
Xu JG, Zhao Y, Chen J et al. A structure learning algorithm for Bayesian network using prior knowledge. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 30(4): 713–724 July 2015. DOI 10.1007/s11390-015-1556-8

A Structure Learning Algorithm for Bayesian Network Using Prior

Knowledge

Jun-Gang Xu 1 ( ), Member, CCF, ACM, IEEE, Yue Zhao 1 ( )
Jian Chen 2 ( ), Member, CCF, ACM, IEEE, and Chao Han 2 ( )

1School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
2School of Software Engineering, South China University of Technology, Guangzhou 510006, China

E-mail: xujg@ucas.ac.cn; zhaoyue11@mails.ucas.ac.cn; ellachen@scut.edu.cn; hanchaos@163.com

Received January 31, 2015; revised March 25, 2015.

Abstract Learning structure from data is one of the most important fundamental tasks of Bayesian network research.

Particularly, learning optional structure of Bayesian network is a non-deterministic polynomial-time (NP) hard problem.

To solve this problem, many heuristic algorithms have been proposed, and some of them learn Bayesian network structure

with the help of different types of prior knowledge. However, the existing algorithms have some restrictions on the prior

knowledge, such as quality restriction and use restriction. This makes it difficult to use the prior knowledge well in these

algorithms. In this paper, we introduce the prior knowledge into the Markov chain Monte Carlo (MCMC) algorithm and

propose an algorithm called Constrained MCMC (C-MCMC) algorithm to learn the structure of the Bayesian network.

Three types of prior knowledge are defined: existence of parent node, absence of parent node, and distribution knowledge

including the conditional probability distribution (CPD) of edges and the probability distribution (PD) of nodes. All of

these types of prior knowledge are easily used in this algorithm. We conduct extensive experiments to demonstrate the

feasibility and effectiveness of the proposed method C-MCMC.

Keywords Bayesian network, structure learning, Markov chain Monte Carlo, prior knowledge

1 Introduction

Bayesian network is an important probabilistic

graphical model that represents a set of random nodes

and their conditional dependencies. It is also one of

the most effective theoretical models for decision mak-

ing, especially for uncertain knowledge reasoning[1]. In

recent years, Bayesian networks have been increasingly

used in a wide range of applications, such as natural lan-

guage processing, hardware diagnostics, bioinformatics,

statistical physics, and econometrics.

Structure learning is a fundamental task for building

Bayesian network. It tries to find a network topology

that can represent the dataset. This problem is proved

NP-hard[2] and the conventional optimal search algo-

rithms take exponential time and space on the number

of nodes. There are also numerous studies on reducing

the exponential search space, but the presence of the

inherent uncertainty in any heuristic algorithm influ-

ences the validity of any recovered structure, particu-

larly when the size of the search space is high[3-5].

In order to reduce the uncertainty of structures re-

trieved by automatic learning algorithms, several stu-

dies incorporating prior knowledge into Bayesian net-

work structure learning have been conducted in the last

ten years. However, most of the proposed algorithms

are complex and difficult to apply in practice. Some

algorithms require the prior knowledge in high quality,

and they need the users to specify a structure or an or-

dering of nodes, which both are not easy to achieve. In

addition, prior knowledge that is not completely con-

vinced by domain experts is used to learn the struc-

ture of Bayesian network. The previous work did not

present the confidence of prior knowledge when they
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used prior knowledge and this can result in the inac-

curate structure of Bayesian network. Besides, some

algorithms cannot make full use of the joint probability

distribution between nodes. Therefore, the restrictions

mentioned above motivate us to propose a better algo-

rithm to learn Bayesian network structure using prior

knowledge.

Markov chain Monte Carlo (MCMC) is a good

method to learn the structure of Bayesian network[6].

It is a search-and-score algorithm to learn the struc-

ture of Bayesian network. In this paper, we intend to

focus on adding new expert knowledge (not presented

in the dataset) to the MCMC framework. The origi-

nal MCMC algorithm is an iterative random algorithm

and a random structure should be given at the begin-

ning of the algorithm. Each iteration has two steps.

The first one is the proposing step: the algorithm gives

a proposal of adding, deleting or reversing a random

edge of the graph. The second one is the moving step:

the proposal of the first step will be accepted with a

probability which is calculated by a scoring function.

If the proposal is accepted, the algorithm will generate

a new graph and start a next iteration; if not, the al-

gorithm will return to the first step and give another

proposal. These iterations construct a Markov chain

that eventually converges to a posterior distribution of

the Bayesian network structure. We can clearly see that

the prior knowledge plays a very important role in this

classic algorithm.

In our algorithm C-MCMC (Constrained-MCMC),

we extend three types of prior knowledge: existence of

parent node, absence of parent node, and distribution

knowledge including the conditional probability distri-

bution (CPD) of edges and the probability distribution

(PD) of nodes. Moreover, we use confidence to denote

the confident degree of prior knowledge, and the confi-

dence degree can be set manually. The prior knowledge

and its confidence value are incorporated with training

data in the moving step of the MCMC algorithm to cal-

culate the accepted probability of the proposal. Com-

pared with the MCMC algorithm, the C-MCMC algo-

rithm can make good use of prior knowledge provided

by domain experts and can learn a better Bayesian net-

work structure. Different from current Bayesian net-

work structure learning algorithms using prior know-

ledge, the C-MCMC algorithm does not have strict re-

strictions on prior knowledge, and prior knowledge can

be used in a simple and effective way. A small amount

of knowledge or knowledge that is not so convinced can

also help to learn Bayesian network structure. The ex-

perimental results show that our algorithm improves

the accuracy of the learned structures of Bayesian net-

work much compared with the conventional MCMC al-

gorithm.

The remainder of this paper is organized as follows.

Section 2 overviews the related work. Section 3 gives

the background knowledge of the MCMC algorithm.

Section 4 describes the proposed C-MCMC algorithm.

Section 5 presents the experimental evaluation of the

algorithm and Section 6 concludes the work.

2 Related Work

It is a challenging task to learn Bayesian network

structure from data due to the huge solution space of

possible structures. During the past few years, many

algorithms have been proposed to use the prior know-

ledge to reduce the uncertainty of the structures.

Some optimal search methods on Bayesian network

structure have been proposed to find the graph with

the highest score[7-8]. It is an NP-hard problem and

the existing optimal algorithms spend time and mem-

ory proportional to n × 2n where n represents the

number of nodes. The algorithms based on dynamic

programming[8] and parallelization[7] can reduce time

complexity efficiently. However, Bayesian network has

the size limit of 30 nodes due to its exponential space

search complexity[7]. So far, various algorithms have

been explored through using prior knowledge to reduce

search space to find the optimal structure. Perrier et

al. developed a super-structure constrained optimal

search algorithm to find the optimal structure which

needs to be a sub-graph of the given undirected super-

structure[9]. For larger Bayesian network, Kojima et

al. divided a super structure into clusters and per-

formed optimal search algorithm to find the optimal

structure[10]. However, a cycle straddling multiple clus-

ters may be generated in this algorithm. de Campos

and Ji used two kinds of constraints, indegree of one

node and arc between nodes. This method can strongly

reduce the time and memory costs of the algorithm[11].

Markov chain Monte Carlo (MCMC) is a class of

algorithms for sampling from a probability distribution

and it can be used to learn the structure of Bayesian

network. Ehlers provided a computational tool for es-

timating and comparing GARCH models using MCMC

and an approximation to the Bayesian factor[12]. Grze-

gorczyk and Husmeier proposed a novel MCMC al-

gorithm with new and more extensive edge reversal

move in the moving step and it significantly improves
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the convergence[13]. To speed up the learning pro-

cess, Corander et al. proposed a method to learn

structures of graphical model from training samples us-

ing the non-reversible parallel interacting MCMC-style

computation[14]. Several heuristic algorithms also use

prior knowledge to learn Bayesian network structure

and obtain better results[15-17]. The algorithm pro-

posed by Teyssier and Koller is based on the fact that

the best structure is consistent with a node ordering,

searched not over the space of structures but over the

space orderings to reduce the search space[15]. Cano

et al. proposed an algorithm in which the domain ex-

perts are requested to submit their knowledge during

the process and the system only asks the domain ex-

perts about the most uncertain structural feature and

the presence or the absence of an edge[16]. de Campos

and Castellano used a heuristic algorithm with statistic

data and three types of prior knowledge: existence of

arcs and/or edges, absence of arcs and/or edges, and

ordering restrictions to learn the structure of Bayesian

network[17].

However, we find that the Bayesian network struc-

ture learning algorithms described above have the fol-

lowing disadvantages. 1) Some prior knowledge is not

easy to be used in the current algorithms. For exam-

ple, in some existing algorithms, a completely correct

node ordering is needed, but it is hard for us to make

sure that every single detail of the given ordering is

right. And in some other existing algorithms, we have

to give a super structure first, but most of the time, we

only have some local knowledge of the structure and it

is hard to achieve an overall structure. 2) The prior

knowledge described above is considered as “hard” re-

strictions; therefore every candidate Bayesian network

must satisfy them. However, we are not always fully

confident about the prior knowledge. Therefore, the

prior knowledge that we are not confident cannot be

used in these algorithms. 3) Sometimes, we can achieve

the joint probability distribution between nodes, but as

for most of the existing algorithms, we cannot make full

use of this kind of prior knowledge.

The C-MCMC algorithm we propose also uses do-

main knowledge to help to learn Bayesian network

structure. Compared with the existing algorithms, the

C-MCMC algorithm has the following features. 1) It

has very few restrictions on the prior knowledge. Al-

most all prior knowledge including local structure, the

CPD of some edges, the PD of nodes and so on, can help

to improve the performance of the algorithm. 2) Each

prior knowledge is set with a confidence, and the prior

knowledge with a small confidence can also be used. 3)

It is easy to define the knowledge and the local struc-

ture of Bayesian network. The PD of each node and

the CPD of each edge can be easily incorporated into

the algorithm. In summary, we can use the prior know-

ledge and statistical data to learn the Bayesian network

structure in a convenient and efficient way.

3 MCMC Bayesian Network Structure

Learning Algorithm

The MCMC algorithm learns the Bayesian network

structure through constructing a Markov chain in the

solution space and converging to a posterior distribu-

tion of the structure.

At the beginning of the algorithm, an initial struc-

ture and the number of iterations should be given. In

each iteration, the algorithm will find some legal neigh-

bors of the current structure and choose one neighbor

as the next node of the Markov chain. As shown in

Fig.1(a), each node represents one kind of the network

structure, and the Markov chain is composed of the

grey nodes. A legal neighbor is a structure that can

be derived from the current structure with one edge

operation and does not introduce directed cycles. The

detailed process to generate a node of Markov chain in-

cludes the proposing step and the moving step, which

is shown in Fig.1(b).

3.1 Notation

First, we provide some notations used in Bayesian

network. The structure of a Bayesian network is rep-

resented by a directed acyclic graph (DAG) G. This

structure is defined over a set of n nodes {x1, x2, . . . ,

xn}, and each node takes a value in a finite domain

val(xi) and has a set of parent nodes pa(xi). For any

node xj , xj ∈ pa(xi) means that there exists an arc

from xj to xi. Therefore, the graph G can also be de-

composed as a vector of parent node sets G = (pa(x1),

pa(x2), . . . , pa(xn)). The structure also has m edges

{e1, e2, . . . , em}. For an edge e, it connects two nodes,

a parent node and a child node. We use paNode(e) to

denote the parent node and use chNode(e) to denote

the child node. In addition, we have a fully observed

training dataset D with N instances, use ζ to denote

all possible networks and use #(nbd(G)) to denote the

legal neighbor number of G.
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Fig.1. Framework of the MCMC algorithm. (a) Structure of a
Markov chain. (b) Process of one iteration.

3.2 Proposing Step

The proposing step randomly proposes a legal neigh-

bor structure G
′ of the current structure G. There are

three kinds of operations to generate G’ from G: addi-

tion, removal, and reversal. The addition operation is

to add an edge from node xi to node xj , and it should

not introduce any path from xj to xi to guarantee the

legality of the network. The removal operation is to

remove an edge from G, and it is always legal. The

reversal operation is to change the direction of an edge,

and it can be decomposed into two operations of re-

moval and addition. After these operations, we will get

a legal neighbor structure G
′.

3.3 BDeu Scoring Function

Before the moving step, we briefly describe the

BDeu function[18], the scoring function of the MCMC

algorithm, and it is also used as the scoring function of

our proposed algorithm. For DAG models, the BDeu

function has a typical assumption that a Dirichlet dis-

tribution is assigned for each node, conditionally on the

configurations of its parents. Hence, as shown in [18],

the marginal likelihood of a discrete DAG model is de-

fined as (1).

L(G) =
∏n

i=1

∏qi

j=1

Γ(N ′

ij)
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can be calculated with (3). Thus Ra can also be defined

as (6).

Ra =
#(nbd(G))p(D|G′)
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probability (1−λ) and we will use the method described

in Subsection 4.3 to calculate the probability Ra, and

then get the value of α with the training dataset. If

paNode(e) /∈ pae(chNode(e)), it means that we do not

have any existence knowledge on this proposal, and the

algorithm will transfer to Subsection 4.3 to calculate

the probability Ra.

4.2.2 Use of Absence Knowledge

We use absence knowledge if we have the knowledge

of paa(chNode(e)). If paNode(e) ∈ paa(chNode(e)) and

the corresponding confident is λ, we will believe this

knowledge is true with a probability λ and set the ac-

cepted probability α to 0 with the probability λ. This

kind of prior knowledge is believed to be false with a

probability (1 − λ) and we will use the method de-

scribed in Subsection 4.3 to calculate the probability

Ra to get the value of α with the training dataset. If

paNode(e) /∈ paa(chNode(e)), it means that we do not

have any absence knowledge on this proposal and the

algorithm will transfer to Subsection 4.3 to calculate

the probability Ra.

4.2.3 Use of PD/CPD Knowledge

If we have neither PD knowledge of the i-th node nor

CPD knowledge of the edge e when chNode(e) = xi and

paNode(e) belongs to the j-th parent configuration of

the node xi, the probability Ra can be calculated with

(7)∼(9), which is the same as the MCMC algorithm.

If we have the PD/CPD knowledge, the probability Ra

can be calculated with (7), (8) and (11).

L(G, xi) =
∏qi

j=1

Γ(N ′

ij)
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Using prior knowledge is equivalent to adding an

extra dataset to the original training dataset and gene-

rating a new training dataset, and then the structure

is learned with this new training dataset. Thus the

convergence of the algorithm is not influenced by intro-

ducing prior knowledge.

5 Experiments

5.1 Experimental Methodology

Three metrics are used to evaluate the performance

of the C-MCMC algorithm. The first metric is ADI,

which uses three sub-metrics to measure the steps to

reconstruct the original network from the learned net-

work: the number of added arcs (A), the number of

deleted arcs (D), and the number of inverted arcs

(I). The second metric is Kullback-Leibler (KL) dis-

tance, which is commonly used to evaluate the learned

structures of Bayesian network. The smaller the KL-

divergence is, the better the learned network fits the

training dataset. The third metric is BDeu scoring

function, which is also used to guide the local search

method for the MCMC algorithm. The experimental

result of the first metric is calculated based on the

learned network and the original network. The experi-

mental results of the last two metrics are calculated

based on the learned networks and the testing dataset.

Synthetic datasets are generated from four com-

monly used Bayesian networks, the Asia network with

eight nodes[19], the Insurance network with 27 nodes[20],

the Alarm network with 37 nodes[21], and the Bat net-

work with 52 nodes[22]. For each Bayesian network,

we generate 10 training datasets, each of which con-

tains 1 000 instances. At the same time, we also gen-

erate a testing dataset for each Bayesian network, and

each testing dataset contains 1 000 instances. For each

network, the experiment on each training dataset with

one parameter configuration is repeated 10 times, and

100 learned structures and their metric values can be

achieved.

For each network, we randomly select a fixed per-

centage of prior knowledge extracted from the whole set

of prior knowledge of the corresponding original net-

work. More precisely, for a node xi in the original net-

work that has node set {x1, x2, . . . , xn}, consider that

the node set {x1, x2, . . . , xi−1} is the parent set of

the node xi and the nodes in the set {xi+1, xi+2, . . . ,

xn} are not in the parent set of xi. Thus, the knowl-

edge that x1 is a parent node of the node xi is a prior

knowledge in the existence prior knowledge set. The

knowledge that xi+1 is not a parent node of the node

xi is a prior knowledge in the absence prior knowledge

set. In this way, the knowledge retrieved from the origi-

nal network is added to the existence and the absence

prior knowledge sets respectively. The CPD/PD know-

ledge is also retrieved from the original network. If the

original network has m edges, we will have m pieces of

CPD knowledge and n pieces of PD knowledge. The

selected percentage of prior knowledge is set to 20%,

40%, 60% and 80% respectively. We run the algorithm

for each percentage of prior knowledge respectively and

get the results of the experiments.

In the experiments, we compare the performance of

the C-MCMC algorithm with that of the MCMC al-

gorithm. As both of them are random algorithms, in

each experiment, we set the iterations to 10 000 to en-

sure the convergence, set burn-in to 200, start from the

independence model, and use the same dataset gene-

rated above. The equivalent instance size N ′ is set to

1.

5.2 Evaluation with ADI

In this experiment, we set the percentage of prior

knowledge to 20%, 40%, 60% and 80% respectively and

use ADI to evaluate the performance of the algorithms.

The ADI can be directly used to compare the learned

structure with the original structure, discover the dif-

ference, and count the number of operations required

to achieve the learned network from the original net-

work. In this experiment, the confidences of all prior

knowledge are all set to 0.85. Fig.2 shows the results of

this experiment.

From Fig.2, it is easy to find that we have a higher

probability to get a better structure by increasing the

percentage of prior knowledge from 20% to 80%. The

MCMC algorithm does not use any prior knowledge,

and thus its A, D and I are worse than those of the

C-MCMC algorithm. We also find that the effect of

prior knowledge is more significant in the network with

less nodes, such as the Asia network and the Insurance

network. When we learn the structure of a Bayesian

network with a large number of nodes, plenty of prior

knowledge used in the learning process brings down the

inherent uncertainty. It is more difficult to learn the

structure of a large Bayesian network with 1 000 train-

ing instances.
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Fig.2. ADI values of the learned structures using MCMC without prior knowledge and C-MCMC with 20%, 40%, 60%, and 80% of
prior knowledge respectively. (a) ADI values of Asia. (b) ADI values of Insurance. (c) ADI values of Alarm. (d) ADI values of Bat.

5.3 Evaluation with KL-Divergence

In this experiment, we calculate KL-divergence be-

tween the learned network and the testing dataset to

evaluate the performance of the algorithm. The KL-

divergence is a non-symmetric measure of the difference

between two probability distributions P and Q. P typi-

cally represents the “true” distribution of data, observa-

tions, or a precisely calculated theoretical distribution.

Q typically represents a theory, model, description,

or approximation of P . KL-divergence is commonly

used to evaluate the learned structures of Bayesian net-

work, and we calculate the KL-divergence following the

method proposed by Acid and de Campos[23]. The

smaller the KL-divergence is, the better the learned

network fits the training dataset. The confidences of

all prior knowledge are also set to 0.85. Fig.3 shows

the results of this experiment.

From Fig.2, we can see that the use of prior knowle-

dge can help to get a better structure of Bayesian

network, and with the increase of percentage of prior

knowledge from 20% to 40%, the improvement will be

more remarkable. Compared with the first experiment,

we believe that when the percentage of prior knowledge

increases from 20% to 40%, the inherent uncertainty re-

duces faster than that in 0∼20% and 40%∼100%.

MCMC 20% 40% 60% 80%

Asia 0.149 6 0.134 4 0.115 7 0.104 2 0.085 4

Alarm 0.547 2 0.517 5 0.426 5 0.368 5 0.354 7

Insurance 0.596 5 0.551 9 0.509 8 0.491 2 0.482 7

Bat 1.578 3 1.546 2 1.467 8 1.444 3 1.413 5
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Fig.3. Values of KL-divergence between learned structures and
the original structure using the MCMC algorithm without prior
knowledge and the C-MCMC algorithm with 20%, 40%, 60%,
and 80% of prior knowledge.

5.4 Evaluation with BDeu Function

In this experiment, we calculate BDeu with the

learned network and the testing dataset. BDeu is a

likelihood-equivalent Bayesian scoring metric and it is

described in detail in Subsection 3.3. The greater the

BDeu is, the better the structure learned by the algo-

rithm is. The confidences of all prior knowledge are
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also set to 0.85. The local search process of the MCMC

algorithm is based on the BDeu function while the local

search process of C-MCMC algorithm is based on prior

knowledge and the BDeu function.

As shown in Fig.4, we can easily find that the re-

sults of the C-MCMC algorithm are better than those of

the MCMC algorithm. Based on prior knowledge, the

C-MCMC algorithm has a higher probability to find a

better structure. Furthermore, the MCMC algorithm

may get into overfitting, and thus it cannot perform

well with the testing dataset. With the help of prior

knowledge, the C-MCMC algorithm can avoid overfit-

ting with a limited size of training dataset. At the same

time, we find that the BDeu scores are also consistent

with the results of previous experiments.

5.5 Performance Evaluation with Different

Confidences of Prior Knowledge

In the previous three experiments, all the confi-

dences of prior knowledge are set to 0.85. In this ex-

periment, we vary the confidence to observe the ex-

perimental results. Considering that the results of the

previous three experiments are related, we only use the

ADI metric to evaluate the effects of the C-MCMC al-

gorithm with different confidences of prior knowledge,

including 0.45, 0.65 and 0.85 respectively. The selected

percentage of prior knowledge is 80%. The experimen-

tal results are shown in Fig.5.

Fig.5 shows that if we set prior knowledge to a high

confidence, we will have a higher probability to find a
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Fig.5. ADI values of the learned structures using the MCMC algorithm and the C-MCMC algorithm with confidences of 0.45, 0.65,
and 0.85 respectively. (a) ADI values of Asia. (b) ADI values of Insurance. (c) ADI values of Alarm. (d) ADI values of Bat.

better structure. However, prior knowledge with small

confidence can also help the structure learning process.

Even though the confidence is very small, the prior

knowledge can also be adopted by the algorithmwith an

inherent probability and have an influence on the mov-

ing step to find a better structure. This is because that

for an edge operation proposal given by the proposing

step, if this proposal is consistent with the prior know-

ledge, it will have a greater probability to be accepted.

And this probability is affected by the confidence. The

greater the confidence is, the less influence the training

dataset has. Thus we can get a better structure with

more confident prior knowledge.

6 Conclusions

Bayesian network structure learning is a challeng-

ing task. An algorithm called Constrained-MCMC (C-

MCMC) was proposed in this paper. This algorithm

incorporates the prior knowledge into the MCMC algo-

rithm to learn the structure of the Bayesian network.

This algorithm is one practical algorithm with fewer re-

strictions on prior knowledge and network scale. The

experimental results show that even a small amount of

prior knowledge can help improve the learning process

of Bayesian network structure learning. We believe that

the C-MCMC algorithm can be widely applied in real

applications due to its convenience and flexibility.

In the future, we will consider incorporating prior

knowledge into other algorithms for Bayesian network

structure learning. Furthermore, the training dataset is

often incomplete or small; therefore learning Bayesian

network structure based on incomplete and small train-

ing dataset is another interesting problem to be ex-

plored.
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