domestic and

international cooperative projects. She has won various

kinds of awards such as the National Award for Science

and Technology Progress. She also is a general co-chair of

ESEIW 2015, PC member of some academy conferences

and program co-chair of SPW/ProSim 2006, ICSP 2007

and ICSP 2008.

Lu Zhang is a professor at the

School of Electronics Engineering and

Computer Science, Peking University,

Beijing. He received his B.S. and

Ph.D. degrees in computer science from

Peking University in 1995 and 2000

respectively. He was a postdoctoral

researcher in Oxford Brookes University

and University of Liverpool, UK. He joined the School of

Electronics Engineering and Computer Science, Peking

University in 2003. He has served on the editorial boards

of two international journals: Journal of Software Mainte-

nance and Evolution: Research and Practice and Software

Testing, Verification and Reliability. He also served on

the program committees of many major conferences,

including FSE, ISSTA, ASE, and ICSM. His papers have

won the Best Paper Awards of ASE and APSEC, and the

ACM SIGSOFT Distinguished Paper Awards of ICSE and

ASE. He is supported by the Outstanding Youth Science

Fund of the Natural Science Foundation of China. His

current research interests include software testing, software

analysis, program comprehension, software maintenance,

software reuse, and service computing.

