
Cheng YR, Yuan Y, Chen L et al. Threshold-based shortest path query over large correlated uncertain graphs. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 30(4): 762–780 July 2015. DOI 10.1007/s11390-015-1559-5

Threshold-Based Shortest Path Query over Large Correlated

Uncertain Graphs

Yu-Rong Cheng 1 (), Ye Yuan 1,∗ (), Member, CCF, ACM, IEEE

Lei Chen 2 (), Member, ACM, IEEE, and Guo-Ren Wang 1 (), Senior Member, CCF

1College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
2Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China

E-mail: cyrneu@gmail.com; yuanye@ise.neu.edu.cn; leichen@cse.ust.hk; wanggr@mail.neu.edu.cn

Received January 31, 2015; revised May 28, 2015.

Abstract With the popularity of uncertain data, queries over uncertain graphs have become a hot topic in the database

community. As one of the important queries, the shortest path query over an uncertain graph has attracted much attention

of researchers due to its wide applications. Although there are some efficient solutions addressing this problem, all existing

models ignore an important property existing in uncertain graphs: the correlation among the edges sharing the same vertex.

In this paper, we apply Markov network to model the hidden correlation in uncertain graphs and compute the shortest

path. Unfortunately, calculating the shortest path and corresponding probability over uncertain graphs modeled by Markov

networks is a #P-hard problem. Thus, we propose a filtering-and-verification framework to accelerate the queries. In the

filtering phase, we design a probabilistic shortest path index based on vertex cuts and blocks of a graph. We find a series

of upper bounds and prune the vertices and edges whose upper bounds of the shortest path probability are lower than

the threshold. By carefully picking up the blocks and vertex cuts, the index is optimized to have the maximum pruning

capability, so that we can filter a large number of vertices which make no contribution to the final shortest path query

results. In the verification phase, we develop an efficient sampling algorithm to determine the final query answers. Finally,

we verify the efficiency and effectiveness of our solutions with extensive experiments.

Keywords shortest path, correlated uncertain graph, probabilistic shortest path index

1 Introduction

As one of the most popular graph queries, short-

est path search has been widely used in many appli-

cations. For example, we often want to find a path in

a road network with the least travel time, which is a

typical shortest path query. There exist many studies

to find efficient solutions for a shortest path query over

a graph, but all of them assume the underlying graphs

are deterministic, which are not true in real applica-

tions. For example, in a road network, the roads or

streets sometimes are not available due to the result of

road repairing or traffic jams. This causes the uncer-

tainty of the road network data[1]. Another example

is Protein-Protein-Interaction (PPI) data, which shows

the interactions between each pair of the proteins in

biology. When biologists collect these data from exper-

iments, some interactions that should have existed are

missed, while some interactions that should not have

existed are recorded[2]. Calculating the shortest path

over such PPI data infers the similarity between each

pair of the proteins. The smaller the length of the

shortest path is, the more similar the proteins will be.

Other than that, studies have been done to model so-

cial networks, ontology networks, XML and RDF data

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 763

as uncertain graphs[2-5], all of which have important

real applications. Therefore, finding efficient solutions

for shortest path query over uncertain graphs is quite

important and necessary.

Most previous related studies used an indepen-

dent uncertain graph model to represent uncertain

graphs[1,6]. Specifically, for an uncertain graph

G(V,E,W, Pr), each edge e ∈ E has a weight ω ∈ W

and an existence probability pr ∈ Pr. A possible world

graph gi(Vi, Ei,Wi) is an instance of G. In the inde-

pendent probabilistic graph model, they assumed that

the appearance of edges in G was independent of each

other. Thus, the existance probability of a possible

world graph, pr(gi), is

pr(gi) =
∏

e∈Ei

pr(e)
∏

e6∈Ei

(1− pr(e)).

In each possible world graph gi, there exists a path

pi with the least total weight, which is the shortest

path. In other words, the probability that pi is the

shortest path of gi equals the existence probability of

gi. As pi may be the shortest path of different pos-

sible world graphs, the shortest path probability of pi
(denoted as SPr(pi)) equals the sum of probabilities of

the possible world graphs where pi is the shortest path.

That is,

SPr(pi) =
∑

i

pr(gi),

where gi is each of the possible world graphs in which

pi is the shortest path between s and t.

The following example illustrates the independent

uncertain graph model and the calculation of shortest

path probability based on it.

Example 1 (Independent Uncertain Graph Model).

Fig.1 illustrates an uncertain graph G and its possible

world graphs gis with their corresponding probabilities

pr(gi)s. The existence probability of possible graph g2
is

pr(g2) = (1− 0.8)× 0.5× 0.6 = 0.06.

The path p(sAt) is the shortest path from s to t in

g1 and g4, so the shortest path probability of p(sAt) in

G is

SPr(p(sAt)) = pr(g1) + pr(g4) = 0.22.

Unfortunately, as the independent probabilistic

graph model considers that the edges are independent

of each other, it naturally ignores the internal relation-

ship between the edges. However, in real applications,

the edges sharing the same vertex often affect each

other. For example, in road networks, for the roads

or streets in the daily life, if the traffic is smooth at one

intersection, at the next intersection, it is more likely

to be smooth than to be stuck. Similar correlations can

also be found in PPI data. For the proteins in the same

family, it is more likely to have interactions between

them rather than to have no interactions. The inde-

pendent model fails to consider these correlationships,

and cannot show these tendencies such as smooth/stuck

or having/not having interactions.

A

s t

A

s t

↼֒ ⊲↽ ↼֒ ⊲↽

↼֒ ⊲↽

A

s t

A

s t

A

s t

A

s t

A

s t

A

s t

A

s t

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig.1. Traditional uncertain graph model. (a) Uncertain graph
G. (b) g1, pr(g1) = 0.24. (c) g2, pr(g2) = 0.06. (d) g3,
pr(g3) = 0.24. (e) g4, pr(g4) = 0.16. (f) g5, pr(g5) = 0.06. (g)
g6, pr(g6) = 0.04. (h) g7, pr(g7) = 0.16. (i) g8, pr(g8) = 0.04.

Thus, to address the shortest path query over uncer-

tain graphs, we need to overcome the following changes.

Challenge 1: How to design a reasonable model? We

propose a novel model based on the Markov network,

which captures the correlationship among all the edges

using a joint probability table in each clique of a graph

(contribution 1). We will illustrate the model in detail

in Section 2.

Based on our model, we newly define our threshold-

based shortest path problem over correlated uncertain

graphs using possible world semantic, which is a widely

applied semantic for uncertain graphs. This problem is

#P-hard (Theorem 1). A naive solution is to enumerate

all the possible graphs, find all the corresponding short-

est paths and calculate corresponding shortest path

probability in each possible world graph. This naive

method is infeasible due to the large graph size and ex-

ponential number of possible graphs, which brings the

following challenge.

Challenge 2: As graphs are large, is there an effi-

cient method to get the answers? We propose a filter-

764 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

and-verification framework to reduce the search space

and efficiently answer the queries (contribution 2). As

we will see, large numbers of vertices and edges make

no contribution to the result. In other words, paths

through these vertices and edges cannot be the short-

est path in any possible graph, or the shortest path

probabilities of these paths are too small to exceed the

threshold. Thus, it helps to improve the efficiency by

finding an algorithm to filter these vertices and edges.

In the filtering phase, we find some tight upper

bounds of the shortest path probabilities. To manage

these upper bounds, we design a probabilistic shortest

path index and propose a pruning algorithm (detailed

in Section 4). Furthermore, as building the optimal

index is an NP-hard problem, we provide an O(log n)-

approximate algorithm (n is the number of vertices in

the graph) with polynomial time complexity (detailed

in Subsection 4.3).

Although the filtering phase can prune large num-

bers of “useless” vertices and edges, computing the fi-

nal shortest path probability is still #P-hard. Thus,

in the verification phase, we use a sampling method

to estimate the final shortest path probability of each

candidate path.

The rest of this paper is organized as follows. In

Section 2, we present our new model in detail. In Sec-

tion 3, we formally propose the problem definition and

describe our filtering-and-verification framework. Then

in Section 4, we illustrate our pruning algorithm and

construction of index. In Section 5, we introduce our

sampling algorithm. Finally, we present the experimen-

tal study results in Section 6, related work in Section 7,

and conclusion in Section 8.

2 Correlated Uncertain Graphs

Regardless of the uncertainty, we use simple graphs

just as other studies on graph database[7-11]. Without

loss of generality, we mainly process undirected simple

graphs.

Definition 1 (Correlated Uncertain Graphs). A

correlated uncertain graph G{gc(V,E,W), P r} is com-

posed of a weighted undirected simple graph gc(V,E,W)

(V is the set of vertices, E is the set of edges, and W is

the set of weights of the edges) and a probability mass

function Pr : E → (0, 1] showing the joint probabili-

ties (denoted as JPr) of the existence of the edges in

maximal cliques of G.

Example 2 (Correlated Uncertain Graphs). Fig.2(a)

together with Table 1 is a correlated uncertain graph

G. The maximal cliques of gc in Fig.2(a) are c1(ABD)

and c2(ACD). The joint probability of the edge sets

{eAB, eAD, eBD} and {eAC , eAD, eCD} is shown in Ta-

ble 1. In this table, edge e = 1 means this edge exists,

and e = 0 means e does not exist. For example, the

first line of Table 1 means the probability that none of

the edges (eBA, eBD and eAD) exists is 0.05.

15

A

B

C

D A

B

C

D A

B

C

D A

B

C

D

(a) (b) (c) (d)

Fig.2. Correlated uncertain graph model. (a) gc. (b) g1, 0.005.
(c) g2, 0.010. (d) g3, 0.015.

Table 1. Joint Probabilities

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 765

The reason why we use maximal clique to define

the correlationships is that in real applications, whether

one edge exists often has more influence on the edges in

the same maximal clique than on the other edges. For

example, as stated in Section 1, in the road network,

whether one road or street is smooth/stuck depends on

the roads or streets nearby. If the roads or streets are

far from each other, there hardly exists such influence.

Another example is in the PPI data. The proteins in the

same maximal clique are considered to be in the same

family, and such correlationships only exist among the

proteins in the same family (i.e., maximal clique).

Given an uncertain graph, a possible world graph is

one of its instances. For example, Figs.2(b)∼2(d) are

three of all the possible graphs of G. The following defi-

nition provides a method to calculate the probability of

the possible world graphs.

Definition 2 (Conditional Independent). In a

Markov network, for three vertex sets, X, Y and Z in a

graph, if removing the vertices in X, there are no paths

between any vertex in Y and any vertex in Z, and then

Y and Z are conditionally independent given variables

in X [13].

Thus, according to Definition 2, if g{V ′, E′,W ′} is

a possible world graph of a correlated uncertain graph

G, the existence probability of g (Pr(g)) equals

Pr(g) =
∏

i,{ej=1|16j6ne}⊆E′,

{ej=0|16j6ne}⊆(E−E′)

JPri(ej), (1)

where ne is the number of edges in the clique.

For example, in Fig.2(a), {ABD} is conditionally

independent of {ACD} on condition {AD}. From (1),

the existence probability of possible graph g1 is

Pr(g1) = JPr(eBA = 1, eBD = 0, eAD = 0)×

JPr(eAD = 0, eAC = 1, eDC = 1)

= 0.05× 0.10 = 0.005.

Note that the edges in different cliques are con-

ditional independent of each other, not absolute in-

dependent of each other. In other words, the edges

such as eAB and eAC in Fig.2(a) still have correlations.

We can use the methods introduced in [14] to calcu-

late pr(eAB |eAC) according to the joint probability ta-

bles. Moreover, there is also another correlated un-

certain graph model introduced in [15], which is based

on Bayesian network. There are three advantages to

apply Markov network theory into our correlated un-

certain graph model instead of using Bayesian network.

1) Markov network can model any undirected graphs

while Bayesian network can only model directed acyclic

graphs. 2) The Bayesian network based model can be

equivalently changed into our Markov network based

model using the methods introduced by [13]. 3) Al-

though both of the two correlated uncertain graph mod-

els can show the correlationship among all edges in

the graph, the storage size of the correlationships in

Markov network is often smaller than that in Bayesian

network[14].

Our Correlated Model vs the Independent Model.

Our correlated uncertain graph model is more reason-

able than the independent model in many real appli-

cations. For example, in a social network, a vertex

presents a user, and an edge between two users presents

that the two users know each other. Specifically, in

Fig.2(a), A, B and D are three users, and the edge eBA

means that the two users (A and B) know each other.

If A knows B and B knows D, under this condition,

A and D will have a high probability to know each

other. Another example is in a protein-protein interac-

tion (PPI) network. If one protein has a high probabil-

ity to be similar with two other proteins respectively,

then these two proteins would have a high probability

to be similar. However, the independent model fails to

present these correlationships. Moreover, whether one

edge exists or not depends on the other edges in the

same clique in our correlated uncertain graph model,

and the result of shortest path query calculated by our

model should have a high confidence to be a better re-

sult. For example, in PPI network, the shortest path

between two proteins is often used to evaluate the simi-

larity of the two proteins[2,6]. If there exist paths whose

shortest path probability is higher than a given thres-

hold, the two proteins can be treated to be similar. Our

experiment in Section 6 proves that the results given by

our model are more accurate than those given by the

independent model.

3 Problem Statement

Definition 3 (Shortest Path Probability (SPr)).

The shortest path probability of a path p in a correlated

uncertain graph G equals the sum of the probabilities of

the possible world graphs in which p is the shortest path.

For example, in Fig.2, path p(ACD) is the shortest

path in g1, g2 and g3 among all possible world graphs

of G. Thus,

SPr(p(ACD)) = pr(g1) + pr(g2) + pr(g3) = 0.03.

766 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

The threshold-based shortest path query is a widely

used problem for shortest path query over independent

uncertain graph model in the previous work[1,17]. Simi-

lar to that in the independent model, we propose our

problem definition over correlated uncertain graphs.

Definition 4 (Threshold-Based Shortest Path

Query). Given a correlated uncertain graph

G(gc(V,E,W), P r), two vertices s, t ∈ V , and a proba-

bilistic threshold τ , a threshold-based shortest path

query returns a path set {p1, p2, . . . , pn} in which each

path pi has an SPr(pi) larger than the threshold.

Theorem 1. The calculation of SPr(pi) under cor-

related uncertain graph model is #P-hard[1,15].

Framework of Our Solution. As discussed in Sec-

tion 1, to efficiently solve our problem, we need to over-

come two bottlenecks, the large graph size and the ex-

ponential number of possible world graphs. Thus, we

design a filtering-and-verification framework, which is

outlined in Fig.3.

G (v1 ...vn)

Input

s֒t֒τ

G' (v1 ...vp)

s֒t֒τ

Filtering

Index

Pruning

SPr↼P↽<UpB<τ

Candidate Verification

Sampling
Method

Output

Verifies Final

SPr↼P↽

Fig.3. Filtering-and-verification framework.

When query comes, we first conduct the filtering

step to prune the vertices and edges, through which

SPr can never be larger than τ . We provide a series

of upper bounds (UpBs, Theorem 2) for SPr based on

path cuts (Definition 7) of gc. To manage these UpBs,

we design a probabilistic shortest path index (Defini-

tion 8), which is a tree based on blocks and vertex cuts

(Definition 6 and Definition 5). By finding paths from

s to t in the index, simultaneously, we can get UpBs

from the largest one to the smallest one. Then, we can

first test whether the largest upper bound (noted as

UpBmax) is larger than threshold τ . If UpBmax < τ ,

we can prune all the vertices and edges in the origi-

nal graph safely. Otherwise, we test the second largest

UpB. . . . Once a UpB < τ , we can prune the remain-

ing vertices and edges. After the filtering step, we get

a candidate set of vertices and edges, which is a super

set of the shortest path result set.

Then we conduct the verification step based on a

sampling algorithm over the candidate set to determine

the final result.

4 Filtering Phase

In this section, we first introduce our UpBs and

the probabilistic shortest path index in Subsection 4.1.

Then we illustrate our pruning algorithm in Subsec-

tion 4.2. In Subsection 4.3, we present the construction

of the index.

4.1 Upper Bounds and Index

Before giving UpBs and our index, we first illustrate

three basic definitions, vertex cut, block, and path cut.

Definition 5 (Vertex Cut). A vertex cut VC is a set

of vertices whose removal leaves a graph disconnected.

A vertex cut VC(v1 . . . vn) can be overall treated as

one super node comprised by v1, . . . , vn.

Definition 6 (Block). The connected components

separated by VC are called blocks.

For example, in Fig.4(a), the removal of {CE}

makes the graph disconnected, so VC(CE) is a vertex

cut. B(BAD) and B(FGHIJKL) are two blocks.

A

B D

CF

G H

E L

J K

I

A

B

C

H

E

J K

(a) (b)

Fig.4. Pruning of a correlated graph. (a) gc. (b) gc after
pruning.

Definition 7 (Path Cut). Given a deterministic

graph G and a set of paths P , a path cut PC is a set of

vertices that all paths p ∈ P must pass through.

Property 1. If two vertices, s and t, in a graph are

in the different blocks made by a vertex cut, and we

denote the set of all paths from s to t as Ps→t, then the

vertex cut must be a path cut of Ps→t.

This property illustrates the relation between vertex

cut and path cut, which stands obviously. For example,

in Fig.4(a), as vertices B and K are in different blocks

made by VC(CE), VC(CE) is a path cut for all paths

from B to K. As a path cut is a special vertex cut, it

can also be treated as a super node.

If PC is the path cut in gc, it must also be the path

cut in all possible world graphs of G. Moreover, for the

path set Ps→t, it can be divided into three parts, 1) the

path set from s to PC, 2) the path set from one ver-

tex in PC to another vertex in PC, and 3) the path set

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 767

from PC to t. We note the three parts as P1, P2 and

P3 respectively. Correspondingly, a path p ∈ Ps→t is

divided into three parts, p1 ∈ P1, p2 ∈ P2 and p3 ∈ P3.

Lemma 1. Given a deterministic graph G, a start

point s, and a terminal point t, PC is a path cut of

Ps→t. If p ∈ Ps→t is the shortest path from s to t, then

p1, p2 and p3 of p must be the shortest paths of the three

parts P1, P2 and P3 respectively.

Proof. Because p is the shortest path in Ps→t, we

can see that p2 must stay in the same vertex of PC.

In other words, the length of p2 must be 0, which is

certainly the shortest path in P2. Then we use the

contradiction method to prove p1 and p3 are the short-

est paths in P1 and P3 respectively. The contradiction

must be in the following three situations. 1) p1 is not

the shortest but p3 is; 2) p1 is the shortest but p3 is

not; 3) neither p1 nor p3 is the shortest. For situation

1), if there exists a path p′1 from s to PC such that p′1
is shorter than p1, p

′
1+p3 must be shorter than p1+p3.

In other words, p = (p1 + p3) is not the shortest path

from s to t, which is inconsistent with the proposition.

The proof of situations 2 and 3 is similar to that of

situation 1. �

Theorem 2. Given a correlated uncertain graph

G, a start point s and a terminal point t, if PC is a

path cut, for any path p ∈ Ps→t in gc, the shortest path

probability from s to PC is the upper bound of the short-

est path probability from s to t. That is,

SPr(ps→t) 6 SPr(p1) = UpB.

Proof. Lemma 1 means, SPr(ps→t) = SPr(p1∧p3).

Because SPr is a kind of marginal probability, SPr(p1)

and SPr(p3) are independent of each other. Thus,

SPr(p1 ∧ p3) = SPr(p1)× SPr(p3) 6 SPr(p1)

= UpB. (2)

The equal sign stands when paths reach t. �

If paths from s to t pass through many path cuts,

such as PC1, PC2, . . . , based on Theorem 2, we have

SPr(ps→t) 6 UpB1 = SPr(ps→PC1)

6 UpB2 = SPr(ps→PC1→PC2) 6 · · ·

6 UpBx = SPr(ps→PC1→PC2→···→t).(3)

Once some UpB < τ , we can prune the paths safely.

Therefore given any query, we need to find the path

cuts and calculate the upper bounds during the prun-

ing process. To manage the upper bounds, we design a

probabilistic shortest path index.

Definition 8 (Probabilistic Shortest Path Index).

The probabilistic shortest path index of a graph G is a

tree T = (V (T), E(T)). V (T) is composed of two kinds

of nodes, VC (the vertex cuts of G), and B (the blocks

made by VCs). VCs and Bs are connected alternatively

by tree edges e(B,VC) ∈ E(T). The blocks connected

with the same vertex cut are called adjacent blocks, and

the vertex cuts connected with the same block are called

adjacent vertex cuts. Each edge is labelled by a proba-

bility which is the maximum SPr from each v ∈ B to

its adjacent vertex cuts VC. We note these maximum

SPr as SPr(e)m.

Note that to make our statement easier to under-

stand, when we record the blocks, we keep the vertices

in the vertex cut that separates this block still in this

block. That is, VC = Bi ∩ Bj where Bi and Bj are two

adjacent blocks w.r.t. VC.

Without loss of generality, we consider gc as a con-

nected graph. Otherwise, we can build an index for

each connected component of gc. Note that the index

is a tree that does not have a necessary root. In other

words, each node of the tree can be equivalently treated

as a root.

Example 3 (Probabilistic Shortest Path Index). The

tree in Fig.5 is an index of Fig.4(a). The vertex sets

embraced by circles such as B(FGCH) are blocks. The

vertex sets embraced by rectangles such as VC(CH)

are vertex cuts. For simplicity, we use B9 instead

of B(FGCH). As B7 and B9 are separated by VC8,

they are both connected to VC8. Then, we treat each

block as a distinct part and calculate the maximum

SPr from vertices in the block to the correspond-

ing vertex cut. For example, Fig.6(a) shows B9 and

VC8. As VC8 can be treated as a super node, B9 is

essentially changed into the graph shown in Fig.6(b).

Then, we calculate SPr(PF→VC8) and SPr(PG→VC8) in

Fig.6(a) respectively, i.e., SPr(p(FC)), SPr(p(FHC)),

SPr(p(FGC)), SPr(p(FGHC)), SPr(p(FHGC))

. . . Among them, we find the maximum SPr and la-

bel it on tree edge e(B9,VC8) of the index, which is

assumed as “0.6” in Fig.5.

4.2 Pruning Algorithm

In this subsection, we assume that we have got the

index, and discuss the pruning algorithm based on the

index.

768 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

CHFGCH CEH

ACE

CE

ACABC AE ADE

EH

EHJ

HJ

HIJ

EJ EJK EK EKL

⊲ ⊲ ⊲

⊲⊲

⊲⊲⊲

⊲

⊲

⊲ ⊲

⊲

⊲

⊲

⊲

Fig.5. Probabilistic shortest path index.

F C

HG

F

G

GCut↼CH↽

(a) (b)

Fig.6. Block B(FGHC) with vertex cut VC(CH).

4.2.1 Largest and Smallest Upper Bound

We will show that the path from Bs (the block that

s is in) to Bt (the block that t is in) in the tree pro-

vides an upper bound of SPr(Ps→t). Some kind of

fragment of this tree path provides the largest upper

bound. The path that traverses all the vertex cuts in

the tree provides the smallest upper bound. To distin-

guish, we call a path in the index tree a “tree path”

(denoted as TP). For example, if s ∈ B1, t ∈ B13,

TP1(B1,VC2,B3,VC6,B7,VC10,B11,VC12,B13) is a tree

path. For simplicity, we use TP1(1, 2, 3, 6, 7, 10, 11,

12, 13) for short. Moreover, TP2(1, 2, 3, 4, 5, 4, 3, 6,

7, 10, 11, 12, 13) is also a tree path, and TP3(1, 2, 7,

10, 13) is a fragment of TP1. We call the tree path

without any repeated nodes, such as TP1, a main tree

path, which is denoted by mainTP .

Any tree path in the index can be mapped by a

set of paths in the graph, which start from s, pass

through all the vertex cuts on the tree path, and ter-

minate at t. For example in Fig.5, if s = B and t = K,

mainTP = TP1(1, 2, 3, 6, 7, 10, 11, 12, 13) is mapped by

the paths PB→VC2→VC6→VC10→VC12→K . The paths such

as p(BCHJK) in Fig.4(a) satisfy the above path set.

Similarly, path p(BADECHJK) is mapped by TP2.

Based on the discussion in Property 1, the vertex cuts

on the tree path should be the path cuts of the above

paths. According to (3), we can calculate the UpB of

these paths by multiplying the SPr(e)ms on the tree

edges of the tree path. For example,

UpB(TP1)

= SPr(e(B1,VC2))m ×

SPr(e(B3,VC6))m × SPr(e(B7,VC10))m ×

SPr(e(B11,VC12))m × SPr(e(B13,VC12))m

= 0.9× 0.8× 0.7× 0.6× 0.8 = 0.241 92. (4)

Thus, it is obvious that if a path traverses all ver-

tex cuts in the tree, it will provide the smallest upper

bound of SPr(Ps→t), according to (2) and (3). Now let

us discuss what kind of tree path provides the largest

upper bound. Intuitively, this kind of tree path should

pass though fewer vertex cuts than mainTP , such as a

fragment of mainTP like TP3(1, 2, 7, 10, 13), which is

mapped by path p(BCEK) in the graph. We define

such fragment as follows.

Definition 9 (Shortest Fragment). A shortest frag-

ment is the fragment of mainTP which contains the

smallest number of vertex cuts in the index tree but can

still map to at least one path in the original graph. We

denote the shortest fragment as TPsp.

Obviously, such TPsp provides the largest upper

bound, because its mapped paths pass through the

fewest vertex cuts. The following theorems provide a

method to find TPsp.

Theorem 3. The vertex cuts in TPsp are path cuts

of all paths from start vertex s to terminal vertex t.

Proof. Again, we apply the contradiction method to

this proof. Assume, there is a vertex cut VCi in TPsp

that is not the vertex cut of all paths from s to t. Let

TPsp be expressed as TPsp = (Bs, VCs, B1, VC1, . . . ,

Bi−1, VCi−1, Bi, VCi, Bi+1, VCi+1, . . . , Bh, VCh, Bt).

Except VCi, the other vertex cuts such as VCs are path

cuts of all paths from s to t. Because of this assump-

tion, there must be a path from s to t that does not

pass through VCi, i.e., there is a shortcut from VCi−1

to VCi+1 directly. Thus, the tree path mapped by this

path is TP ′ = (Bs, VCs, B1, VC1, . . . , Bi−1, VCi−1,

Bi+1, VCi+1, . . . , Bh, VCh, Bt), which is shorter than

TPsp. Thus, TP
′ contains fewer VCs than TPsp, which

is contradictory to Definition 9. Thus, the vertex cuts

in TPsp must be the path cuts of all paths from start

vertex s to terminal vertex t. �

According to Theorem 3, finding TPsp equals find-

ing the path cuts of all paths from s to t.

Theorem 4. The intersection of any two adjacent

vertex cuts in TPsp is empty, i.e., ∀VCi,VCj ∈ TPsp,

VCi ∩ VCj = ∅ with adjacent VCi and VCj.

Proof. Let TPsp = (Bs, VCs, . . . , Bi, VCi, Bj ,

VCj , Bj+1, VCj+1, . . .). We also apply the contradic-

tion method. Assume VCi∩VCj = Ins 6= ∅, there must

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 769

exist a tree path mapped by a path set like TP = (Bs,

VCs, . . . , Bi, Ins, Bj , Ins, Bj+1, VCj+1, . . .). Thus,

there must exist a set of paths that do not pass through

Bj and just stay at Ins. Mapped by these paths, the

corresponding tree path can be written by TP ′ = (Bs,

VCs, . . . , Bi, Ins, Bj+1, VCj+1, . . .). Thus, TP ′ con-

tains fewer VCs than TPsp, which is contradictory to

Definition 9. Therefore the assumption is invalid. �

From Theorem 4, the method to find out the path

cuts for all paths from s to t can be achieved by check-

ing the intersection of vertex cuts during the process of

traversing the index tree. We conclude this method as

FindTPsp, which is shown in Algorithm 1.

Note the last vertex cut in TPsp is VCla, and ini-

tially, VCla = ∅. During the process of depth-first tra-

verse on the index tree (lines 2∼9), whenever we meet

a vertex cut VCi, we check whether VCi ∩ VCla = ∅. If

so, we insert Bi and VCi into TPsp and multiply current

upper bound UpB by SPrm(e) on tree edge e(Bi,VCi)

(lines 5∼9). If the algorithm reaches Bt, we multiply

UpB with a SPrm(e) on tree edge e(Bt,Bla) (line 10,

also referenced in (4)). Whenever UpB < τ , we stop

the algorithm (line 3).

4.2.2 Algorithm Description

From Algorithm 1, we can find the largest upper

bound provided by TPsp during the process of find-

ing the mainTP of the index tree. According to Sub-

section 4.2.1, we can find the smallest upper bound

by traversing the whole index tree. Thus, during the

traversing of the index tree, we will first calculate the

largest upper bound, then the second largest, . . . , the

smallest upper bound. Thus, we consider that we first

find out the largest upper bound (denoted as UpBmax)

and test it. If UpBmax < τ , we can prune all blocks and

vertex cuts in this tree path safely. If UpBmax > τ , we

then test the second largest upper bound. This is the

main idea of our pruning algorithm.

Before describing our pruning algorithm, let us first

discuss what kind of structures are left in T − TPsp.

Property 2. The structures left by (T − TPsp) are

of two kinds: 1) the fragment of the tree whose blocks

and vertex cuts are in (mainTP − TPsp), denoted as

TFa, and 2) the fragments of the tree whose blocks and

vertex cuts are in (T −mainTP), denoted as TFb.

For example, TP3 mentioned above is indeed TPsp.

TPa1 = (3, 6) is the tree fragment of 1), and TPb1 =

(5, 4) is the tree fragment of 2). TFas are mapped by

the paths passing through not only the vertex cuts in

TPsp, but also the vertex cuts in TFas, such as the path

p(BCHJK). Except for going through the vertex cuts

in TPsp, TFbs are mapped by the paths that go through

the first vertex cut in TFb to the last block in TFb and

then go back to the first vertex cut in TFb, such as

p(BCHIJK). Whatever kind of tree fragments is, all

these remaining structures can be treated as a new in-

dex tree. By recursively looking for TP ′
sp of each of

these structures, we can find the second (third, . . .)

largest upper bound, which equals UpBmax × UpB′
max

(UpBmax is the largest upper bound provided by TPsp,

and UpB′
max is the largest upper bound provided by

TP ′
sp).

Based on the above analysis, the pruning algorithm

can be acquired, which is shown in Algorithm 2. Ini-

tially, we hash the start vertex s and the terminal vertex

t to Bs and Bt respectively. If there are more than one

block containing s or t, we choose the nearest pair, i.e.,

there are no other blocks in the mainTP containing

s or t except Bs and Bt. The initial UpB = 1. We

first perform the function of finding the TPsp of the

index tree T , which is denoted as FindTPsp in line 2.

The upper bound UpB of TPsp is calculated in func-

tion FindTPsp. Once UpB < τ , the TPsp returned by

FindTPsp will be empty, and the pruning algorithm is

interrupted (line 5). Otherwise, we insert TPsp into L,

which is a list of blocks and vertex cuts after pruning

(line 7) and, check which kind of the remaining struc-

ture in T −TPsp is. If it is of kind 1), it must start from

a block and terminate at a vertex cut. As mainTP can

be written as mainTP = (Bs, VCs, . . . , Bi−1, VCi−1,

TFa, Bi, VCi, . . . , Bt), to make the TFa be a sub-tree,

we insert Bi into TFa. Through this method, the new

start block B′
s is the first block in TFa, and the new

terminal block is Bi (lines 9∼11). If it is of kind 2), it

must start from a vertex cut and terminate at another

block, which can be written as TFb = (VC′
s, . . . , B

′
t−1,

770 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

VC′
t−1, B

′
t). Here, VC

′
s must be attached to a block Bm

in mainTP . As the paths mapped to TFb need to go

out of Bm through VC′
s, reach B′

t, and then go back

to Bm through VC′
s, TFb is essentially TFb = (Bm,

VC′
s, . . . , B

′
t−1, VC

′
t−1, B

′
t, VC

′
t−1, B

′
t−1, . . . , VC

′
s, Bm).

Moreover, the new start block and the terminal block

are both Bm (lines 13∼15). Finally, we recursively call

the pruning function (line 16) until TPsp is empty. Fol-

lowing is an example for our pruning algorithm.

each

satisfies

satisfies

is empty

Example 1 (Pruning Algorithm). Assume the start

vertex and the terminal vertex of a query are B and K

respectively in Fig.4(a), threshold τ = 0.4, and we per-

form our pruning algorithm on its index shown in Fig.5.

TPsp of index tree is shown in Fig.7(a). UpB of TPsp

equals 0.9× 0.7× 0.8 = 0.504 > τ = 0.4. Therefore, we

put TPsp into candidate set L.

The fragments made by TPsp are shown in

Figs.7(b)∼7(f). Specially, the fragments in Figs.7(b)

and 7(c) belong to TFa, and the fragments in

Figs.7(d)∼7(f) belong to TFb. To illustrate clearly, for

each tree fragment, we remark its start and terminal

blocks or vertex cuts in TPsp, such as VC2 and B7 in

Fig.7(b). We give each situation an example of search-

ing start vertex and terminal vertex of each fragment.

For the fragment shown in Fig.7(b), its start block B3

is attached to vertex cut VC2, and its terminal block is

B7. For the fragment shown in Fig.7(e), it essentially

equals the tree fragment shown in Fig.7(g).

Recursively executing TPFindsp, we can prune each

fragment. We still give each situation one example.

For TFa1 shown in Fig.7(b), its TPsp is itself, and

its UpB equals 0.504 × 0.8 = 0.403 2 > τ = 0.4.

Therefore, this fragment is remained. The TPsp of

TFb2 in Fig.7(g) is shown in Fig.7(h). Its UpB equals

0.504 × 0.8 = 0.403 2 > τ = 0.4. Thus we put this

tree fragment into candidate set. Similarly, UpB of the

tree fragment shown in Fig.7(i) equals 0.403 2× 0.7 =

0.282 24 < τ = 0.4, and UpB of the tree fragment

shown in Fig.7(j) equals 0.504×0.7 = 0.352 8 < τ = 0.4.

Thus, we prune these tree fragments. After all, the

blocks in candidate set are B1, B3, B7, B13 (omitting

vertex cuts). The candidate subgraph after pruning is

shown in Fig.4(b).

ACEAC AE
⊲

ADE
⊲⊲

CEHACEAC
⊲

ACABC
⊲

CEH EH
⊲

EJK
⊲

EH EHJ EJ EJK
⊲

CHFGCH
⊲

CEH
⊲

CE

EHJEH HJ
⊲

HIJ
⊲⊲

ACEAC AE
⊲

ADE
⊲

AE ACE AC
⊲

ACE AE AE

AE

AEADE

ADE

⊲

AC
⊲

ACE AC
⊲

ACE
⊲

(a)

(b) (c)

(d) (e)

(h) (i)

(f)

(g)

(j)

Fig.7. TPsp and fragments from B to K in Fig.4(a). (a) TPsp

of index tree T . (b) TFa1 made by TPsp. (c) TFa2 made by
TPsp. (d) TFb1 made by TPsp. (e) TFb2 made by TPsp. (f)
TFb3 made by TPsp. (g) Equivalent type of (e). (h) TPsp of
(g). (i) TFa of (g). (j) TFb of (g).

By skillfully using some stacks to store the unvi-

sited blocks and vertex cuts, and the upper bound of

each tree fragment, the above pruning algorithm can be

completed in O(b + c) time complexity, where b is the

number of blocks and c is the number of vertex cuts.

4.3 Optimal Index Construction

Now, we introduce the method to construct our

probabilistic shortest path index. A naive construction

method is that we can randomly select some vertices in

gc and remove them such that gc is divided into some

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 771

unconnected components. We recursively perform the

above step over each component until the graph can-

not be further divided, for example, only a vertex or

an edge is left. Obviously, taking this method, the con-

structed index is not unique. In fact, in the worst case,

the number of vertex cuts between any two vertices is

exponential[18], and the formation of our index can also

be exponential. Moreover, different indexes have differ-

ent pruning capability (the ability to prune vertices and

edges in the filtering phase). Thus, we need to consider

a method to build an optimal index.

Property 3. An optimal index should have the maxi-

mum pruning capability and at least construction time.

To Get the Maximum Pruning Capability. First, we

consider the pruning capability. The maximum pruning

capability means the number of pruned paths should be

as large as possible. According to (2) and (3), given any

two vertices s and t, it should have the maximum possi-

bility that s and t are in different blocks or vertex cuts.

In other words, s and t should have the least possibility

to be mapped into the same block. Thus, the size of

blocks and vertex cuts should be as small as possible.

To Get the Least Construction Time. Then, we con-

sider the construction time. In Definition 8, we should

calculate SPr(e)m. The number of calculation times of

SPr is exponential to the number of vertices in blocks

and vertex cuts. From this point, the size of blocks and

vertex cuts should also be as small as possible.

Optimal Index. Based on the above analysis, the

vertex number in each block and vertex cut should be

as small as possible. In addition, the blocks should be

cliques, and the vertex cuts should be minimal vertex

cuts. Recalling our correlated uncertain graph model

introduced in Section 2, constructing the index based

on cliques and vertex cuts also can utilize the joint

probabilities in a maximal clique well when calculating

SPr(e)m in each clique (blocks). As the smallest cliques

are triangles, motivated by the junction tree construc-

tion method, if we can divide the original graph into

triangles, we can find the smallest blocks. The process

to divide the original graph into triangles is called a

triangulated graph[19], which is defined as follows.

Definition 10 (Triangulated Graph). Given a

graph g, a triangulated graph is a supergraph of g in

which no cycles with four or more vertices exist in which

there is no chord. A graph can be triangulated by adding

chords. The added edges are called fill-in edges. The

clique-width of an undirected graph g is the size of its

largest clique or vertex cut.

For example, the graph in Fig.4(a) is not triangu-

lated, since in the circle {CHJE}, which has four ver-

tices, neither of its chords e(E,H) or e(C, J) belongs

to E(gc). Its triangulated graph is shown in Fig.8. The

edges such as e(E,H) can be called an fill-in edge.

A

B D

C
F

G H

E L

J K

I

Fig.8. Triangulated graph of Fig.4(a).

Moreover, as each vertex cut can be treated as a

super node, it equals adding a chord between each two

vertices of the vertex cut. For example, the vertex cut

VC(AC) equals adding a chord e(A,C) into the graph

gc at the above triangulation step, which are the fill-

in edges. As the clique-width should be as small as

possible, the fill-in edges should be as few as possible.

To summarize, our optimal index (also optimal trian-

gulated graph) should satisfy the theorem as follows.

Theorem 5. In the optimal index of a graph built

based on its triangulated graph, both the clique-width

and fill-in edges should be minimized. Moreover, find-

ing the optimal triangulated graph is NP-complete. It

has been proved that the optimal approximate ratio of

an approximate algorithm should be O(log n), where n

is the number of vertices in a graph[19-20].

For example, the optimal index based on the trian-

gulated graph in Fig.8 is shown in Fig.5. Now, we pro-

vide an approximate optimal construction algorithm,

which can be concluded in Algorithm 3.

Our index construction algorithm is based on the

idea of divide-and-conquer, which is shown in Algo-

rithm 3. Initially, we treat the whole graph gc as a

single block, and put block B = V (gc) into B(T), and

edge (B,B) into E(T). In each recursion, we call a 2-

way vertex cut algorithm, which is to find out a vertex

cut VC that divides the graph into two connected sub-

graphs (line 6). There are many algorithms to find 2-

way balanced vertex cuts, such as [21]. Then we delete

the vertex members in VC and get two subgraphs sg1

772 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

and sg2 (lines 7∼8). The vertices in sg1 and VC to-

gether consist of block B1, i.e., B1 = (V (sg1) ∪ V (C)).

Similarly, B2 = (V (sg2)∪V (C)). Insert VC into VC(T).

Now, B is replaced by B1 and B2, and (B,B) is replace

by (B1,VC) and (B2,VC) (lines 9∼13). We recursively

execute the above process on subgraphs sg1 and sg2
respectively until the vertex number of each subgraph

satisfies |V (g)| < (2α + 1)k. Here, α is the ratio be-

tween the weight of the 2-way vertex cut found by the

algorithm and that of the optimal 2-way vertex cut,

and k is the clique-width of g (line 2). Then we will get

our index tree T . According to previous work on graph

triangulation, we have the following theorem.

Theorem 6. The index built according to Algo-

rithm 3 is O(log n)-approximate optimal[20].

According to the (2− 2

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 773

edges in PPI data sharing the same vertex are domi-

nated by the strongest interactions among the neighbor

edges. We can use the maximum probability among the

neighbor edges to calculate the joint probabilities, and

then normalize them. For example, given the marginal

probabilities pr(e1 = 1) = 0.2, pr(e1 = 0) = 0.8,

pr(e2 = 1) = 0.7, and pr(e2 = 0) = 0.3, then the joint

probabilities can be calculated as pr(e1 = 1, e2 = 1) =

max(pr(e1 = 1), pr(e2 = 1)) = max(0.2, 0.7) = 0.7,

pr(e1 = 1, e2 = 0) = max(0.2, 0.3) = 0.3, pr(e1 =

0, e2 = 0) = max(0.8, 0.3) = 0.8, and pr(e1 = 0, e2 =

1) = max(0.8, 0.7) = 0.8. Then we need to normalize

these joint probabilities. That is, pr(e1 = 1, e2 = 1) =

0.7/(0.7 + 0.3 + 0.8 + 0.8) = 0.7/2.6 ≈ 0.26, pr(e1 =

1, e2 = 0) = 0.3/2.6 ≈ 0.12, pr(e1 = 0, e2 = 0) =

0.8/2.6 ≈ 0.31 and pr(e1 = 0, e2 = 1) = 0.8/2.6 ≈ 0.31.

Using this method, we can calculate all the joint proba-

bilities in the same clique.

As the edges in road network datasets are deter-

ministic, we need to do some preprocessing to change

the deterministic graphs into uncertain graphs. Our

generation method is similar to the one introduced in

[23]. We use normal distribution N(µ, σ) to generate

the joint probabilities of the edges in the same maximal

clique. Here, µ is the expectation of the probabilities,

and σ is the variance. After generating all the joint

probabilities, we normalize these probabilities to make

their sum equal to 1. In default, we make µ = 0.5 and

σ = 0.1.

6.1 Evaluation of Index

In this subsection, we first test the pruning capabi-

lity and the pruning time of our index in Subsec-

tion 6.1.1 and Subsection 6.1.2 respectively. Then we

test the index construction time and index space cost in

Subsection 6.1.3. All the above experiments are tested

on real data. Finally, we test the scalability of all the

index in Subsection 6.1.4 using the synthetic data.

6.1.1 Pruning Capability

For different thresholds, we randomly select two ver-

tices in each graph. Firstly, we calculate the shortest

path and corresponding SPr using our filtering-and-

verification method, and record the vertex number both

in candidate set gotten from filtering phase and in fi-

nal result set (result set 1) gotten from the verification

phase. Then, we just use the sampling method in the

verification phase and record the vertex number in re-

sult set (result set 2). We repeat the above steps 1 000

times and calculate the final query result and average

vertex number in candidate set, result set 1, and result

set 2. As both the final query result and the average

vertex numbers in result set 1 and result set 2 are almost

the same, we just use the result set 2 as the comparison

to the candidate set. The result of pruning capability

vs threshold in each dataset is shown in Fig.9.

From Fig.9, we can see that the vertex number in

result set decreases w.r.t. the increase of threshold, and

the vertex number in the candidate set also decreases

together with the vertex number in the result set. It

is reasonable because the higher the threshold is, the

fewer paths will pass the threshold. Moreover, the ver-

tex number in the candidate set is always just a little

larger than that in final result set, which proves that

our upper bounds provided by the index are very tight.

For the same threshold, the vertex number in the candi-

date set (or result set) is the largest in dataset 882, and

is the smallest in dataset NA. This is reasonable be-

cause the larger a dataset is, the longer path there will

possibly be between the two randomly selected vertices

when the uncertainty distribution is fixed in different

datasets. According to our analysis in Subsection 4.1,

a longer path will lead to a smaller SPr. Thus, there

will be fewer paths above the threshold in a large graph

than those in a smaller one. Thus, the average ver-

tex number in the candidate set (or result set) will be

smaller in a large graph than that in a smaller one.

0 0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

Threshold

V
e
rt

e
x
 N

u
m

b
e
r

 Candidate Set
 Result Set

0 0.1 0.2 0.3 0.4 0.5

50

100

Threshold

V
e
rt

e
x
 N

u
m

b
e
r

 Candidate Set
 Result Set

0 0.1 0.2 0.3 0.4 0.5

10

20

Threshold

V
e
rt

e
x
 N

u
m

b
e
r

 Candidate Set
 Result Set

0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

Threshold

V
e
rt

e
x
 N

u
m

b
e
r

 Candidate Set
 Result Set

(a) (b) (c) (d)

Fig.9. Pruning capability tested on real data. (a) Dataset 394. (b) Dataset 882. (c) Dataset OL. (d) Dataset NA.

774 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

6.1.2 Pruning Time

The experiment method of pruning time is also

tested on real datasets, and the result is shown in

Fig.10. We can see the pruning time decreases with

the increase of threshold. The reason is also that fewer

paths will pass the threshold when the threshold goes

higher. The time cost is the most in dataset NA and the

least in dataset 394. The longest pruning time is just

less than 40 ms with graph size 175 813 vertices. This

indicates that our pruning algorithm is very efficient.

0 0.1 0.2 0.3 0.4 0.5

1

10

40

Threshold

P
ru

n
in

g
 T

im
e
 (

m
s)

Dataset 394

Dataset 882

Dataset OL

Dataset NA

Fig.10. Pruning time.

6.1.3 Cost of Index

In this experiment, we test the index construction

time and the index size. We run Algorithm 3 on the real

datasets, and test time cost during the process of index

construction. The result is shown in Fig.11. After get-

ting the index, we count the node number (including

blocks and vertex cuts) of the index tree. The result is

shown in Table 3.

394

T
im

e
 C

o
st

 (
s)

882 OL NA

1

10

100

4000

Dataset

Fig.11. Index building.

From Fig.11, we can see that the index construction

time is the least in dataset 882, which is less than 1 s.

The time cost of NA is the most, which is about 3 800 s.

The index construction time increases with the increase

of graph size. From Table 3, we can see that the num-

ber of nodes in index is in the same order of magnitude

with the vertex number of the original graph. This veri-

fies that the index size is O(n), where n is the number

of vertices of the graph.

Table 3. Node Number in Index of Real Datasets

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 775

2 8 32 128 512
0

4

8

12

16

Graph Size (k)

V
e
rt

e
x
 N

u
m

b
e
r

Candidate Set
Result Set

2 5 10 20
0

100

300

600

Average Degree

V
e
rt

e
x
 N

u
m

b
e
r

Candidate Set
Result Set

2 8 32 128 512

1

5

20

64

Graph Size (k)

P
ru

n
in

g
 T

im
e
 (

m
s)

2 5 10 20
0

2

4

6

8

Average Degree

P
ru

n
in

g
 T

im
e
 (

s)

(a) (b) (c) (d)

Fig.12. Pruning capability and pruning time vs graph size and graph density. (a) Capability vs graph size. (b) Capability vs graph
density. (c) Time vs graph size. (d) Time vs graph density.

in graph with 2k vertices is above the fixed threshold

0.01. When increasing the vertex number from 2k to 4k,

the average SPr between two randomly chosen vertices

does not decrease so much, and at least it is still above

0.01. Thus, the vertex number in candidate set and re-

sult set increases as the graph scale increases. However,

when the graph size is increased to 8k or more, the av-

erage SPr between any two randomly chosen vertices

decreases to less than 0.01. Thus, the vertex number in

the candidate set and the result set decreases with the

increase of graph size because of the reason mentioned

in Subsection 6.1.1.

The result of pruning capability scalability w.r.t.

graph density is shown in Fig.12(b). We can see the

number of vertices in the candidate set and the result

set increases with the increase of graph density. The

slope of the candidate set curve is larger than that of

result set curve. This indicates that the pruning capa-

bility of our index decreases with the increase of graph

density. It is reasonable because when the average de-

gree of each vertex in graph increases, the clique width

of index also increases, which leads to a weaker pruning

capability. It verifies the analysis in Subsection 4.3.

The result of pruning capability scalability w.r.t. µ

and σ is shown in Fig.13. The remaining vertices in dif-

ferent datasets are far fewer than those in the original

graphs. Thus, the pruning capability is always strong.

From Figs.13(a) and 13(b), we can see that the pruning

capability increases with the increase of µ. This is be-

cause with the increase of µ, when normalizing the joint

probabilities in the same maximal clique, each value

in it decreases. Thus, different µ essentially changes

the average SPr of the two randomly chosen vertices.

Thus, the tendency of curves w.r.t. µ is similar to that

w.r.t. threshold. From Figs.13(c) and 13(d), we can see

curves fluctuate w.r.t. σ, but the number of vertices in

the candidate set and the result set are nearly the same.

Thus, σ hardly influences pruning capability.

Pruning Time. The result of the scalability of prun-

ing time w.r.t. graph size is shown in Fig.12(c). We can

see that the pruning time increases with the increase

of graph size. The difference between the longest and

the shortest pruning time is less than 64 ms, while the

graph size changes from 2k to 1M. Thus, the graph

size hardly influences the efficiency of our pruning al-

gorithm.

The result of the scalability of pruning time w.r.t.

graph density is shown in Fig.12(d). The pruning time

increases with the increase of graph density. When the

average degree changes from 2 to 5, the pruning time

changes nearly 4 ms. Note that, when the average de-

gree is larger than 5, there is a huge increase in the

pruning time. This is because when the graph is too

dense, the limited memory cannot store all the joint

probability tables of the correlated uncertain graph. We

have to leave the joint probability tables in the disk.

Thus, when necessary, we have to do some I/Os to load

corresponding joint probability tables.

0.1 0.3 0.5 0.7 0.9
0

20

40

60

Expectation Expectation

V
e
rt

e
x
 N

u
m

b
e
r

Candidate Set
Result Set

Candidate Set
Result Set

0.1 0.3 0.5 0.7 0.9
0

5

10

15

20

V
e
rt

e
x
 N

u
m

b
e
r

0.05 0.10 0.15 0.20 0.25
0

10

20

30

40

50

Variance

V
e
rt

e
x
 N

u
m

b
e
r

0.05 0.10 0.15 0.20 0.25
0

5

10

15

Variance

V
e
rt

e
x
 N

u
m

b
e
r

Candidate Set
Result Set

Candidate Set
Result Set

(a) (b) (c) (d)

Fig.13. Pruning capability vs µ and σ. (a) µ in 882. (b) µ in OL. (c) σ in 882. (d) σ in OL.

776 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

The result of the scalability of pruning time w.r.t.

µ and σ is shown in Fig.14. Again, as the influence

caused by µ is the same with that caused by thresh-

old, the pruning time just fluctuates slightly because

the change of pruning time w.r.t. threshold is also very

small. As well, the pruning time just fluctuates slightly

when σ changes because σ nearly has no influence on

pruning time. Thus, the pruning time is not sensitive

to µ and σ.

0.1 0.3 0.5 0.7 0.9
0

1

2

P
ru

n
in

g
 T

im
e
 (

m
s)

Dataset 882
Dataset OL

Dataset 882
Dataset OL

0.05 0.10 0.15 0.20 0.25
0

1

2

3

Variance

P
ru

n
in

g
 T

im
e
 (

m
s)

Expectation

(a) (b)

Fig.14. Pruning time vs µ and σ. (a) Pruning time vs µ. (b)
Pruning time vs σ.

6.2 Evaluation of Verification Step

The verification experiment includes the verification

time and the related error. We choose H-T estimator in

our verification step, which is the best one in [15]. The

calculation method of related error is the same with

[15]. Again, we test them on the real datasets, and fix

µ = 0.5, σ = 0.1, threshold τ = 0.01. The results are

shown in Fig.15(b).

50 100 200 500 750 12001800

1

4

25

Sampling Times

V
e
rf

ic
a
ti
o
n
 T

im
e
 (

s)

Dataset 394 Dataset 882

Dataset OL Dataset AN

50 100 200 500 1800
0

0.5

1.0

Sampling Times

R
e
la

te
d
 E

rr
o
r

Dataset 394

Dataset 882

Dataset OL

Dataset NA

(a)

(b)

Fig.15. Verification evaluation. (a) Time cost on real datasets.
(b) Error of the estimator.

We can see that the verification time increases with

the increase of sampling times. The verification time

cost is the largest on dataset 882 and the smallest on

dataset NA. It is reasonable because the vertex number

in candidate set of dataset 882 is the largest while that

of dataset NA is the smallest of NA. For the accuracy,

the more times of sampling, the smaller related error

we will get. It is certainly true because the sampling

result will be closer to the real result if we sample more

times.

6.3 Total Query Cost

The online query time is the sum of the pruning time

in the filtering step and the time cost of the shortest

path sampling (SPS) method in the verification step.

We still test it on real datasets, and the parameters

are fixed as µ = 0.5, σ = 0.1, τ = 0.01, and sampling

times equal 200. We compare the total time cost of our

proposed filtering-and-verification method with that

of the basic sampling method, which is just using the

sampling method in [15] (also using its best estima-

tor H-T) without using index. The result is shown in

Fig.16(a). From the result, we can see that the time

cost of our proposed filtering-and-verification (denoted

as “Index+SPS”) method is far less than that of basic

394 882 OL NA

0.01

0.10

1.00

10.00

100.00

2000.00

Q
u
e
ry

 T
im

e
 (

s)
M

e
m

o
ry

 C
o
st

 (
M

B
)

Dataset

Dataset

Index+SPS

Naive Sampling

394 882 OL NA
0

100

200

300

400

Index+SPS

Naive Sampling

(a)

(b)

Fig.16. Total online query cost. (a) Query time. (b) Memory
cost.

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 777

sampling method (denoted as “Naive Sampling”). This

proves that our proposed method largely improves the

query efficiency.

In this experiment, the total memory cost contains

all the memory cost in our filtering-and-verification

method, such as graph structure, the joint probabili-

ties, index construction, index, pruning algorithm and

the verification algorithm. Again, we compare it with

the memory cost of basic sampling method. The re-

sult is shown in Fig.16(b). From the result, we can see

that our proposed algorithm costs more memory than

the basic algorithm. We analyze that the construction

step takes large part of memory cost. Though we take

more memory cost, the memory cost is still acceptable.

However, we improve the query efficiency largely.

6.4 Model Comparison

In this subsection, we verify that the results pro-

vided by our correlated model are better than those

provided by the independent model, which is mentioned

in Section 2. We use the two real PPI data, 394 and

882, to conduct this experiment. As we mentioned in

Section 2, the shortest path is used to evaluate the simi-

larity of two proteins. If there exist paths whose SPr

is higher than the given threshold between two query

proteins (vertices), the two proteins can be treated to

be similar. In PPI networks, whether two proteins are

similar has been given out by biologists 4○. We ran-

domly select 100 pairs of proteins given different thresh-

olds on each dataset, and record the number of pairs

whose similarity is consistent with that given biologists.

These records are the precision of the calculated simi-

larity. We compare the precision of our model and that

of the independent model, which is shown in Table 4.

Table 4. Correlated Model vs Independent Model

778 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

into our problem. Moreover, most of the acceleration

techniques are aiming at special environment, such as

the applications in road networks introduced above. In

other application environment, these techniques are not

available. The algorithms in our paper have no con-

straints on application environment.

7.2 Shortest Path over Uncertain Graphs

Many kinds of queries are done over uncertain

environment[38-42]. Deshpande et al. made great ef-

fort on processing the correlation over uncertain data

models[43-48]. Especially in [43] and [48], the authors

used a junction tree as an index to help the process

of join problems over correlated uncertain data. Our

work has the following two main differences with [43].

Firstly, even though the optimal index is the same as an

optimal junction tree, our index in the filtering phase

is not necessarily a junction tree. Our index is based

on blocks (not necessarily always be cliques) and vertex

cuts, while junction tree is based on cliques. Secondly,

the authors use junction tree to solve the join prob-

lems, which is a different problem with our shortest

path query in graph. The motivation, the method and

the purpose of the usage are different.

Among all different queries over uncertain graphs,

shortest path query over uncertain graph is important,

which was first proposed by Loui[49]. In recent years,

many studies such as [1, 6] considered the model in

which edges are independent of each other. The short-

coming of the independent model is detailed in the for-

mer sections of our paper. Moreover, Hua and Pei[23]

built a simple correlated uncertain graph model. They

used a joint probability table on each two edges sharing

the same vertex to show their correlation. Their model

could present simple correlationships between each two

edges sharing the same vertex, but when there were

more than two edges sharing the same vertices, their

model would be confusing.

Until now, there are few studies on approximate

shortest path algorithms over uncertain graphs. Jin et

al.[50] proposed unequal probability sampling method

to solve the uncertain reachability problem. They

combined unequal probability sampling method with

divide-and-concur strategy perfectly, and realized cal-

culating the reachability probability without sampling

the whole possible graph. With the help of divide-and-

concur strategy, they can know whether two vertices

are reachable during the process of sampling. Their so-

lution avoids calling a reachability algorithm on certain

graph and highly improves the efficiency. However, the

algorithm above cannot be applied into our problem di-

rectly, because it is impossible to know which path is

the shortest until the last edge on the graph is sampled,

even though several reachable paths are sampled out.

That is to say, the shortest path query is more complex

than the reachability problem. Moreover, [15] is also a

work on the shortest path query over correlated uncer-

tain graphs. However, there are two main differences

between our work and [15]. Firstly, our correlated un-

certain graph model is based on Markov network while

the one in [15] is based on Bayesian network. The three

advantages of our model compared with the one in [15]

have been discussed in Section 2. Secondly, [15] only

focused on the sampling method to solve the shortest

path query. Although this sampling method can also be

applied in the verification phase of our work, only us-

ing the sampling method itself is not efficient enough.

This is the reason why we design our index and the

algorithms in the filtering phase. In Subsection 6.3,

we compare our method and the one in [15] in the ex-

periments, and the results show that our method can

heavily improve the query efficiency.

8 Conclusions

In this paper, we first proposed a correlated un-

certain graph model based on Markov network, which

can overcome the shortcomings in the existing models.

As calculating the shortest path probability is a #P-

hard problem, we proposed a filtering-and-verification

method to answer the shortest path query efficiently.

In the filtering step, we built a probabilistic shortest

path index, utilizing the upper bounds of shortest path

probability and filtering large numbers of vertices that

make no contribution to the shortest path query. How-

ever, as building the optimal index is an NP-hard prob-

lem, we provided an O(log n)-approximate algorithm

with polynomial time complexity. In the verification

phase, we devised a sampling algorithm to verify the

final SPr. Our experiments showed that our index has

strong pruning capability and our algorithms have high

efficiency to get a high precision query answer.

References

[1] Yuan Y, Chen L, Wang G. Efficiently answering proba-

bility threshold-based shortest path queries over uncertain

graphs. In Proc. the 15th DASFAA, Apr. 2010, pp.155-170.

[2] Asthana S, King O D, Gibbons F D, Roth F P. Predicting

protein complex membership using probabilistic network re-

liability. Genome Research, 2004, 14(6): 1170-1175.

Yu-Rong Cheng et al.: Shortest Path Query over Correlated Uncertain Graphs 779

[3] Nierman A, Jagadish H. ProTDB: Probabilistic data in

XML. In Proc. the 28th VLDB, Aug. 2002, pp.646-657.

[4] Adar E, Ré C. Managing uncertainty in social networks.

IEEE Data Eng. Bull, 2007, 30(2): 15-22.

[5] Lian X, Chen L. Efficient query answering in probabilistic

RDF graphs. In Proc. ACM SIGMOD International Con-

ference on Management of Data, May 2011, pp.157-168.

[6] Zou L, Peng P, Zhao D. Top-K possible shortest path query

over a large uncertain graph. In Proc. the 12th Int. Conf.

Web Information System Engineering, Oct. 2011, pp.72-86.

[7] Tao Y, Sheng C, Pei J. On k-skip shortest paths. In Proc.

ACM SIGMOD International Conference on Management

of Data, Jun. 2011, pp.421-432.

[8] Yao B, Tang M, Li F. Multi-approximate-keyword routing

in GIS data. In Proc. the 19th ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information

Systems, Nov. 2011, pp.201-210.

[9] Fan W, Wang X, Wu Y. Performance guarantees for dis-

tributed reachability queries. Proceedings of the VLDB En-

dowment, 2012, 5(11): 1304-1315.

[10] Gao J, Jin R, Zhou J, Yu J X, Jiang X, Wang T. Relational

approach for shortest path discovery over large graphs. Pro-

ceedings of the VLDB Endowment, 2011, 5(4): 358-369.

[11] Yan X, Yu P S, Han J. Substructure similarity search in

graph databases. In Proc. ACM SIGMOD International

Conference on Management of Data, Jun. 2005, pp.766-

777.

[12] Atkinson K E. An Introduction to Numerical Analysis. John

Wiley & Sons, 2008.

[13] Deshpande A, Getoor L, Sen P. Graphical models for uncer-

tain data. Managing and Mining Uncertain Data, Aggarwal

C C (ed.), Springer, 1980: 77-112.

[14] Koller D, Friedman N. Probabilistic Graphical Models:

Principles and Techniques (1 edition). The MIT Press, 2009.

[15] Cheng Y, Yuan Y, Wang G, Qiao B, Wang Z. Efficient

sampling methods for shortest path query over uncertain

graphs. In Proc. the 19th DASFAA, Apr. 2014, pp.124-140.

[16] Jin R, Ruan N, Xiang Y, Lee V. A highway-centric label-

ing approach for answering distance queries on large sparse

graphs. In Proc. ACM SIGMOD International Conference

on Management of Data, May 2012, pp.445-456.

[17] Zou Z, Gao H, Li J. Discovering frequent subgraphs over

uncertain graph databases under probabilistic semantics. In

Proc. the 16th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Jul. 2010, pp.633-

642.

[18] Chandran L S, Ram L S. On the number of minimum cuts

in a graph. SIAM Journal on Discrete Mathematics, 2004,

18(1): 177-194.

[19] Shoikhet K, Geiger D. A practical algorithm for finding op-

timal triangulations. In Proc. the 14th National Confer-

ence on Artificial Intelligence and the 9th Innovative Ap-

plications of Artificial Intelligence Conference (AAAI), Jul.

1997, pp.185-190.

[20] Becker A, Geiger D. A sufficiently fast algorithm for finding

close to optimal junction trees. In Proc. the 12th Interna-

tional Conference on Uncertainty in Artificial Intelligence,

Aug. 1996, pp.81-89.

[21] Garg N, Vazirani V V, Yannakakis M. Multiway cuts in di-

rected and node weighted graphs. In Proc. the 21st Int. Col-

loquium on Automata, Languages and Programming, Jul.

1994, pp.487-498.

[22] Chua H N, Sung W K, Wong L. Exploiting indirect neigh-

bours and topological weight to predict protein function

from protein-protein interactions. Bioinformatics, 2006,

22(13): 1623-1630.

[23] Hua M, Pei J. Probabilistic path queries in road networks:

Traffic uncertainty aware path selection. In Proc. the 13th

International Conference on Extending Database Technol-

ogy (EDBT), Mar. 2010, pp.347-358.

[24] Bast H, Funke S, Matijevic D. TRANSIT—Ultrafast short-

estpath queries with linear-time preprocessing. In Proc. the

9th DIMACS Implementation Challenge: Shortest Paths,

Nov. 2006.

[25] Delling D, Sanders P, Schultes D, Wagner D. Engineering

route planning algorithms. In Algorithmics of Large and

Complex Networks, Lerner J, Wagner D, Iweig K A (eds.),

Springer, 2009, pp.117-139.

[26] Klein P N, Mozes S, Weimann O. Shortest paths in di-

rected planar graphs with negative lengths: A linear-space

O(n log2 n)-time algorithm. ACM Transactions on Algo-

rithms (TALG), 2010, 6(2): Article No. 30.

[27] Cohen E, Halperin E, Kaplan H, Zwick U. Reachability and

distance queries via 2-hop labels. SIAM Journal on Comp.,

2003, 32(5): 1338-1355.

[28] Wei F. TEDI: Efficient shortest path query answering on

graphs. In Proc. ACM SIGMOD International Conference

on Management of Data, Jun. 2010, pp.99-110.

[29] Potamias M, Bonchi F, Castillo C, Gionis A. Fast short-

est path distance estimation in large networks. In Proc.

the 18th ACM Conference on Information and Knowledge

Management, Nov. 2009, pp.867-876.

[30] Gubichev A, Bedathur S, Seufert S, Weikum G. Fast and ac-

curate estimation of shortest paths in large graphs. In Proc.

the 19th ACM Conference on Information and Knowledge

Management, Nov. 2010, pp.499-508.

[31] Sankaranarayanan J, Samet H, Alborzi H. Path oracles for

spatial networks. Proceedings of the VLDB Endowment,

2009, 2(1): 1210-1221.

[32] Samet H, Sankaranarayanan J, Alborzi H. Scalable network

distance browsing in spatial databases. In Proc. ACM SIG-

MOD International Conference on Management of Data,

Jun. 2008, pp.43-54.

[33] Sankaranarayanan J, Alborzi H, Samet H. Efficient query

processing on spatial networks. In Proc. the 13th Inter-

national Workshop on Geographic Information Systems

(GIS), Nov. 2005, pp.200-209.

[34] Rice M, Tsotras V J. Graph indexing of road networks for

shortest path queries with label restrictions. Proceedings of

the VLDB Endowment, 2010, 4(2): 69-80.

[35] Jing N, Huang Y W, Rundensteiner E A. Hierarchical en-

coded path views for path query processing: An optimal

model and its performance evaluation. IEEE Transactions

on Knowledge and Data Engineering, 1998, 10(3): 409-432.

[36] Wu L, Xiao X, Deng D, Cong G, Zhu A D, Zhou S. Shortest

path and distance queries on road networks: An experimen-

tal evaluation. Proceedings of the VLDB Endowment, 2012,

5(5): 406-417.

780 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

[37] Cheng J, Ke Y, Chu S, Cheng C. Efficient processing of dis-

tance queries in large graphs: A vertex cover approach. In

Proc. ACM SIGMOD International Conference on Man-

agement of Data, May 2012, pp.457-468.

[38] Tong Y, Chen L, Cheng Y, Yu P S. Mining frequent itemsets

over uncertain databases. Proceedings of the VLDB Endow-

ment, 2012, 5(11): 1650-1661.

[39] Tong Y, Chen L, Ding B. Discovering threshold-based

frequent closed itemsets over probabilistic data. In Proc.

the 28th International Conference on Data Engineering

(ICDE), Apr. 2012, pp.270-281.

[40] Yuan Y, Wang G, Chen L, Wang H. Efficient subgraph sim-

ilarity search on large probabilistic graph databases. Pro-

ceedings of the VLDB Endowment, 2012, 5(9): 800-811.

[41] Zou Z, Li J, Gao H, Zhang S. Mining frequent subgraph

patterns from uncertain graph data. IEEE Transactions on

Knowledge and Data Engineering, 2010, 22(9): 1203-1218.

[42] Tong Y, Zhang X, Chen L. Tracking frequent items over

distributed probabilistic data. World Wide Web, 2015.

[43] Kanagal B, Deshpande A. Indexing correlated probabilistic

databases. In Proc. ACM SIGMOD International Confer-

ence on Management of Data, Jun. 2009, pp.455-468.

[44] Deshpande A, Guestrin C, Hong W H, Madden S. Exploit-

ing correlated attributes in acquisitional query processing.

In Proc. the 21st International Conference on Data Engi-

neering (ICDE), Apr. 2005, pp.143-154.

[45] Deshpande A, Garofalakis M, Rastogi R. Independence

is good: Dependency-based histogram synopses for high-

dimensional data. ACM SIGMOD Record, 2001, 30(2): 199-

210.

[46] Sen P, Deshpande A, Getoor L. PrDB: Managing and ex-

ploiting rich correlations in probabilistic databases. The

VLDB Journal, 2009, 18(5): 1065-1090.

[47] Kanagal B, Deshpande A. Lineage processing over corre-

lated probabilistic databases. In Proc. ACM SIGMOD Int.

Conf. Management of Data, Jun. 2010, pp.675-686.

[48] Tzoumas K, Deshpande A, Jensen C S. Lightweight graph-

ical models for selectivity estimation without independence

assumptions. Proceedings of the VLDB Endowment, 2011,

4(11): 852-863.

[49] Loui R P. Optimal paths in graphs with stochastic or mul-

tidimensional weights. Communications of the ACM, 1983,

26(9): 670-676.

[50] Jin R, Liu L, Ding B, Wang H. Distance-constraint reacha-

bility computation in uncertain graphs. Proceedings of the

VLDB Endowment, 2011, 4(9): 551-562.

Yu-Rong Cheng received her B.S.

degree in computer science from the

Department of Computer Science,

Northeastern University, Shenyang,

in 2012. Currently, she is a Ph.D.

candidate of Northeastern University.

Her main research interest includes

queries over graph data and large graph

analysis.

Ye Yuan received his B.S., M.S. and

Ph.D. degrees in computer science from

Northeastern University, Shenyang, in

2004, 2007 and 2011, respectively. He

is now a professor in the Department of

Information Science and Engineering in

Northeastern University. His research

interests include graph databases,

probabilistic databases, data privacy-preserving, and cloud

computing.

Lei Chen received his B.S. degree

in computer science and engineering

from Tianjin University, Tianjin, in

1994, M.A. degree from Asian Institute

of Technology, Bangkok, Thailand, in

1997, and Ph.D. degree in computer

science from the University of Waterloo,

Canada, in 2005. He is currently an

associate professor in the Department of Computer Science

and Engineering, Hong Kong University of Science and

Technology. So far, he published over 200 conference and

journal papers. He got the Best Paper Awards in DASFAA

2009 and 2010. He is PC Track chairs for SIGMOD 2014,

VLDB 2014, ICDE 2012, CIKM 2012, SIGMM 2011.

He has served as PC members for SIGMOD, VLDB,

ICDE, SIGMM, and WWW. Currently, Prof. Chen is

an associate editor-in-chief for IEEE Transactions on

Knowledge and Data Engineering and serves on the

editorial board of Distributed and Parallel Databases. He

is a member of the VLDB endowment committee and the

chairman of ACM SIGMOD China Chapter. His research

interests include crowdsourcing over social media, social

media analysis, probabilistic and uncertain databases, and

privacy-preserved data publishing.

Guo-Ren Wang received his B.S.,

M.S. and Ph.D. degrees in computer

science from Northeastern University,

Shenyang, in 1988, 1991 and 1996,

respectively. Currently, he is a pro-

fessor in the College of Information

Science and Engineering, Northeastern

University, Shenyang. His research

interests are XML data management, query processing and

optimization, bioinformatics, high-dimensional indexing,

parallel database systems, and P2P data management.

