
Chen W, Zhao L, Xu JJ et al. Trip oriented search on activity trajectory. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 30(4): 745–761 July 2015. DOI 10.1007/s11390-015-1558-6

Trip Oriented Search on Activity Trajectory

Wei Chen 1 (), Lei Zhao 1,2,∗ (), Member, CCF, ACM

Jia-Jie Xu 1,2 (), Member, CCF, ACM, Guan-Feng Liu 1,2 (), Member, CCF, ACM

Kai Zheng 1 (), Member, CCF, ACM, IEEE, and Xiaofang Zhou 1,3 (), Member, CCF, ACM, IEEE

1School of Computer Science and Technology, Soochow University, Suzhou 215006, China
2Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China
3School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane

QLD 4072, Australia

E-mail: wchzhg@gmail.com; {zhaol, xujj, gfliu}@suda.edu.cn; {kevinz, zxf}@itee.uq.edu.au

Received February 1, 2015; revised May 13, 2015.

Abstract Driven by the flourish of location-based services, trajectory search has received significant attentions in recent

years. Different from existing studies that focus on searching trajectories with spatio-temporal information and text de-

scriptions, we study a novel problem of searching trajectories with spatial distance, activities, and rating scores. Given a

query q with a threshold of distance, a set of activities, a start point S and a destination E, trip oriented search on activity

trajectory (TOSAT) returns k trajectories that can cover the activities with the highest rating scores within the threshold

of distance. In addition, we extend the query with an order, i.e., order-sensitive trip oriented search on activity trajectory

(OTOSAT), which takes both the order of activities in a query q and the order of trajectories into consideration. It is very

challenging to answer TOSAT and OTOSAT efficiently due to the structural complexity of trajectory data with rating infor-

mation. In order to tackle the problem efficiently, we develop a hybrid index AC-tree to organize trajectories. Moreover, the

optimized variant RAC+-tree and novel algorithms are introduced with the goal of achieving higher performance. Extensive

experiments based on real trajectory datasets demonstrate that the proposed index structures and algorithms are capable

of achieving high efficiency and scalability.

Keywords trajectory search, rating score, activity trajectory

1 Introduction

With proliferation of mobile devices and rapid

development of wireless sensor technology, a large

amount of trajectory data are generated at an un-

precedent scale. In the last two decades, trajec-

tory similarity search has been extensively studied to

achieve effective utilization of trajectory data, and a

lot of indexing structures[1-2] and knowledge discovery

methods[3-5] have been proposed. Above techniques

have been widely used in developing effective location-

based recommendation systems (LBRS), such as trip

planning, online navigation and supply chain manage-

ment systems.

In most of the existing work[6-9], a trajectory is

modeled as a sequence of spatio-temporal locations, and

the queries are conducted in spatial domain. However,

in recent years, a huge volume of activity trajectories

have been generated from the social media websites,

such as a sequence of geo-tagged records in Foursquare,

Facebook and Bikely. Each location in an activity tra-

jectory contains both spatial and activity information

(e.g., sport, dining and entertaining). This new type

of trajectory records the semantically meaningful snap-

shots of our life, and thus provides us unprecedented

potential to make advisable recommendations that can

fully match users’ intention in both spatial and activity

746 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

domains. To fulfill this purpose, some efforts[10-11] have

been made in recent years to support efficient activity

trajectory search, e.g., to return k activity trajectories

that can cover the intended activities with the mini-

mum distance. However, given an activity, they only

judge if it can be carried out at the location (i.e., a

place of interest) of a trajectory or not, without con-

sidering the actual user experience based on historical

records. Obviously, this is not reasonable in most cases,

because users do expect to fulfill their intended activi-

ties with the best experience. Having observed the limi-

tation of previous work, we investigate a novel problem

of rating-based activity trajectory search, to maximize

users’ experience on their intended activities.

Consider the example demonstrated in Fig.1, Ta-

ble 1 and Table 2, where τ1, τ2 and τ3 are historical

activity trajectories. Each activity trajectory (e.g., τ2)

passes several locations (e.g., p2,1, p2,2 and p2,3), and

each location has one or more capable activities (e.g., c

for p2,2) to perform, and a corresponding rating score

(e.g., 9) marked by previous visitors. A user specifies a

query q with a start point S, a destination E, a set of

intended activities {e, c, a} and a threshold of distance

25 km. Clearly, τ3 is not a choice since the goal activi-

ties cannot be fulfilled in it. Existing activity trajectory

search method[10] returns τ1 as the result, since the user

can fulfill (e, c, a) in the trip (S, p1,2, p1,3, p1,4, E) with

the minimum distance 14 km. However, we can easily

observe that τ2 is a more satisfactory choice than τ1,

because it has much higher rating score (27.1 vs 8.8)

and the similar distance (15.5 km vs 13.5 km) within

the threshold 25 km, in the trip (S, p2,2, p2,3, p2,4, E).

Obviously, most users prefer τ2 to τ1 in real applica-

tions.

Compared with conventional activity trajectory

search, the problem proposed in this study is more

challenging for two main reasons. Firstly, it is hard to

design an index structure that can organize spatial dis-

tance, activities and rating scores in a seamless fashion.

Secondly, it is difficult to find a balance between dif-

ferent factors (i.e., distance, activity and rating score).

If we focus on minimizing the distance while search-

ing activity trajectories, as [10] does, the rating score

could be low. Similarly, if the activity trajectory traver-

sal is made for those with higher rating score first, the

Wei Chen et al.: Trip Oriented Search on Activity Trajectory 747

posed to compute the maximum rating for each can-

didate trajectory. Thirdly, an optimized index RAC+-

tree is developed to achieve higher query performance.

Different from the AC-tree, the rating information is

considered in the RAC+-tree. We can further prune

the search space with the RAC+-tree, and the cardina-

lity of the new candidate set is much more smaller than

that obtained by retrieving the AC-tree. In addition, a

collaborative algorithm is proposed to make computing

faster. Lastly, we extend the query to be order-sensitive

by taking into account the order of query activities, as

the users may want to perform their intended activities

in an order.

To sum up, the main contributions of this work are

as follows:

• We formulate a novel problem of trajectory search

with spatial information, activities and rating scores.

We also extend the query in an order-sensitive scenario

by taking the order of both query activities and trajec-

tories into consideration.

• We develop a hybrid index structure called AC-

tree to organize trajectory segments and activity in-

formation. To achieve higher query performance, we

design an optimized index structure RAC+-tree, by

traversing which a larger number of non-relevant tra-

jectories are pruned.

• In order to answer the query efficiently, we pro-

pose novel algorithms to compute the maximum rating

within the threshold of distance.

• We conduct extensive experiments based on real

trajectory datasets to study the performance of the pro-

posed index structures and algorithms. The experimen-

tal results demonstrate the efficiency and scalability of

the proposed approaches.

The rest of this paper is organized as follows. In

Section 2, we briefly view existing work related to ac-

tivity trajectory search. Section 3 presents the problem

statement and necessary notations in this work. We in-

troduce the index tree in Section 4 and algorithms in

Section 5, which is followed by the optimization of the

proposed index structures and algorithms in Section 6.

The update of hybrid index is presented in Section 7.

In Section 8, we report the experimental results. This

paper is concluded in Section 9.

2 Related Work

In this section, we review existing work on trajec-

tory search and present some representative contribu-

tions on spatial keyword search, and the studies that

consider the fusion of them are also discussed.

In the past decade, trajectory search has received

significant attentions. Existing work[6-9,12] focused on

searching trajectories in spatial-temporal domain. Vla-

chos et al.[6] investigated the problem of discovering

similar trajectories that are modeled as a sequence of

consecutive locations in a multidimensional Euclidean

space. Chen et al.[7] introduced the edit distance on real

sequence (EDR) for moving object trajectories. Chen

et al.[8] tackled the problem of searching trajectories

by locations in spatial domain, where multiple loca-

tions are used as the query, and similarity functions are

developed to score how well a trajectory connects the

query points. A transfer network was established to

discover popular routes from historical trajectories in

[9]. Given a location to a destination, the network is

used to compute the transfer probability for the trans-

fer nodes. Lastly, the most popular route that has the

highest probability is returned as the result.

Meanwhile, with the prevalence of spatial web ob-

jects on the Internet, a lot of work appears in spatial

keyword search. Existing work[10,13-18] addressed the

problem of spatial keywords search by utilizing spatial

and textual information. Zhou et al.[13] proposed a hy-

brid index that integrates inverted files and R∗-trees to

handle both textual and location aware queries. Cao

et al.[16] investigated a problem of retrieving a group

of spatial web objects, where the query keywords are

covered by the groups’ keywords, and the objects are

nearest to the query locations. A distance owner-driven

approach was proposed in [18], where an existing cost

measurement called the maximum sum cost is used to

guarantee the algorithms are near-to-optimal solutions.

In order to address spatial keywords search ef-

ficiently, some hybrid index structures were propo-

sed[15,19-22]. The indexing strategy KR∗-tree proposed

in [15] was constructed in a way similar to how an R∗-

tree was constructed with minimal overhead in han-

dling the keywords. The queries are answered in a two-

step filtering process, space followed by text, with the

KR∗-tree. De Felipe et al.[20] introduced a new index

called IR2-tree, which combines the R-tree with super-

imposed text descriptions. Furthermore, the variant in-

dex MIR2-tree is designed to overcome some drawbacks

of the IR2-tree. Cong et al.[22] proposed an IR-tree,

which is an integration of the R-tree and inverted files.

Each node of the tree records the location and the text

information of all objects in the sub-tree. By traversing

the IR-tree, the search space can be pruned efficiently

with spatial information and textual descriptions. The

IR-tree was applied in [16] to organize the objects. Each

748 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

leaf node of the IR-tree contains the bounding rectangle

and an identifier, and each non-leaf node is associated

with the minimum bounding rectangle and the text de-

scription of the child nodes.

[10] is the most similar work to our query, where

both of spatial distance and keywords information are

considered while searching trajectories. Multiple loca-

tions with a set of keywords are used as the query to

search trajectories that have the minimum match dis-

tance with respect to the query. A novel grid index

GAT, which consists of four components (i.e., HICL,

ITL, TAS, APL), is presented to organize trajectory

segments and activities, and novel algorithms are pro-

posed to tackle the problem with high efficiency. The

query is also extended to be order-sensitive and take

both the order of query activities and trajectories into

account. Despite the great contributions made by [10],

it does not take the rating scores into account during

processing. Hence, both the index structure and the

algorithms of [10] are not suitable for our problem.

In spite of the significant contributions made by the

aforementioned work, none of them take rating scores

into consideration, which is an important new feature

of trajectories. Meanwhile, the hybrid indexes and the

corresponding algorithms proposed in their work can-

not be adapted directly to our problem. As a conse-

quence, we propose novel indexes and algorithms in this

study.

3 Problem Definition

In this section, we present all the definitions used

throughout the paper and formulate the problem. Be-

fore that, the notations used in this paper are summa-

rized in Table 3.

Table 3. Definitions of Notations

Wei Chen et al.: Trip Oriented Search on Activity Trajectory 749

q, let C(C ⊆ D) be a candidate set, which means for

any trajectory τ ∈ C, it follows that (τ, q) is a trajec-

tory matching. Given a positive integer k, the TOSAT

returns a set R(R ⊆ C, |R| = k), such that ∀τ ∈ R and

∀τ ′ ∈ C −R it follows that r((τ, q), d̂) > r((τ ′, q), d̂).

4 Hybrid Index: AC-Tree

It is challenging to search trajectories by utilizing

both spatial distance and activities, especially when the

cardinality of the given trajectory dataset is large. As a

result, we devise a hybrid index called AC-tree to prune

the search space.

As depicted in Fig.2(a), τ0, τ1 and τ2 are histori-

cal trajectories, and the details of them are presented

in Table 4. Due to the uneven distribution of POIs

in practice, the search regions are partitioned into dif-

ferent cells based on the number of POIs in each grid

cell. If the number of POIs attached to a cell exceeds

a threshold θ, the cell should be partitioned into four

components. θ is set to 2 in this example. For the sake

of convenience, the cell

750 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

5 Algorithms of TOSAT and OTOSAT

To the best of our knowledge, there is the first work

on trajectory search considering activities, spatial dis-

tance and rating information simultaneously. Given

a query q and a trajectory dataset D, the method of

TOSAT consists of two steps: firstly, traversing the AC-

tree to get a candidate set C; secondly, computing the

rating of trajectory matching for each candidate trajec-

tory in C. A baseline algorithm is proposed to prune

the search space and get a candidate set, and the details

of the algorithm are presented as follows.

5.1 Traversing AC-Tree

In this subsection, a new approach is developed to

prune search space and get a candidate set C. We com-

mence this part by traversing the AC-tree beginning

at the root node with the breadth-first strategy. The

details are illustrated in Algorithm 2.

Algorithm 2. Traversing Index Tree

Input: query q, AC-tree tree

Output: candidate set C

1: Inserting the root node of tree into l

2: M[∗, ∗] ← 0

3: while l 6= φ do

4: g ← the first entry of l

5: if mdist(g, q) 6 d̂ then

6: if g is a non-leaf node then

7: Insert all child nodes of g into l;

8: else

9: Update matrix M;

10: end if

11: end if

12: Remove the first entry of l;

13: end while

14: for j ← 1 to |D| do

15: if all pi,j = 1 (i ∈ [1, |q.ϕ|]) then

16: Put trajectory τj into C;

17: end if

18: end for

19: return C;

Given a grid cell g and a query q, the minimum

distance between them is defined as:

mdist(g, q) = min
p∈g

{dis(S, p) + dis(E, p)}, (2)

where p is a POI contained by the cell g and dis(S, p)+

dis(E, p) is the distance between the queries q and p,

denoted as dis(p, q).

Lemma 1. Given a grid cell g and a query q, if

mdist(g, q) > d̂, the cell g is pruned.

Proof. According to (2), mdist(g, q) represents the

minimum distance between q and g, and for each POI

p contained in g, it holds that dis(p, q) > mdist(g, q).

Hence, if mdist(g, q) > d̂, we have dis(p, q) > d̂. As a

consequence, if the minimum distance between q and g

is larger than d̂, there is no need to consider all POIs

contained by the grid cell g, and we can prune it di-

rectly. �

Assuming the query activities are {α1, α2, . . . , αm},

we define a matrix M, each element pi,j of which de-

notes whether the trajectory j contains the query ac-

tivity αi.

M =




p1,1 p1,2 . . . p1,n

p2,1 p2,2 . . . p2,n
...

...
...

pm,1 pm,2 pm,n




,

where

pi,j =

{
1, if trajectory j contains αi,

0, otherwise,

and n = |D|.

The retrieval of candidate trajectories consists of

two steps, which are illustrated in Algorithm 2.

Step 1. The algorithm maintains an FIFO queue l

to store the nodes that should be visited. At the begin-

ning, inserting the root node of AC-tree into l and the

matrix M is initialized to zero. For each loop, if the

minimum distance between a node g and a query q is

smaller than d̂, we insert the child nodes of g into list l,

or update the matrix M based on the list attached to

g, if it is a leaf node (line 9). In addition, if the distance

dis(q, g) is larger than d̂, we can prune the region based

on Lemma 1.

Step 2. After traversing the AC-tree, we can obtain

an updated matrix M. By processing it, we can get a

candidate trajectory dataset C (lines 14∼18). For each

trajectory τj in D, if all pi,j = 1, it will be a candidate

since all activities of q.ϕ are likely to be fulfilled in τj

within the threshold of distance.

5.2 Computing the Rating of Trajectory

Matching

For each trajectory τ in C, a straightforward way

to compute r(ω, d̂) is to find out all possible sub-

trajectories that match query q and compute r(ωi, d̂),

and then the algorithm returns the maximum r(ωi, d̂)

Wei Chen et al.: Trip Oriented Search on Activity Trajectory 751

as the result. However, the computation complexity of

this method is too high. In the sequel, a more efficient

algorithm is proposed to resolve the problem.

Given a query q, a threshold of distance d̂ and a

candidate trajectory τ = (p1, p2, . . . , pn), the details of

computing r(ω, d̂) are illustrated in Algorithm 3 which

has two steps.

Algorithm 3. Computing the Rating of Trajectory Matching

Input: query q, trajectory τ

Output: r(ω, d̂)

1: Create a link list l;

2: r(ω, d̂) ← 0, s ← 1, e ← 1;

3: while e 6 l.length do

4: if τes is a match to q and d(τes , q) 6 d̂ then

5: Compute r((τes , q), d̂) based on (1);

6: if r((τes , q), d̂) > r(ω, d̂) then

7: r(ω, d̂) ← r((τes , q), d̂);

8: end if

9: else

10: s ← s+ 1;

11: Continue;

12: end if

13: e ← e+ 1;

14: end while

15: return r(ω, d̂);

Step 1. We commence the algorithm by creating a

list l to store the POIs that need to be visited (line 1).

For each POI pi in trajectory τ , pi is inserted into l if

pi.ϕ∧q.ϕ 6= φ and dis(q, pi) 6 d̂. Compared with using

the whole trajectory τ , the “dead” POIs that contain no

query activity or beyond the threshold of distance d̂ are

pruned in this approach. As a consequence, the com-

putation cost is reduced since less POIs are taken into

account. The method is efficient especially when the

number of POIs in each candidate trajectory is large.

Step 2. In this subsection, s and e are used to denote

the start point and the end point of a sub-trajectory re-

spectively. For each loop, if all query activities can be

fulfilled in current sub-trajectory within the threshold

of distance, we compute r((τes , q), d̂) based on (1) and

update r(ω, d̂) if necessary, according to the distance

between τes and q (lines 4∼8).

5.3 Computing the Rating in Order-Sensitive

Situation

In many real applications, users may want to per-

form their activities with an order. For instance, a

user plans to go shopping after having a haircut, i.e.,

the order of activities is haircut → shopping. Obvi-

ously, TOSAT is not applicable in this scenario. Con-

sequently, we extend the query to be order-sensitive,

and develop novel algorithms to address the new prob-

lem.

Definition 6 (Order-Sensitive Trajectory Match-

ing). Given a trajectory matching ω = (τ, q) and a

threshold of distance d̂, ω = (τ, q) is called an order-

sensitive trajectory matching, denoted as ωo = (τ, q)o,

on condition that there exists ωi = (τi, q) and for any

pair of query activities (αi, αj , i < j) of q.ϕ, there ex-

ist pm and pn (m 6 n) of τi, such that αi ∈ pm.ϕ and

αj ∈ pn.ϕ. The rating of ωo = (τ, q)o is defined as:

r(ωo, d̂) = max
d(ωo

i
)6d̂

(
∑

α∈q.ϕ

max
pj∈τi

(pj .α.r)),

where d(ωo
i) = d(ωi).

Order-Sensitive Trip Oriented Activity Trajectory

Search (OTOSAT). Given a trajectory dataset D, a

query q and a positive integer k, OTOSAT returns a set

R (R ⊆ D, |R| = k) such that ∀τi ∈ R and ∀τj ∈ D−R

it holds that r(ωo
i , d̂) > r(ωo

j , d̂).

Consider the example in Fig.1 again, assuming the

orders of τ1 and τ2 are p1,1 → p1,2 → p1,3 → p1,4 and

p2,1 → p2,2 → p2,3 → p2,4. If the order of query activi-

ties is e → c → a, the sub-trajectory (p1,1, p1,2, p1,3) is

the only alternative. This is because the order of per-

forming (e, c, a) in the trips (S, p1,2, p1,3, p1,4, E) and

(S, p2,2, p2,3, p2,4, E) does not keep the order of τ1 and

τ2.

The index structure AC-tree is also constructed for

OTOSAT to organize trajectory segments and activity

information. Same with TOSAT, OTOSAT is com-

posed of two components: 1) traversing the hybrid in-

dex AC-tree to get a candidate set C; 2) computing the

rating of trajectory matching for each candidate in C,

and the k trajectories with the maximum rating are

returned as the results. Algorithm 2 is still adopted

in this part to prune search space with spatial and ac-

tivity information. However, computing the rating of

trajectory matching in order-sensitive case is more chal-

lenging, as it needs to make the order of performing

activities in a trajectory consistent with the query, and

try to maximize the rating within the threshold of dis-

tance. Given a candidate trajectory τ , a naive method

of OTOSAT is to enumerate all possible sub-trajectory

matches and find the maximum r(ωo
i , d̂). Clearly, this

is not efficient. A novel approach is illustrated in the

sequel.

Given a trajectory τ = (p1, p2, . . . , pn) and a query

q, let q.ϕ = (α1, α2, . . . , αm). We define an m× n ma-

trix R such that its element R[i, j](1 6 i 6 m, 1 6

752 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

j 6 n) denotes the maximum rating between the sub-

query qi1.ϕ = (α1, α2, . . . , αi) and the sub-trajectory

τ
j
1 = (p1, p2, . . . , pj). The element of R is given as fol-

lows:

R[i, j] = max
16k6j

{R[i− 1, k] +mr(αi, τ
j
k)}, (3)

where mr(αi, τ
j
k) is the maximum rating of αi in sub-

trajectory τ
j
k .

As presented in (3), R[i, j] is derived by maximizing

the rating between the sub-trajectory τk1 and the sub-

query qi−1
1 .ϕ plus the maximum rating of query activity

αi from pk to pj. Note that, the element R[m,n] holds

the maximum rating between the query q and the given

candidate. It is guaranteed to be an order-sensitive

query based on (3).

Computing the rating of trajectory matching in the

order-sensitive case is illustrated in Algorithm 4, which

consists of two components. Firstly, we propose a link

list l to store the POIs that need to be computed, and

the construct of l is the same with that in Algorithm 3.

Secondly, the maximum rating within d̂ is computed.

For each process, if the query activities can be per-

formed in current sub-trajectory with an order, and

the distance of the trajectory matching is less than d̂,

the algorithm updates matrix R(∗, ∗) according to (3)

(lines 4∼6). In addition, the returned result r(ωo, d̂) is

updated if necessary (lines 7∼8).

Algorithm 4. Computing the Rating in Order-Sensitive Case

Input: query q, trajectory τ

Output: r(ωo, d̂)

1: Create a link list l;

2: R(∗, ∗) ← 0, s ← 1, e ← 1, r(ωo, d̂) ← 0;

3: while e 6 l.length do

4: if d(ωe
s , q) 6 d̂ and τes is a order-sensitive match to q

then

5: R(∗, ∗) ← 0;

6: Update each R[i, j] based on (3)

7: if R[|q.ϕ|, |τ |] > r(ωo, d̂) then

8: r(ωo, d̂) ← R[|q.ϕ|, |τ |];

9: end if

10: else

11: s ← s+ 1;

12: Continue;

13: end if

14: e ← e+ 1;

15: end while

16: return r(ωo, d̂);

6 Optimization

As discussed in Section 5, we prune the search space

efficiently with AC-tree by utilizing the spatial distance

between a tree node and a query. Even though this

method is capable of achieving high query performance,

we can further improve the efficiency with rating infor-

mation. The optimized approaches are developed in the

sequel.

6.1 Enhanced Index: RAC+-Tree

Note that some search regions are pruned with the

AC-tree based on Theorem 1. However, we need to tra-

verse all regions within d̂ even though the region con-

tains no query activity, and compute the rating of tra-

jectory matching for each trajectory in C. It is costly,

especially when the cardinality of C is large. Having

observed the drawbacks of AC-tree, we design an en-

hanced hybrid index RAC+-tree to organize trajectory

data, which is a variant of the AC-tree.

As depicted in Fig.3, the leaf nodes of RAC+-tree

contain not only activity information but also rating in-

formation, and the minimum distance to conduct two

activities. The entry of a list attached to a leaf node is

a tuple in the form of α(τi : α.r) and (α, β, dis), where

τi is the trajectory that contains α, α.r represents the

maximum rating of α in current leaf node in trajectory

τi, and dis is the minimum distance to conduct α and β

in current grid cell. As shown in Fig.2(a) and Table 4,

cell 4 contains activities (b, e, d), the maximum ratings

of which are (5, 3, 8), and the distance between p9 and

p10 is 5, and thus we insert this information into the

leaf node 4.

For each non-leaf node of RAC+-tree, it contains all

activities that can be fulfilled in its child nodes, and the

minimum distance to conduct two activities is updated

based on its child nodes. All lists of the RAC+-tree are

presented in Table 5. Shown in Fig.2(a), the activities

that can be performed in the grid cell 3 are (a, b, c), the

minimum distance to conduct b and c obtained from the

leaf nodes 13, 14 and 15 is 0, and then this information

is inserted into the node 3. Note that, the tree node 4

holds the entry (b, e, 5) and list 2 contains (b, e, 0); thus

the minimum distance to conduct b and e in the root

node is 0, and list 0 holds this information. Besides,

the definition of each element of matrix M is changed:

pi,j =





αi.r, if trajectory j contains αi,

0, otherwise,

Wei Chen et al.: Trip Oriented Search on Activity Trajectory 753

1 2 3 4

     

d↼τ0 : 9↽ c↼τ1 : 9↽a↼τ0 : 7.0↽

c↼τ0 : 8.5↽

↼a֒ c֒ ↽

d↼τ2 : 7↽

c↼τ2 : 6↽

↼c֒ d֒ ↽

b↼τ0 : 2.5↽

e↼τ0 : 7.5↽

↼b֒ e֒ ↽

c↼τ2 : 7.0↽

e↼τ2 : 6.5↽

↼c֒ e֒ ↽

b↼τ1 : 4↽ a↼τ0 : 8 ↽ a↼τ1 : 3↽

b↼τ2 : 5↽

c↼τ1 : 9↽

↼b֒ c֒ ↽

↼b֒ e֒ ↽

↼b֒ d֒ ↽

↼e֒ d֒ ↽

  

0

List 2

List 0

List 1 List 3

e↼τ2 : 3↽

d↼τ2 : 8↽

Fig.3. RAC+-tree.

where αi.r is the maximum rating of the query activity

αi in trajectory j within d̂.

Table 5. Lists of Non-Leaf Nodes

754 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

6.2 Collaborative Algorithm for Computing

Rating

In this subsection, we introduce a collaborative

algorithm to compute the maximum rating within

d̂. Different from Algorithms 3 and 4 that take all

nodes of l into consideration, a different list l′ =

{(p1, p11), (p2, p22), . . . , (pn, pnn)} is created, where pi

is the POI such that pi.ϕ ∧ q.ϕ 6= φ and dis(pi, q) 6 d̂,

and pii is a tuple in the form of (α1r , . . . , αmr), where

αjr denotes the maximum rating of the query activity

αj from pi to the last node of l′ and q.ϕ = (α1, . . . , αm).

Lemma 4. Given a candidate trajectory τ and its

corresponding list l′, for each entry (pi, pii) in l′, it has

the following properties:

1) if r((τ, q), d̂) > pii.(
∑m

k=1 αkr), r((τ, q), d̂) >

pjj .(
∑m

k=1 αkr)(j > i);

2) if the current k-th maximum result res[k] is larger

than pii.(
∑m

k=1 αkr), res[k] > pjj .(
∑m

k=1 αkr)(j > i).

Proof. Since pii.(
∑m

k=1 αkr) is the sum of the max-

imum rating of query activities from pi to the last

node of l′, for any remained node pj(j > i) in list

l′, it holds that pii.(
∑m

k=1 αkr) > pjj .(
∑m

k=1 αkr).

As a consequence, if r((τ, q), d̂) > pii.(
∑m

k=1 αkr),

then r((τ, q), d̂) > pjj .(
∑m

k=1 αkr), and if res[k] >

pii.(
∑m

k=1 αkr)(j > i), then we have res[k] >

pjj .(
∑m

k=1 αkr). �

For each process in the collaborative algorithm,

a vector vec is used to prune the search space,

where vec[i] denotes the maximum rating of the

query activity αi in current sub-trajectory τes . Ob-

viously,
∑m

i=1 max(vec[i], pee.αir) denotes the sum

of the maximum rating of the query activities

from ps to the last node of l′. Consequently, if

r((τ, q), d̂) >
∑m

i=1 max(vec[i], pee.αir) or res[k] >∑m
i=1 max(vec[i], pee.αir), the algorithm is terminated

early. In addition, for each sub-trajectory τes , if there

exists pss.αi,r = 0, which means that we cannot fulfill

the query activity αi in the remained nodes, the algo-

rithm is terminated.

7 Update of Hybrid Index

In real scenario, we are faced with an inevitable

problem. The volume of new trajectories generated by

users becomes increasingly larger as time goes on, and

it has great significance to take these trajectories into

account, since they represent the popular preferences of

users. Meanwhile, some trajectories become outdated,

which means that there is no need to maintain them

in the index structure. In order to make more reason-

able recommendation, we update the proposed hybrid

index structures by adding new trajectories and remov-

ing outdated trajectories in the sequel. Particularly, we

just present the update of RAC+-tree, as it covers the

update of AC-tree.

Seen from Fig.4, we add a new trajectory τ3, the de-

tails of which are presented in Table 6. Algorithm 6 is

proposed to update the RAC+-tree, while adding new

trajectories. Note that we just process the tree node p

that contains new POIs, and the process is threefold.

1) If p is a non-leaf node and there exists new POIs

that fall into a certain child node of p, and the node

contains no POI before, we create the child node for

p (lines 5∼7). 2) If p is a leaf node, and the number

of POIs in p is larger than θ after inserting new tra-

jectories, we split p and create child nodes for it (lines

9∼10). 3) If p is a leaf node and there is no need to

split p, we update the inverted file attached to p (line

12). In addition, the ancestors of p should be updated

if necessary.

p0

p4

p1

p8

p7

p2

p3

p6

p14

p13

p12

p11

p10

p9

p5











 




  



 







Fig.4. Adding a new trajectory.

Table 6. Inserted Trajectory

Wei Chen et al.: Trip Oriented Search on Activity Trajectory 755

1 2 3 4

5 7 8 10 11 12 13 14 15

0

List 2 List 3List 1 List 4

16 18 19 20

List 0

d↼τ0 : 9↽ c↼τ1 : 9↽a↼τ0 : 7.0↽

c↼τ0 : 8.5↽

↼a֒ c֒ ↽

d↼τ2 : 7↽

c↼τ2 : 6↽

↼c֒ d֒ ↽

b↼τ0 : 2.5↽

e↼τ0 : 7.5↽

↼b֒ e֒ ↽

c↼τ2 : 7.0↽

e↼τ2 : 6.5↽

↼c֒ e֒ ↽

b↼τ1 : 4↽ a↼τ0 : 8↽ a↼τ1 : 3↽

c↼τ1 : 9↽

↼b֒ c֒ ↽

b↼τ3 : 3↽

d↼τ3 : 7↽

↼b֒ d֒ ↽

b↼τ2 : 5↽ d↼τ3 : 3↽ d↼τ2 : 8, τ3 : 7↽

e↼τ2: 2, τ3 : 9↽

↼d֒ e֒ ↽

Fig.5. Updated RAC+-tree after adding.

the leaf node 15 is updated based on the information

contained by p14. After creating the leaf node 16, the

tree node 3 should be updated due to the appearance of

the new activities d. Consequently, it needs to update

the ancestors of present node if necessary (line 14).

Algorithm 6. Update RAC +-Tree (Add)

Input: an RAC+-tree

1: L.Enqueue(root node);

2: while L is not empty do

3: p ← L.Dequeue;

4: if p contains new POIs then

5: if p is a non-leaf node then

6: Create new child nodes for p if necessary;

7: L.Enqueue(child nodes of p);

8: else

9: if p should be split then

10: Create child nodes for p;

11: else

12: Update the inverted file of p;

13: end if

14: Update the ancestors of p;

15: end if

16: end if

17: end while

Next, we will discuss the update of RAC+-tree,

while removing the outdated trajectories. As shown

in Fig.6, we remove the historical trajectory τ0. Algo-

rithm 7 is developed to tackle the problem. For each

process, the update of the tree node p that contains

outdated POIs is two-fold. 1) If p is a leaf-node, we

just update the inverted file of p. 2) If p is a non-leaf

node and the number of POIs in p is less than θ after

removing, we merge the child nodes of p.

756 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

Algorithm 7. Update RAC +-Tree (Remove)

Input: an RAC+-tree

1: L.Enqueue(root node);

2: while L is not empty do

3: p ← L. Dequeul;

4: if p contains outdated POIs then

5: if p is a leaf node then

6: Update the inverted file of p;

7: else

8: if p should be merged then

9: Merge the child nodes of p;

10: else

11: L.Enqueue(child nodes of p);

12: end if

13: Update the ancestors of p;

14: end if

15: end if

16: end while

8 Experimental Study

In this section, we conduct extensive experiments

on real trajectory datasets to demonstrate the perfor-

mance of proposed indexes and algorithms. The dataset

contains 41 376 trajectories in Beijing with 2 562 547 lo-

cations. We crawl the data from the Internet and the

rating scores of activities are from historical users. Dur-

ing the update of the hybrid index, we use five diffe-

rent trajectory datasets, the cardinalities of which are

10k (673 517 locations), 15k (1 036 766 locations), 20k

(1 353 854 locations), 25k (1 645 754 locations) and 30k

(2 021 163 locations). All algorithms are implemented

on a Core i5-3470 3.20 GHz machine with 8 GB memory

and a Windows platform. The settings of experiment

are presented in Table 7.

Table 7. Settings of Experiment

Wei Chen et al.: Trip Oriented Search on Activity Trajectory 757

5 10 15

(a)

20

B-TOSAT
R-TOSAT
C-TOSAT

B-OTOSAT
R-OTOSAT
C-OTOSAT

B-TOSAT
R-TOSAT
C-TOSAT

Q
u
e
ry

 T
im

e
 (

s)
Q

u
e
ry

 T
im

e
 (

s)

25

k

5 10 15

(c)

20 25

k

5 10 15

(b)

N
u
m

b
e
r

o
f
V

is
it
e
d
 T

ra
je

c
to

ri
e
s

20 25

k

1.0

0.9

0.8

0.7

0.6

0.5

0.4

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1.2

1.0

0.8

0.6

0.4

0.2

0

Τ104

B-OTOSAT
R-OTOSAT
C-OTOSAT

5 10 15

(d)

N
u
m

b
e
r

o
f
V

is
it
e
d
 T

ra
je

c
to

ri
e
s

20 25

k

1.2

1.0

0.8

0.6

0.4

0.2

0

Τ104

Fig.7. Effectiveness of k. (a) Query time of different TOSATs. (b) Number of visited trajectories of different TOSATs. (c) Query time
of different OTOSATs. (d) Number of visited trajectories of different OTOSATs.

20k 30k 40k 50k
Number of Trajectoires

(a)

60k 20k 30k 40k 50k
Number of Trajectoires

(b)

60k

20k 30k 40k 50k
Number of Trajectoires

(d)

60k20k 30k 40k 50k

Number of Trajectoires
(c)

60k

Q
u
er

y
 T

im
e

(s
)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Q
u
er

y
 T

im
e

(s
)

1.2

1.0

0.8

0.6

0.4

0.2

B-TOSAT
R-TOSAT
C-TOSAT

B-TOSAT
R-TOSAT
C-TOSAT

B-OTOSAT
R-OTOSAT
C-OTOSAT

B-OTOSAT
R-OTOSAT
C-OTOSAT

N
u
m

b
er

 o
f
V

is
it
ed

 T
ra

je
ct

o
ri
es

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Τ104

N
u
m

b
er

 o
f
V

is
it
ed

 T
ra

je
ct

o
ri
es

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Τ104

Fig.8. Effectiveness of |D|. (a) Query time of different TOSATs. (b) Number of visited trajectories of different TOSATs. (c) Query
time of different OTOSATs. (d) Number of visited trajectories of different OTOSATs.

758 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

5 km 10 km 15 km

(a)

Threshold of Distance
20 km 25 km

5 km 10 km 15 km

(c)

Threshold of Distance
20 km 25 km

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Q
u
er

y
 T

im
e

(s
)

3.0

2.5

2.0

1.5

1.0

0.5

0

Q
u
er

y
 T

im
e

(s
)

B-TOSAT
R-TOSAT
C-TOSAT

B-OTOSAT
R-OTOSAT
C-OTOSAT

5 km 10 km15 km

(b)

Threshold of Distance
20 km25 km

5 km 10 km15 km

(d)

Threshold of Distance
20 km25 km

2.0

1.5

1.0

0.5

0

Τ104

N
u
m

b
er

 o
f
V

is
it
ed

 T
ra

je
ct

o
ri
es B-TOSAT

R-TOSAT
C-TOSAT

B-OTOSAT
R-OTOSAT
C-OTOSAT

2.0

1.5

1.0

0.5

0

Τ104

N
u
m

b
er

 o
f
V

is
it
ed

 T
ra

je
ct

o
ri
es

Fig.9. Effectiveness of d̂. (a) Query time of different TOSATs. (b) Number of visited trajectories of different TOSATs. (c) Query time
of different OTOSATs. (d) Number of visited trajectories of different OTOSATs.

400 600 800 1000 1200
θ

(a)

400 600 800 1000 1200
θ

(b)

400 600 800 1000 1200
θ

(c)

Q
u
er

y
 T

im
e

(s
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Q
u
er

y
 T

im
e

(s
)

1.1

1.0

0.9

0.8

0.7

B-OTOSAT
R-OTOSAT
C-OTOSAT

B-TOSAT
R-TOSAT
C-TOSAT

N
u
m

b
er

 o
f
V

is
it
ed

 T
ra

je
ct

o
ri
es

1.2

1.0

0.8

0.6

0.4

0.2

0

Τ104

B-TOSAT
R-TOSAT
C-TOSAT

B-OTOSAT
R-OTOSAT
C-OTOSAT

400 600 800 1000 1200
θ

(d)

N
u
m

b
er

 o
f
V

is
it
ed

 T
ra

je
ct

o
ri
es

1.2

1.0

0.8

0.6

0.4

0.2

0

Τ104

Fig.10. Effectiveness of θ. (a) Query time of different TOSATs. (b) Number of visited trajectories of different TOSATs. (c) Query
time of different OTOSATs. (d) Number of visited trajectories of different OTOSATs.

Wei Chen et al.: Trip Oriented Search on Activity Trajectory 759

Effectiveness of |q.ϕ|. Finally, we investigate the ef-

fect of the number of query activities. As depicted in

Figs.11(b) and 11(d), the number of visited trajectories

of B-TOSAT and B-OTOSAT becomes smaller with the

increase of the query size, since a trajectory is less likely

to cover all query activities with a greater q.ϕ. How-

ever, they need more time to compute the maximum

rating for each candidate trajectory. Consequently, the

time costs of them become larger with the increase of

|q.ϕ|. For other methods, they should compute the rat-

ing for more trajectories, which leads to the increase of

query time.

In addition, we present the time cost in updating

the proposed hybrid indexes in Fig.12. Compare with

3 4 5 76

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Q
u
e
ry

 T
im

e
 (

s)
Q

u
e
ry

 T
im

e
 (

s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

Number of Query Activities

(a)

3 4 5 76
Number of Query Activities

(b)

3 4 5 76
Number of Query Activities

(b)

3 4 5 76
Number of Query Activities

(c)

B-TOSAT
R-TOSAT
C-TOSAT

B-OTOSAT
R-OTOSAT
C-OTOSAT

B-TOSAT
R-TOSAT
C-TOSAT

B-OTOSAT
R-OTOSAT
C-OTOSAT

N
u
m

b
e
r

o
f
V

is
it
e
d
 T

ra
je

c
to

ri
e
s

1.2

1.0

0.8

0.6

0.4

0.2

0

Τ104

N
u
m

b
e
r

o
f
V

is
it
e
d
 T

ra
je

c
to

ri
e
s

1.2

1.0

0.8

0.6

0.4

0.2

0

Τ104

Fig.11. Effectiveness of |q.ϕ|. (a) Query time of different TOSATs. (b) Number of visited trajectories of different TOSATs. (c) Query
time of different OTOSATs. (d) Number of visited trajectories of different OTOSATs.

10k 15k

(a)

T
im

e
 C

o
st

 (
s)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

T
im

e
 C

o
st

 (
s)

2.5

2.0

1.5

1.0

0.5

0

Number of Added Trajectotries Number of Removed Trajectories

20k

AC-Tree
RAC+

-Tree

25k 30k 10k 15k

(b)

20k 25k 30k

AC-Tree
RAC+

-Tree

Fig.12. Performance of updating index.

760 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

the time cost in updating AC-tree while adding new

trajectories, it needs more time to update RAC+-tree,

since the extra rating information and the spatial dis-

tance should be taken into account while updating the

RAC+-tree. Besides, as seen from Fig.12(b), it needs

less time to update the index structure with the in-

crease of the number of removed trajectories, as a tree

node is more likely to be merged, and it needs to deal

with less tree nodes, with a greater number of removed

trajectories.

9 Conclusions

This paper investigated a novel problem of search-

ing trajectories with activities, spatial distance and rat-

ing information. We formulated two types of queries,

TOSAT and OTOSAT, depending on whether the or-

der of query activities is taken into account. In order

to tackle the problem efficiently, we proposed an AC-

tree to organize trajectory data and developed novel

algorithms to compute the rating of trajectory match-

ing. We also optimized the AC-tree by developing an

enhanced index RAC+-tree to prune the search space

with rating information and spatial distance. Besides,

a collaborative algorithm was developed with the goal

of improving the query performance. Experimental re-

sults based on real trajectory datasets show that the

optimization of index structure and algorithms are ca-

pable of achieving high efficiency and scalability.

In real applications, time cost of a trip is an impor-

tant concern for many users. Thus, we can take this

factor into account in the future work. Obviously, the

algorithms can recommend more satisfactory results to

users by considering the new factor.

References

[1] Li Z, Ding B, Han J, Kays R. Swarm: Mining relaxed tem-

poral moving object clusters. Proceedings of the VLDB En-

dowment, 2010, 3(1/2): 723-734.

[2] Zheng K, Zheng Y, Yuan N, Shang S, Zhou X. Online dis-

covery of gathering patterns over trajectories. IEEE Trans.

Knowledge and Data Engineering, 2014, 26(8): 1974-1988.

[3] Huang M, Hu P, Xia L. A grid based trajectory indexing

method for moving objects on fixed network. In Proc. the

18th Int. Conf. Geoinformatics, June 2010.

[4] Popa L S, Zeitouni K, Oria V et al. Indexing in-network

trajectory flows. The VLDB Journal, 2011, 20(5): 643-669.

[5] Chu S, Yeh C, Huang C. A cloud-based trajectory index

scheme. In Proc. the 12th ICEBE, October 2009, pp.602-

607.

[6] Vlachos M, Kollios G, Gunopulos D. Discovering similar

multidimensional trajectories. In Proc. the 18th ICDE, Feb.

26-Mar. 1, 2002, pp.673-684.

[7] Chen L, Özsu M T, Oria V. Robust and fast similarity

search for moving object trajectories. In Proc. the 24th SIG-

MOD, June 2005, pp.491-502.

[8] Chen Z, Shen H, Zhou X, Zheng Y, Xie X. Searching tra-

jectories by locations: An efficiency study. In Proc. the 29th

SIGMOD, June 2010, pp.255-266.

[9] Chen Z, Shen H, Zhou X. Discovering popular routes from

trajectories. In Proc. the 27th ICDE, April 2011, pp.900-

911.

[10] Zheng K, Shang S, Yuan N J, Yang Y. Towards efficient

search for activity trajectories. In Proc. the 29th ICDE,

April 2013, pp.230-241.

[11] Zhang C, Han J, Shou L, Lu J, La Porta T. Splitter: Min-

ing fine-grained sequential patterns in semantic trajectories.

Proceedings of the VLDB Endowment, 2014, 7(9): 769-780.

[12] Ying J, Lee W, Weng T, Tseng V. Semantic trajectory min-

ing for location prediction. In Proc. the 19th SIGSPATIAL,

November 2011, pp.34-43.

[13] Zhou Y, Xie X, Wang C, Gong Y, Ma W. Hybrid index

structures for location-based web search. In Proc. the 14th

International Conference on Information and Knowledge

Management, October 31-November 1, 2005, pp.155-162.

[14] Chen Y, Suel T, Markowet A. Efficient query processing in

geographic web search engines. In Proc. the 25th SIGMOD,

June 2006, pp.277-288.

[15] Hariharan R, Hore B, Li C, Mehrotra S. Processing spatial-

keyword (SK) queries in geographic information retrieval

(GIR) systems. In Proc. the 19th SSBDM, July 2007, Arti-

cle No. 16.

[16] Cao X, Cong G, Jensen C, Ooi B. Collective spatial keyword

querying. In Proc. the 30th SIGMOD, June 2011, pp.373-

384.

[17] Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P. User

oriented trajectory search for trip recommendation. In Proc.

the 15th EDBT, March 2012, pp.156-167.

[18] Long C, Wong R, Wang K, Fu A. Collective spatial key-

word queries: A distance owner-driven approach. In Proc.

the 32nd SIGMOD, June 2013, pp.689-700.

[19] Wang C, Xie X, Wang L, Lu Y, Ma W. Web resource ge-

ographic location classification and detection. In Proc. the

14th International Conference on World Wide Web, May

2005, pp.1138-1139.

[20] De Felipe I, Hristidis V, Rishe N. Keyword search on spatial

databases. In Proc. the 24th ICDE, April 2008, pp.656-665.

[21] Zhang D, Chee Y, Mondal A, Tung A, Kitsuregawa M.

Keyword search in spatial databases: Towards searching

by document. In Proc. the 25th ICDE, March 29-April 2,

2009, pp.688-699.

[22] Cong G, Jensen C S, Wu D. Efficient retrieval of the top-k

most relevant spatial web objects. Proceedings of the VLDB

Endowment, 2009, 2(1): 337-348.

Wei Chen is currently a Ph.D.

candidate in the School of Computer

Science and Technology, Soochow

University, Suzhou. His research

interests include data mining and

spatial-temporal database. text text

text text text text text text text text

text text text text text text text

Wei Chen et al.: Trip Oriented Search on Activity Trajectory 761

Lei Zhao received his Ph.D. degree

in computer science in 2006 from

Soochow University, Suzhou. He has

been a faculty member of the School

of Computer Science and Technology

of Soochow University since 1998. He

is now a professor of the Department

of Software Engineering. His research

interests include distributed data processing, data mining,

parallel and distributed computing, etc.

Jia-Jie Xu is an associate professor

of Soochow University, Suzhou, and

a member of the Research Center on

Advanced Data Analytics, Soochow

University. He got his M.S. and Ph.D.

degrees from Swinburne University of

Technology and University of Queens-

land in 2006 and 2011 respectively,

and then worked in the Institute of Software, Chinese

Academy of Sciences, Beijing, as an assistant professor

before joining Soochow University. His research interests

mainly include spatio-temporal database systems, big data

analytics, mobile computing and workflow systems.

Guan-Feng Liu is an associate

professor of the Research Center on

Advanced Data Analytics (ADA) in

Soochow University, Suzhou. He re-

ceived his Ph.D. degree in computer

science from Macquarie University,

Australia, in 2013. His research inter-

ests include social networks and graph

mining.

Kai Zheng is currently a professor

in the School of Computer Science and

Technology at Soochow University. He

received his Ph.D. degree in computer

science from The University of Queens-

land in 2012. His research focus is to

find effective and efficient solutions for

managing, integrating and analyzing

big data for business, scientific and personal applications.

He has been working in the area of social-media analysis,

spatial-temporal databases, uncertain databases, data

mining and bioinformatics. He has published over 50

papers in the most prestigious journals and conferences

such as SIGMOD, ICDE, EDBT, The VLDB Journal,

ACM Transactions and IEEE Transactions. He was the

program committee chair of the International Workshop

on Human Mobility Computing (HuMoComp), and the

International Workshop on Big Data Management and

Service (BDMS) in 2013. He is a PC member of SIGMOD

2015, 2016, CIKM 2014, 2015, DASFAA 2013, 2015. He

is on the reviewer board of several prestigious journals

such as IEEE TKDE, ACM TODS, VLDB Journal, KAIS

and Geoinformatica. He was the recipient of Australian

Discovery Early Career Research Award in 2013.

Xiaofang Zhou is a professor of

computer science at the University of

Queensland. He received his B.S. and

M.S. degrees in computer science from

Nanjing University, Nanjing, and Ph.D.

degree in computer science from the

University of Queensland, Australia.

His research focus is to find effective and

efficient solutions for managing, integrating and analyzing

very large amount of complex data for business, scientific

and personal applications. He has been working in the

area of spatial and multimedia databases, data quality

management, in-memory databases, high performance

query processing, Web information systems, data mining

and bioinformatics.

