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Abstract Object recognition, which consists of classification and detection, has two important attributes for robustness:

1) closeness: detection windows should be as close to object locations as possible, and 2) adaptiveness: object matching

should be adaptive to object variations within an object class. It is difficult to satisfy both attributes using traditional

methods which consider classification and detection separately; thus recent studies propose to combine them based on

confidence contextualization and foreground modeling. However, these combinations neglect feature saliency and object

structure, and biological evidence suggests that the feature saliency and object structure can be important in guiding the

recognition from low level to high level. In fact, object recognition originates in the mechanism of “what” and “where”

pathways in human visual systems. More importantly, these pathways have feedback to each other and exchange useful

information, which may improve closeness and adaptiveness. Inspired by the visual feedback, we propose a robust object

recognition framework by designing a computational visual feedback model (VFM) between classification and detection. In

the “what” feedback, the feature saliency from classification is exploited to rectify detection windows for better closeness;

while in the “where” feedback, object parts from detection are used to match object structure for better adaptiveness.

Experimental results show that the “what” and “where” feedback is effective to improve closeness and adaptiveness for

object recognition, and encouraging improvements are obtained on the challenging PASCAL VOC 2007 dataset.
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1 Introduction

Object recognition is a fundamental problem in

computer vision. It has been widely used in many vi-

sion applications such as image retrieval, scene under-

standing, and visual surveillance. Object recognition is

easy to be confused with classification and detection.

Usually, classification only gives object category, while

detection only gives object location, such as the tasks in

PASCAL VOC[1] and ImageNet[2]. For object recogni-

tion, based on the definition in Wikipedia 1○, its task is

to identify and find objects in an image or video, which

includes both classification and detection. Therefore,

in this paper, we consider that object recognition has

two basic tasks, classification and detection, and they

identify the object category and find the object location

respectively.

In the past decade, many studies on object

recognition have been proposed, such as the bag-

of-words model[3-7] and convolutional neural network

(CNN)[8-12] in classification, and the deformable part

model[13-16] and region-CNN[17-21] in detection. How-

ever, due to large object variations and cluttered back-

grounds, it is quite challenging to achieve robust ob-

ject recognition. Empirical studies propose two impor-

tant attributes for robustness[22-23]: 1) closeness: de-

tection windows should be as close to object locations

as possible[22], and 2) adaptiveness: object matching

should be adaptive to large variations within an object

class[23]. As an illustration, Fig.1 shows some examples
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that do not satisfy these two attributes. In Fig.1(a),

some detection windows do not cover any target ob-

jects, but they have a high confidence for detection; in

Fig.1(b), due to large object variations in location, size,

and orientation, rigid partitions cannot achieve robust

matching.

(a)

(b)

Fig.1. Illustration of the recognition that does not satisfy close-
ness or adaptiveness. (a) Detection windows that do not satisfy
closeness: some detection windows are not close to objects or
do not cover any part of the objects. (b) Object matching that
does not satisfy adaptiveness: the rigid matching cannot adapt
to variations in location, size, and orientation.

In recent years, most studies consider classification

and detection separately[4-5,7,13,24], and they are diffi-

cult to satisfy both closeness and adaptiveness. Based

on some biological evidence and empirical studies which

show the dependence between the two tasks[25-27], re-

searchers enhanced the robustness of recognition by

combining classification and detection using two pri-

mary methods. The first one is confidence contextua-

lization, which concentrates on closeness and rectifies

detection windows by taking the confidence (score) of

classification as the context of detection[26-29]. Harza-

llah et al.[28] scored each detection window by com-

bining the confidence of both tasks based on each in-

dividual category. Given the fact that other categories

provide co-occurrence context[26-27,29-30], Song et al.[29]

proposed to use the confidence of all categories. The

second one is foreground modeling, which focuses on

adaptiveness and exploits possible foregrounds to model

object matching for classification[23,31-33]. Russakovsky

et al.[23] divided the foreground into rigid object par-

titions for matching, and Chen et al.[32] used the con-

fidence of detection to segment objects by considering

the spatial semantics of images. On some challenging

datasets such as PASCAL VOC[1], these two primary

methods have improved the robustness of object recog-

nition.

However, the above methods have two limitations

regarding to closeness and adaptiveness. For the close-

ness, the confidence contextualization considers the

classification confidence (score) as context, but if the

score is not correct, the detection windows will deviate

from the object locations. As a result, the confidence

contextualization can only provide limited context for

post-processing. It neglects feature saliency[25,32,34],

and biological evidence suggests that the saliency is

important in guiding the recognition process from low

level to high level[25,35-36]. Another limitation is that

for the adaptiveness, the foreground modeling only con-

siders rigid partitions of objects, but large object varia-

tions in size and pose make it difficult for these par-

titions to achieve robust object matching. Psychologi-

cal studies show that object structure can preserve the

deformation invariance of the objects within an object

class to give robust object matching[37-38], but the fore-

ground modeling does not take it into consideration.

Recently, researchers have sought a solution of ro-

bust recognition from the mechanism of human visual

systems[25,39-41], which include “what” and “where”

pathways, as shown in Fig.2(a). These pathways trans-

fer visual information from low-level cortical areas to

high-level ones, and they eventually yield object cate-

gory and location. Therefore, the “what” and “where”

pathways have the similar functionality to classifica-

tion and detection respectively, and the robustness of

object recognition may originate in the mechanism of

these pathways. More importantly, Fig.2(a) shows that

these two pathways have feedback to each other at

the low-level areas, i.e., the “what” and “where” feed-

back from the high-level areas to the low-level ones.

These two feedbacks carry useful information, e.g., the

“what” feedback passes back the category information

which provides feature saliency to improve closeness,

and the “where” feedback passes back the object in-

formation which provides object structure to improve

adaptiveness. Therefore, this feedback mechanism pro-

vides a suitable way of improving the robustness of ob-

ject recognition.

In this paper, we propose robust object recognition

by designing a computational visual feedback model

(VFM) between classification and detection. Particu-

larly, the bag-of-words (BoW)[3] and the deformable

part model (DPM)[13] are used for classification and

detection respectively. The feedback model is given in

Fig.2(b), in which the low level represents local fea-

tures, and the mid-level denotes the image representa-

tion after feature pooling in BoW[42]. Specifically, the

“what” feedback first passes feature saliency back to

local features, which construct saliency distribution to



Chong Wang et al.: VFM: Visual Feedback Model for Robust Object Recognition 327

Feed Forward Featural Feedback Spatial Feedback

(a) 

Image

Low

Level

Mid-

Level

CategoryLocation

(b) (c)

Person Horse

Saliency

What  Pathway

Where  Pathway

What  Feedback

Where  Feedback

Fig.2. Illustration of the object recognition with the feedback of visual pathways. (a) Feedback mechanism in the human visual system.
(b) Proposed computational model of the feedback mechanism in this paper. (c) Output of object recognition: object category and
location.

rectify detection windows for better closeness. Then,

the “where” feedback passes foreground information

back to local features, which are combined with ob-

ject parts to model the matching of object structure

for better adaptiveness. Finally, these two steps are

processed iteratively to achieve robust object recogni-

tion. The visual feedback model (VFM) is evaluated

on the challenging and popular PASCAL VOC 2007

dataset. Experimental results show that the “what”

and “where” feedback is effective to improve closeness

and adaptiveness, and this robust recognition frame-

work boosts simultaneously classification and detection

by a large margin.

There are three contributions in this paper.

• We exploit a biologically inspired feedback mech-

anism in human visual systems to achieve robust object

recognition.

• We propose a visual feedback model (VFM) be-

tween classification and detection by designing a com-

putational way of the feedback mechanism.

• We accomplish simultaneous classification and de-

tection to imitate human visual systems, and an initial

exploration is taken in this paper.

The rest of the paper is organized as follows. In

Section 2, we first review the studies in improving the

robustness of object recognition. Then, Section 3 elabo-

rates the visual feedback model for robust object recog-

nition and Section 4 provides the detailed evaluation of

the model. Finally, the paper is summarized with some

concluding remarks in Section 5.

2 Related Work

In the past decade, many studies have consi-

dered robust recognition by combining classification

and detection[3,8,13,17,43-47]. In some typical work of

classification, the biological inspired model was first

proposed based on biological evidence[43,48]. Inspired

by the success of the bag-of-words model in document

analysis[3], many dictionary learning[49-51] and feature

encoding methods[4-7,42,51-54] have been proposed to en-

hance classification. Recently, with the great progress

of theoretical achievements and parallel computing[44],

deep neural networks further enhance classification

with deep hierarchical structures[8-12,44-45]. Compared

to classification, some models were also proposed in

detection. To describe object shape, the rigid tem-

plate matching was first proposed based on sliding win-

dow based searching[46]. Inspired by the importance

of object structure[37-38,55-57], researchers proposed the

popular deformable part model[13], which is a mile-

stone in detection and triggered many popular models

such as star models[14,58], tree models[59-60], grammar

models[16] and graph matching based models[47,61-62].

Recently, based on the powerful representation of

the convolutional neural networks, the region-CNN

(RCNN) based methods have shown the impressive im-

provement on the detection tasks[17-21]. Besides, it has

also become the state-of-the-art method in the popular

ImageNet competition.

Though these methods have achieved promising per-

formance in classification and detection, the separate
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consideration of these two tasks makes it difficult to

satisfy both closeness in detection and adaptiveness in

classification for robust object recognition. Based on

some empirical studies on context[26-27,30,63] and bio-

logical evidence on the mechanism of object recogni-

tion in human visual system[25,64-66], researchers found

that classification and detection are closely linked to

each other. Therefore, many studies have been pro-

posed to combine classification and detection together.

These combinations can be categorized into two pri-

mary methods as follows.

The first primary method is confidence contextua-

lization, which focuses on closeness in detection and

rectifies detection windows by taking the confidence

(score) of classification as the context of detection[28-30].

Based on the probabilistic model, Harzallah et al.[28]

first combined the confidence of both tasks on each in-

dividual object category, and promising improvements

were obtained. Given the fact that other categories pro-

vide co-occurrence information which is beneficial to in-

fer the existence of other categories[26-27], Song et al.[29]

proposed a context-SVM to combine the confidence of

other categories as object co-occurrence. They have ob-

tained the state-of-the-art performance on challenging

datasets in both classification and detection. To fur-

ther enhance the power of the co-occurrence context,

Chen et al.[30] proposed to model the multi-order con-

textual co-occurrence and further improvements have

been achieved. However, one limitation is that the con-

fidence contextualization considers only the confidence.

If the confidence (score) is not correct, the detection

windows will deviate from the correct object locations.

It neglects the feature saliency[25,32,34], which can be

important in guiding the recognition process from low

level to high level[25,35-36].

The second primary method is foreground modeling,

which concentrates on adaptiveness in classification

and models object matching by using possible fore-

grounds obtained in detection[23,31-33,67-69]. To deter-

mine the foreground region, Nguyen et al. applied

a classifier trained on candidate detection windows,

and then the window with the maximum score was

considered as the foreground[33]. Based on the evi-

dence that accurate foreground-background segmenta-

tion benefits object recognition[70], Chai et al.[67] used

the co-segmentation to discover the possible foreground

based on different image levels, and Chen et al.[32] fur-

ther exploited the confidence of object detection to

segment the discriminative foreground region. These

studies mainly model the object matching in the fore-

ground region by the bag-of-words representation, while

they do not consider the spatial arrangement, which

is important in matching objects. Based on this fact,

Crandall et al.[68] proposed to learn the appearance

and the spatial relation of local image parts simulta-

neously, and Zhang et al.[31] enhanced the spatial re-

lation by considering the higher-order arrangement of

local features in the foreground. To better exploit back-

ground information as useful context, Russakovsky et

al.[23] considered the foreground-background represen-

tation based on the bag-of-words model[3], and Pandey

et al.[71] used the deformable part model[13] to capture

the component of the background scenes. Though these

methods yield promising improvements, one limitation

is that the rigid partitions of objects make it difficult

to overcome large object variations. The foreground

modeling neglects the object structure, which can be

critical in preserving the deformation invariance of the

objects within an object class to give robust object

matching[37-38].

As introduced above, the previous two primary

methods consider neither the feature saliency nor the

object structure, which are important in discovering

feature saliency for better closeness and preserving de-

formation invariance for better adaptiveness. To in-

corporate feature saliency and object structure for ro-

bust recognition, we use the “what” and “where” path-

way feedback inspired by studies of human visual sys-

tems. The system consists of the “what” and “where”

pathways, which have the same functionality to classi-

fication and detection[65-66]. More importantly, these

two pathways have feedback to each other, named the

“what” and the “where” feedback in Fig.2. The feed-

back of one task carries useful information to the other

one; thus this feedback mechanism provides a suitable

way to satisfy both closeness and adaptiveness. In-

spired by this feedback, in this paper, we propose the

visual feedback model (VFM) by designing a computa-

tion way of the feedback mechanism for robust object

recognition.

3 Visual Feedback Model

In this section, we elaborate the visual feedback

model (VFM) for object recognition. Firstly, we give

the formulation of the model. Secondly, the algorithm

of the feedback is provided in detail. Finally, we give

the iterative procedure for the feedback between classi-

fication and detection.
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3.1 Formulation

Given N data pairs {Ii, yi}Ni=1, wherein Ii is the i-th

image and yi ∈ {+1,−1} is the binary label denoting

the image-level category. We formulate the visual feed-

back model as an optimization problem[23,33]:

min
w,b

1

2
∥w∥2 + C

∑N

i=1
ξi

s.t. yi max
B∈BB(i)

(wTΨB(w,b) (Ii) + b) > 1− ξi,

ξi > 0, ∀i, (1)

wherein w is the weight vector and b is the bias term.

ΨB(w,b) (Ii) is the image representation of Ii given the

detection window B, which belongs to a set of candidate

windows BB(i) generated after detection[13]. Particu-

larly, B(w, b) denotes that the window B is determined

by the feedback of classification.

The optimization of (1) is non-convex because of the

maximization operation and the unknown image repre-

sentation in the constraint. Therefore, we propose an

iterative procedure to solve the optimization problem.

Firstly, w and b in classification are fixed to optimize

B in detection, and this is the “what” feedback. Sec-

ondly, the window B in detection is fixed to optimize w

and b in classification, which is the “where” feedback.

Finally, these two feedbacks are processed iteratively to

find the solution.

3.2 Algorithm

In this part, we give a computational way of find-

ing the “what” and “where” feedback, and show how

they can be used to improve closeness and adaptive-

ness. For classification and detection, the bag-of-words

(BoW) and the deformable part model (DPM) are used

respectively. As discussed in [51], the low level in

Fig.2(b) denotes local features, and we denote X =

{xj |j = 1, ..., |X|} as a set of |X| local features, e.g.,

SIFT[72]. For the mid-level in the “what” pathway, it

represents the image representation after feature pool-

ing in BoW[51]. Let V be a visual vocabulary with

|V | visual words and ϕ (xj) be the encoding of xj on

V . Then Ψ (X) is the image representation by pooling

ϕ (xj) on V . Besides, for the saliency in the “where”

pathway, it is the saliency distribution defined in this

paper, and we will give the definition later. Finally,

object category is represented by w and b in classifica-

tion, and object location is represented by B in the set

BB(i) in detection. We begin the optimization with

classification, and thus the initial w and b are known.

3.2.1 “What” Feedback

Based on the fixed w and b in classification, the

“what” feedback optimizes B in detection. The idea is

to exploit feature saliency to rectify detection windows.

According to Fig.2(b), the “what” feedback transfers

information from category to location. It has two main

steps: category to low level and low level to location.

The first step is to go from category to low level and

obtain feature saliency. The maximization term in the

constraint of (1) can be transformed into

max
B∈BB(i)

(wTΨB(w,b)(Ii) + b)

= max
XS∈X

(wTΨ(XS) + b), (2)

in which XS is a subset of X, and we denote XS as

a set of salient local features locating in the object re-

gion B. We use the maximum pooling to construct

Ψ (XS)
[4,42,51], which preserves the maximum encoding

of all the local features on each visual word. Thus, (2)

can be further transformed into∑|V |

v=1
max
xj

wTϕ(xj) + b, (3)

wherein
∑|V |

v=1 max
xj

wTϕ(xj) operates on each word

separately to find a set of features xj with the maxi-

mum score wTϕ(xj). According to the previous studies

on saliency[25,34], the features (xj) maximizing (3) are

salient for objects. Therefore, the features xj consti-

tute the feature set XS . Fig.3 illustrates XS , wherein

most local features are on the target object.

Based on XS , the second step goes from low level

to location and finds the best detection window B∗.

Physiological evidence shows that XS has an object-

oriented saliency distribution[25], and we consider B∗

as the window which best represents the distribution.

To describe the distribution, we exploit the density and

location of the saliency features, and we use both the

detection window and its corresponding object parts in

DPM[13] to accurately describe the distribution. As-

sume P object parts are used in DPM, and then the

saliency distribution SB (XS) for each window B is con-

structed as follows:(
Kp

Hp ×Wp
,
Kp

K
,
(µx)p
W

,
(µy)p
H

)
, ∀p = 0, 1, ..., P, (4)

in which H and W are the height and the width of

the image, and K is the number of the salient features

with the high scores (wTϕ(xj)) in the image. Similarly,

Kp is the number of the salient features in each win-

dow (p = 0) or part (p = 1, ..., P ), and Hp and Wp are
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Fig.3. Illustration of the computational model of the “what” and “where” feedback. The red and the green arrows represent the “what”
and the “where” feedback respectively, and the image is from the PASCAL VOC 2007 dataset.

the corresponding height and width. Kp/(Hp ×Wp)

and Kp/K measure the density distribution of XS in

each bounding box region. Compared to the density,

(µx)p/W and (µy)p/H aim to describe the location dis-

tribution of the salient features, and they denote the

mean location of XS in each bounding region or part in

both x and y axis. Therefore, the saliency distribution

in (4) models the density and location of saliency in

each detection window and object part, and it is con-

structed for all detection windows in BB(i). Finally,

a linear SVM classifier is trained with SB(XS) to up-

date the confidence of each window, and the one with

the highest confidence is considered as the best win-

dow B∗. Fig.3 illustrates this window rectification, in

which the detection window (red rectangle) is rectified

correctly.

3.2.2 “Where” Feedback

Based on the optimized B∗ in detection, the

“where” feedback optimizes w and b in classification.

The idea is to use the object parts in foreground as

object structure to give robust object matching. Ac-

cording to Fig.2(b), the “where” feedback transfers in-

formation from location to category. It has two main

steps: location to low level and low level to category.

The first step is to go from location to low level to

determine the foreground region. Based on the opti-

mized detection window B∗, which represents the most

probable location of the target object, we denote the

image region in B∗ as the foreground and the local fea-

tures in it as foreground features XF , which satisfies

XF ⊂ X. Fig.3 illustrates these foreground features

(yellow area), which are densely distributed in the fore-

ground region.

Based on XF , the second step is to optimize w and

b. To obtain the object structure from the foreground,

the DPM model provides a convenient way. In DPM,

each detection window is associated with some object

parts, as the green rectangles shown in Fig.3. The idea

is to organize these object parts as object structure and

construct an object representation based on it. As-

sume the optimized window B∗ has P parts, then the

foreground features XF can be divided into P subsets

Xp
F , ∀p = 1, ..., P . The object representation ΨO (XF )

based on XF is given as follows:

ΨO (XF ) = (Ψ(XF ),Ψ(X1
F ), ...,Ψ(XP

F )),

in which Ψ(XF ) and Ψ(Xp
F ) are the object representa-

tion in the detection window and object parts respec-

tively. Fig.3 illustrates this step, in which the object

matching can be adaptive to object variations because

the object structure is preserved under the deforma-

tions in the image.

Many studies show that the surrounding context of

objects also contributes a lot to classification[23,26-27].

To construct context representation, we use the popu-

lar spatial pyramid matching (SPM)[24] based on the

feature set X. Similarly, PS rigid partitions are used

in SPM, and then X can be divided into PS subsets

Xp, ∀p = 1, ..., PS . We give the context representation

ΨC (X) based on X as follows:

ΨC (X) = (Ψ(X1
S), ...,Ψ(XPS

S )).

Then, we combine the object representation ΨO (XF )

and the context representation ΨC (X) to construct the

final image representation Ψ (X):

Ψ (X) = (ΨO(XF ),ΨC(X)).
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Finally, based on (1), w and b are updated for a new

iteration. Fig.3 shows this step, in which the object

and the context are combined to enhance classification.

3.2.3 Unification

As a summary, the iterative treatment of the “what”

and the “where” feedback in the visual feedback model

(VFM) is given below. For initialization, we denote

w(0), b(0) and Ψ(0) as the initial weight vector, bias

term and image representation in classification, and de-

note B∗(0) as the initial detection window in detection.

At the t-th iteration, w(t− 1), b(t− 1) and Ψ(t− 1)

are first used to construct the salient features XS(t),

from which the saliency distribution SB(t) is con-

structed and used to update B∗(t− 1) to B∗(t). Then,

the foreground features XF (t) from B∗(t) are obtained

and used to construct the image representation Ψ(t).

Finally, Ψ(t) is trained to updatew(t−1) and b(t−1) to

w(t) and b(t) for a new iteration. The iterative process

terminates when the detection window B∗ is unchanged

or the maximum iteration number T is reached.

4 Experimental Evaluation

In this part, we give the detailed experimental eva-

luation of the proposed visual feedback model (VFM).

The experimental setup is as follows.

Datasets and Evaluation. We use the popular PAS-

CAL VOC 2007 dataset for evaluation[1]. The PAS-

CAL VOC 2007 dataset is challenging because of its

large object variations on illumination, size, deforma-

tion, occlusion, etc. The dataset contains 20 object

categories, such as aeroplane and bicycle, as shown in

Table 1. There are 9 963 images in total in this dataset,

of which 5 011 are used for training/validation and the

rest 4 952 for testing. For the evaluation of classifica-

tion and detection, the average precision (AP) of each

category and the mean average precision (mAP) of all

the categories are reported. In detection, a detection

window is considered as the correct detection if it has an

overlap of more than 0.5 with the ground truth bound-

ing box.

Object Classification. In classification, we use the

common settings of the bag-of-words (BoW) model[5].

In detail, we use the VLFeat toolbox[76] to densely ex-

tract SIFT features[72] by every 4 pixels under 3 scales:

16 × 16, 24 × 24 and 32 × 32. Then, to construct a

visual vocabulary with the size of 32 768, we adopt

the Approximate Nearest Neighbor (ANN) algorithm,

which is efficient in clustering large vocabulary. Finally,

based on the partitions of the spatial pyramid matching

(SPM) with 1×1, 2×2 and 3×1, local-constrained linear

Table 1. Detection Performance of VFM and Some Previous Methods on PASCAL VOC 2007

Object Layout[56] INRIA-2009[28] Hierarchy[15] DPM[13] HOG-LBP[73] Shared Color DPM+Context[13] VFM

Categories Structure[74] Attribute[75]

Plane 28.8 35.1 29.4 33.2 36.7 32.5 34.5 36.6 35.1

Bicycle 56.2 45.6 55.8 60.3 59.8 60.1 61.1 62.2 60.9

Bird 03.2 10.9 09.4 10.2 11.8 11.1 11.5 12.1 14.8

Boat 14.2 12.0 14.3 16.1 17.5 16.0 19.0 17.6 20.6

Bottle 29.4 23.2 28.6 27.3 26.3 31.0 22.2 28.7 29.4

Bus 38.7 42.1 44.0 54.3 49.8 50.9 46.5 54.6 51.4

Car 48.7 50.9 51.3 58.2 58.2 59.0 58.9 60.4 60.5

Cat 12.4 19.0 21.3 23.0 24.0 26.1 24.7 25.5 26.9

Chair 16.0 18.0 20.0 20.0 22.9 21.2 21.7 21.1 23.0

Cow 17.7 31.5 19.3 24.1 27.0 26.5 25.1 25.6 29.2

Table 24.0 17.2 25.2 26.7 24.3 25.4 27.1 26.6 27.1

Dog 11.7 17.6 12.5 12.7 15.2 16.4 13.0 14.6 17.1

Horse 45.0 49.6 50.4 58.1 58.2 61.7 59.7 60.9 61.7

Motor 39.4 43.1 38.4 48.2 49.2 48.3 51.6 50.7 51.7

Person 35.5 21.0 36.6 43.2 44.6 42.2 44.0 44.7 46.2

Plant 15.2 18.9 15.1 12.0 13.5 16.1 19.2 14.3 16.1

Sheep 16.1 27.3 19.7 21.1 21.4 28.2 24.4 21.5 22.2

Sofa 20.1 24.7 25.1 36.1 34.9 30.1 33.1 38.2 37.1

Train 34.2 29.0 36.8 46.0 47.5 44.6 48.4 49.3 48.2

TV 35.4 39.7 39.3 43.5 42.3 46.3 49.7 43.6 44.8

mAP 27.1 28.9 29.6 33.7 34.3 34.7 34.8 35.4 36.2
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coding (LLC)[5] is combined with maximum pooling[4]

to construct the final BoW image representation.

Object Detection. We use the same settings as for

the deformable part model[13]. The variant histogram

of gradients (HoG) features are densely extracted at

first, and then all the root and part filters are applied to

score each detection window. Finally, candidate detec-

tion windows BB(i) are obtained after non-maximum

suppression (NMS) with the overlap threshold of 0.5.

Besides, the number of the object parts (P ) and mix-

tures is set to be 8 and 6 respectively. The voc-released

5.0 code is used[77] 2○.

Training. There are three SVM classifiers in the vi-

sual feedback model: 1) the latent SVM in detection,

which is used to train the detection model[13]; 2) one

liblinear SVM in classification, which is used to train

the classification model of the BoW image representa-

tion; 3) another liblinear SVM in classification, which

is used to train the saliency distribution of all the de-

tection windows. For the first one, we use the same

settings to the DPM and the source code 5.0[13]. For

the other two, we select the best SVM penalty term by

cross-validation on the validation set.

4.1 Iterative Performance

Fig.4 shows the classification and detection perfor-

mance in each iteration on the PASCAL VOC 2007

test set. It is observed that the visual feedback model

(VFM) improves both tasks consistently, e.g., from ite-

ration #1 to iteration #4, the improvement is at least

0.1% and 0.2% for detection and classification respec-

tively. We also see that the improvement is quite large

at the beginning, but it becomes smaller as the iteration

increases, e.g., the improvement of detection is more

than 1.5% at iteration #1 and decreases to 0.1% at

#4. The reason of this may be that the initial classifica-

tion and detection results can be easily enhanced by the

“where” and the “what” feedback, and the VFM model

will rectify most recognition as the iteration increases,

and thus the performance will gradually achieve a sta-

ble value. Fig.5 shows some examples rectified by the

feedback model in each iteration. These samples have

different image conditions, such as large object varia-

tions in background, size, and occlusion. However, no

matter in which condition, the feedback model can push

the detection windows closer to the true object loca-

tions and finally achieve the correct localization.
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Fig.4. Iterative performance of object classification and detec-
tion by the feedback model on the PASCAL VOC 2007 dataset.

Iteration #0 Iteration #1 Iteration #2 Iteration #3 Ground Truth

(a)

(b)

(c)

Fig.5. Some examples of the iterative feedback in different con-
ditions. (a) Large object in normal background. (b) Small ob-
ject in complex background. (c) Occluded object in complex
background.

To obtain a consistent improvement in the visual

feedback model, we should guarantee that each itera-

tion produces an improvement. In our experiments, we

use the objective value of the SVM classifier for vali-

dation. Fig.6 gives the average objective value of the

two linear SVM classifiers for all the categories in both

“what” and “where” feedback. These two classifiers are

the one for the saliency distribution of SB (XS) and the

one for the BoW image representation of Ψ (X). We

use the dual solver for the liblinear SVM, and thus the

higher objective value leads to a better solution. It is

observed that the objective value of both classifiers in-

creases consistently in each iteration. Similar to the

case in Fig.4, the value gradually increases to a stable

state as the iteration continues. These results demon-

strate that the “what” and the “where” feedbacks are

effective to enhance object detection and classification

consistently.

2○ Girshick R B, Felzenszwalb P F, McAllester D A. Discriminatively trained deformable part models, release 5. http://people.
cs.uchicago.edu/rbg/latent-release5/, Jan. 2015.
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Fig.6. Average objective value of the liblinear SVMs for all
object categories in (a) classification and (b) detection.

4.2 Detection Evaluation

Based on the iterative feedback, we evaluate to what

degree this iterative procedure enhances the robustness

of object detection. The detection result of the iteration

#4 is used for comparison, and the salient features with

the top 1 000 highest scores are selected to construct

the saliency distribution. Table 1 shows the detection

performance of the visual feedback model (VFM) and

some previous methods. According to Table 1, the vi-

sual feedback model achieves the mean average preci-

sion (mAP) of 36.2, which is the highest among all the

methods and is a considerable improvement over others,

e.g., the improvement is 2.5% and 0.8% on DPM and

DPM+Context respectively. Besides, the VFM also ob-

tains the best AP on six object categories such as boat,

car, motor, and person. In comparison with the meth-

ods using multiple low-level features[29,73], the visual

feedback model with the single SIFT features is com-

petitive, e.g., the mAP of VFM is 1.9% higher than

that of HOG-LBP[73]. These results demonstrate that

the “what” feedback is effective to enhance object de-

tection.

To validate the contribution of the “what” feedback

to the closeness in detection, we evaluate the overlap

between the detection windows and the ground truth

bounding box. Fig.7 shows the average best over-

lap (ABO), and ABO means the average best over-

lap between the detection windows and the ground

truth bounding box[17]. It is popularly used to mea-

sure the quality of detection windows in some previous

studies[17]. The definition of ABO is given as follows:

ABO =
1

|Gc|
∑

gc
i∈Gc

max
d∈BB(i)

Overlap (gci , d),

in which gci is the ground truth bounding box in the

i-th image for object category c, while Gc is the set of

ground truth bounding boxes in category c, and |Gc|
is the number of the ground truth bounding boxes in

category c. Besides, d denotes the detection window

which has the best overlap with gci in the i-th image.

The overlap is measured as follows:

Overlap (gci , d) =
area(gci ) ∩ area(d)

area(gci ) ∪ area(d)
.
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Fig.7. Mean average best overlap (MABO) of the visual feed-
back model in each iteration on the PASCAL VOC 2007 testing
set.

It is observed that as the iteration increases, the

ABO becomes larger, e.g., the ABO increases from 74

in iteration #1 to 79 in iteration #4, which validates

that saliency distribution in the “what” feedback can

effectively push the detection windows closer to the

true object locations. Fig.8 shows this improvement

for some examples of the rectified detection windows,

in which the red rectangles are the detection windows of

the baseline DPM 5.0, while the yellow ones denote the

windows rectified by the visual feedback model based

on DPM. We see that in most samples, the DPM detec-

tions only cover a part of the objects, while the VFM

model rectifies these wrong detections to cover most

part of the objects around the true locations.
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(a) (b) (c) (d) (e)

Fig.8. Some examples of the detection windows rectified by the
visual feedback model (yellow rectangles) based on the DPM
model (red rectangles).

4.3 Classification Evaluation

Based on the iterative feedback, we evaluate to

what degree this iterative procedure can enhance the

robustness in object classification. Table 2 shows the

classification performance of the visual feedback model

(VFM) and some previous methods on the PASCAL

VOC 2007 test set. It is observed that the visual feed-

back model achieves the mAP of 62.9%, which is the

highest among the single feature based methods and

obtains promising improvements over others, e.g., 3.5%

and 1.5% higher than LLC+SPM and LLC+OCP re-

spectively. The proposed VFM obtains the best AP on

10 object categories, and the improvements on most of

these categories are considerable, e.g., the improvement

is about 1% on cow, bicycle, bottle, car, and chair. Sim-

ilar to the comparison in detection, the visual feedback

model with the single SIFT features is comparable to

the methods with multiple features[32], e.g., the VFM

is 0.7% and 3.5% higher than the 2007 Winner and

BoF+HOG respectively, which shows the effectiveness

of the VFM and the potential for further improvement.

Fig.9 visualizes this improvement on the adaptiveness

of object matching in object classification. Though ob-

jects vary a lot in size, location, and orientation, the

Table 2. Classification Performance Between VFM and Some Previous Methods on PASCAL VOC 2007

Method Object+Context[78] 2007 Winner[79] LLC+SPM[24] LLC+OCP[23] BoF+HOG[77] VFM

Aero 80.2 77.5 73.7 74.7 75.0 76.9

Bicycle 61.0 63.6 65.7 70.1 68.3 71.0

Bird 49.8 56.1 49.9 52.8 58.2 54.7

Boat 69.6 71.9 68.7 69.0 69.5 70.4

Bottle 21.0 33.1 28.1 34.2 33.3 35.1

Bus 66.8 60.6 66.2 67.8 68.9 68.7

Car 80.7 78.0 78.4 81.3 80.0 82.3

Cat 51.1 58.8 60.4 62.0 65.8 64.3

Chair 51.4 53.5 55.9 56.7 55.9 57.8

Cow 35.9 42.6 49.4 49.9 50.9 51.7

Table 62.0 54.9 52.6 54.3 60.6 57.5

Dog 38.6 45.8 45.5 47.1 50.4 48.9

Horse 69.0 77.5 77.4 79.2 77.6 80.1

Motor 61.4 64.0 68.0 69.0 70.6 70.7

Person 84.6 85.9 84.3 85.4 86.2 86.4

Plant 28.7 36.3 29.1 30.1 31.6 31.6

Sheep 53.5 44.7 46.8 48.7 49.6 50.2

Sofa 61.9 50.6 56.3 58.5 56.9 59.4

Train 81.7 79.2 77.0 77.4 78.9 79.4

TV 59.5 53.2 53.7 59.5 55.5 60.3

mAP 58.4 59.4 59.4 61.4 62.2 62.9

(a) (b) (c) (d) (e) (f) (g) (h)

Fig.9. Some examples of the object matching based on object structure obtained by the visual feedback model. Red rectangles are the
final detection windows, and the green ones denote the corresponding object parts. (a) Person. (b) Dog. (c) Horse. (d) Cow. (e) Cat.
(f) Car. (g) Bicycle. (h) Aeroplane.
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object structure can be adapted to different image con-

ditions, which validates the importance of object struc-

ture and the effectiveness of the “where” feedback in

improving adaptiveness for classification.

4.4 Parameter Selection

Finally, we provide some practical guidelines of the

parameter selection in the VFM model. The selection

includes three important factors: vocabulary size, ob-

ject partition, and SVM penalty coefficients.

4.4.1 Vocabulary Size

In the visual feedback model, the vocabulary size |V |
is an important factor, which will directly influence the

number of the salient features obtained in the “what”

feedback. Fig.10 shows the mAP of classification and

detection under the vocabulary size of 128 ∼ 32 768, in

which Str+SPM represents the visual feedback model.

In our implementation, we only use the salient features

with the top 1 000 highest scores. It is observed that

in both classification and detection, larger vocabulary

size leads to higher performance, e.g., the highest mAP

occurs at the size of 32k. The reason for this may be

that larger vocabulary size can generate more salient

features, which can represent the object saliency more

accurately. However, one problem is that not all fea-

tures are salient for objects. Due to the noise in clut-

tered scenes, some salient features may not locate on

objects, while we observe that the features with higher

score tend to locate on objects. Therefore, we use the

salient features with the top 1 000 highest scores to con-

struct the saliency distribution.

4.4.2 Object Partition

In this part, we evaluate different object partition

methods to give the best object matching in classifica-

tion. In the evaluation, we use four partition strate-

gies: 1) SPM uses the typical spatial pyramid match-

ing (SPM) for object matching; 2) Non-SPM matches

objects without SPM and only based on the whole im-

age; 3) Structure only uses the object parts for match-

ing, while 4) Str+SPM combines both object parts and

SPM for matching. Fig.10(a) shows the classification

performance of these four methods based on the five

vocabulary sizes, wherein Str+SPM is the proposed

model. Firstly, we see that the highest performance

of all the partition methods is obtained at the largest

vocabulary size 32 k, which demonstrates the selection

of vocabulary size in Subsection 4.4.1. Secondly, no

matter which vocabulary size, these methods always

have the same rank, i.e., the strategy with structure is

better than the one with SPM. This rank implies that

object structures are more robust than the SPM in ob-

ject matching, and the structures are more beneficial

to the context representation. Besides, by further con-

sidering SPM based on the structure, performance can

be further improved, which demonstrates that context

is useful for object classification. Therefore, in this pa-

per, we adopt the combination of object structure and

context to improve the discrimination of object repre-

sentation.

4.4.3 Penalty Coefficient

In the visual feedback model, the liblinear SVMs

trained on the image representation Ψ(X) and the

saliency distribution SB (XS) are important to guaran-
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Fig.10. Parameter selection of the vocabulary size and object partition in the visual feedback model for object (a) classification and
(b) detection.
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tee the effectiveness of each iteration, and the penalty

coefficients C (in (1)) and CS (for SB (XS)) are two im-

portant parameters in the classifier. In our implemen-

tation, we constrain their values to the range [1, 10],

and use a 5-fold cross-validation on the validation set

to select the best value. Fig.11 shows the classification

and the detection performance based on the different C

and CS in the first iteration. It is observed that C = 10

and CS = 10 yield the best performance. Furthermore,

some values larger than 10 are also tested, while the per-

formance remains stable or decreases. Based on these

results, these two parameters are fixed to be 10 in the

rest iterations and all the experiments.
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Fig.11. Influence of the SVM penalty coefficients in the vi-
sual feedback model by the image representation Ψ (X) and the
saliency distribution SB (XS). (a) Classification. (b) Detection.

5 Conclusions

In this paper, we proposed a visual feedback model

(VFM) for classification and detection to achieve robust

object recognition. Firstly, feature saliency is obtained

from the “what” feedback to rectify detection windows

to improve the closeness in detection. Secondly, object

structure is obtained from the “where” feedback for ob-

ject matching to enhance the adaptiveness in classifica-

tion. Finally, we proposed an iterative procedure of the

“what” and the “where” feedback to achieve robust ob-

ject recognition. Experiments on the challenging PAS-

CAL VOC 2007 dataset demonstrate that the “what”

and “where” feedback can effectively rectify detection

windows and give robust object matching. As a result,

better closeness and adaptiveness are achieved for ro-

bust object recognition, and encouraging improvements

have been obtained. In the future, we will extend the

visual feedback model to the multi-label problem and

the weakly supervised detection problem.

Acknowledgement

Thank Steve Maybank for the revision.

References

[1] Everingham M, Van Gool L, Williams C K I, Winn J,

Zisserman A. The PASCAL Visual Object Classes (VOC)

challenge. International Journal of Computer Vision, 2010,

88(2): 303-338.

[2] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Ima-

geNET: A large-scale hierarchical image database. In Proc.

IEEE Computer Society Conf. Computer Vision and Pat-

tern Recognition, June 2009, pp.248-255.

[3] Csurka G, Dance C R , Fan L, Willamowski J, Bray C.

Visual categorization with bags of keypoints. In Proc. Eu-

ropean Conference on Computer Vision Workshop, May

2004, pp.145-168.

[4] Yang J, Yu K, Gong Y, Huang T. Linear spatial pyramid

matching using sparse coding for image classification. In

Proc. IEEE Conf. Computer Vision and Pattern Recogni-

tion, June 2009, pp.1794-1801.

[5] Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y. Locality-

constrained linear coding for image classification. In Proc.

IEEE Conf. Computer Vision and Pattern Recognition,

June 2010, pp.3360-3367.

[6] Zhou X, Yu K, Zhang T, Huang T. Image classification

using super-vector coding of local image descriptors. In

Proc. the 11th European Conference on Computer Vision,

September 2010, pp.141-154.

[7] Perronnin F, Sánchez J, Mensink T. Improving the fisher

kernel for large-scale image classification. In Proc. the

11th European Conference on Computer Vision, Septem-

ber 2010, pp.143-156.

[8] Krizhevsky A, Sutskever I, Hinton G E. ImageNET classi-

fication with deep convolutional neural networks. In Proc.

the 26th Annual Conf. Neural Information Processing Sys-

tems, December 2012, pp.1106-1114.

[9] Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return

of the devil in the details: Delving deep into convolutional

nets. arXiv:1405.3531, 2014.

[10] Lin M, Chen Q, Yan S. Network in network.

arXiv:1312.4400, 2014.



Chong Wang et al.: VFM: Visual Feedback Model for Robust Object Recognition 337

[11] Simonyan K, Zisserman A. Very deep convolutional net-

works for large-scale image recognition. arXiv:1409.1556,

2014.

[12] Zeiler M D, Fergus R. Visualizing and understanding convo-

lutional networks. In Proc. the 13th European Conference

on Computer Vision, September 2014, pp.818-833.

[13] Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D.

Object detection with discriminatively trained part based

models. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2010, 32(9): 1627-1645.

[14] Wang X, Bai X, Ma T, Liu W, Latecki L. Fan shape model

for object detection. In Proc. IEEE Conf. Computer Vision

and Pattern Recognition, June 2012, pp.151-158.

[15] Zhu L, Chen Y, Yuille A, Freeman W. Latent hierarchi-

cal structural learning for object detection. In Proc. IEEE

Conf. Computer Vision and Pattern Recognition, June

2010, pp.1062-1069.

[16] Girshick R B, Felzenszwalb P F, McAllester D A. Object

detection with grammar models. In Proc. the 25th NIPS,

December 2011, pp.442-450.

[17] Girshick R, Donahue J, Darrell T, Malik J. Rich feature

hierarchies for accurate object detection and semantic seg-

mentation. In Proc. IEEE Conf. Computer Vision and Pat-

tern Recognition, June 2014, pp.580-587.

[18] Hoffman J, Guadarrama S, Tzeng E, Hu R, Donahue J,

Girshick R, Darrell T, Saenko K. LSDA: Large scale detec-

tion through adaptation. In Proc. NIPS, December 2014,

pp.3536-3544.

[19] Zhang N, Donahue J, Girshick R, Darrell T. Part-based

R-CNNs for fine-grained category detection. In Proc. the

13th European Conference on Computer Vision, Septem-

ber 2014, pp.834-849.

[20] Gupta S, Girshick R, Arbeláez P, Malik J. Learning rich
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