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Abstract Today, data is flowing into various organizations at an unprecedented scale. The ability to scale out for

processing an enhanced workload has become an important factor for the proliferation and popularization of database

systems. Big data applications demand and consequently lead to the developments of diverse large-scale data management

systems in different organizations, ranging from traditional database vendors to new emerging Internet-based enterprises.

In this survey, we investigate, characterize, and analyze the large-scale data management systems in depth and develop

comprehensive taxonomies for various critical aspects covering the data model, the system architecture, and the consistency

model. We map the prevailing highly scalable data management systems to the proposed taxonomies, not only to classify

the common techniques but also to provide a basis for analyzing current system scalability limitations. To overcome these

limitations, we predicate and highlight the possible principles that future efforts need to be undertaken for the next generation

large-scale data management systems.
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1 Introduction

Data is flowing into organizations at an unprece-

dented scale in the world. Data volumes collected by

many companies are doubled in less than a year or even

sooner. The growing speed is faster than the “Moore’s

Law”, which predicts that the general-purpose hard-

ware and software solutions that advance at the rate

of Moore’s Law will not be able to keep pace with the

exploding data scale[1]. The pursuit for tackling the

challenges posed by the big data trend has given rise to

a plethora of data management systems characterized

by high scalability. Diverse systems for processing big

data explore various possibilities in the infrastructure

design space. A notable phenomenon is the NoSQL

(Not Only SQL) movement that began in early 2009

and is evolving rapidly.

In this work, we provide a comprehensive study of

the state-of-the-art large-scale data management sys-

tems for the big data application, and also conduct an

in-depth analysis on the critical aspects in the design

of different infrastructures. We propose taxonomies

to classify techniques based on multiple dimensions, in

which every high scalable system is able to find its posi-

tion. A thorough understanding of current systems and

a precise classification are essential for analyzing the

scalability limitations and ensuring a successful system

transition from enterprise infrastructure to the next

generation of large-scale infrastructure.

1.1 Systems for Big Data Application

To date, the trend of “big data” is usually charac-

terized by the following well-known clichés.

• Volume. Excessive data volumes and a large num-

ber of concurrent users require substantially through-

put raising for the systems.

• Velocity. Data is flowing in at an unprecedented

speed and needs to be dealt with in a timely manner.

• Variety. Data comes in all types of formats, from

the structured relational data to the unstructured data.

• Veracity. Inconsistency or uncertainty of data,
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due to the quality of the data source or transmission

latency, will jeopardize the utility and integrity of the

data.

The “big data” trend has imposed challenges on the

conventional design and implementation of data mana-

gement systems. In particular, the ability to scale out

for processing an enhanced workload has become an im-

portant factor for the proliferation and popularization

of data management systems.

When considering the spectrum of data manage-

ment systems, we first have traditional relational

database systems (RDBMSs) that provide low latency

and high throughput of transaction processing, but

lack the capacity of scale-out. As expected, tradi-

tional database vendors have recently developed their

own system appliances in response to the high scala-

bility requirement. Typically, Oracle Exadata 1○, IBM

Netezza 2○ and Teradata 3○ exploit the declarative na-

ture of relational query languages and deliver high per-

formance by leveraging a massively parallel fashion

within a collection of storage cells. Oracle Exalytics[2]

is the industrial pioneer to use terabytes of DRAM, dis-

tributed across multiple processors, with a high-speed

processor interconnect architecture that is designed to

provide a single hop access to all the memory.

Some recently proposed “new SQL” relational

databases (relative to NoSQL) aim to achieve the scala-

bility same as NoSQL while preserving the complex

functionality of relational databases. Azure[3] is a

parallel runtime system, utilizing specific cluster con-

trol with minimal invasion into the SQL Server code

base. Some research prototypes, such as Rubato DB[4],

H-store[5], later commercialized into VoltDB 4○, and C-

Store[6], the predecessor of Vertica 5○, also provide their

tentative solutions for the NewSQL implementation.

The need of highly available and scalable distributed

key-value data stores with reliable and “always-

writable” properties, leads to the development of Ama-

zon Dynamo[7] and Yahoo! PNUTS[8]. An open-

source clone of Dynamo, Cassandra[9], has also been

developed by the Apache community. Oracle NoSQL

Database[10] using Oracle Berkeley DB as the under-

lying data storage engine provides flexible durabili-

ty and consistency policies. Similar systems such as

Voldemort 6○, SimpleDB 7○, are all categorized as key-

value data stores. Key-value data stores are characte-

rized as simplified highly scalable databases addressing

properties of being schema-free, simple-API, horizontal

scalability and relaxed consistency.

Google responds to the web-scale storage challenges

by developing a family of systems. Google File Sys-

tem (GFS)[11] is a distributed file system for large dis-

tributed data-intensive applications, providing with an

OS-level byte stream abstraction on a large collection of

commodity hardware. Bigtable[12] is a hybrid data stor-

age model built on GFS. Megastore[13] and Spanner[14]

are two systems over the Bigtable layer. Megastore

blends the scalability and the fault tolerance ability

of Bigtable with transactional semantics over distant

data partitions. Spanner is a multi-versioned, globally-

distributed and synchronously replicated database by

adopting True Time, which combines an atomic clock

with a GPS clock for synchronization across world-wide

datacenters. HBase 8○ and Hypertable 9○ provide open-

source versions of Google’s Bigtable.

Google developed the MapReduce framework that is

highly scalable and parallel for big data processing[15].

Taking the released MapReduce paper as the guide-

line, open-source equivalents were developed as well,

such as the Apache Hadoop MapReduce platform built

on the Hadoop Distributed File System (HDFS)[16].

Numerous NoSQL systems based on MapReduce and

Hadoop utilize a large collection of commodity servers

to provide high scalability. For example, a set of sys-

tems with high-level declarative languages, including

Yahoo! Pig[17], Microsoft SCOPE[18] and Facebook

Hive[19], are realized to compile queries into the MapRe-

duce framework before the execution on the Hadoop

platform. Greenplum[20] integrates the ability to write

MapReduce functions over data stored in their parallel

1○ A technique overview of the Oracle Exadata Database Machine and Exadata Storage Server. Oracle White Paper, 2012.
http://www.oracle.com/technetwork/database/exadata/exadata-technical-whitepaper-134575.pdf, Dec. 2014.

2○ IBM PureData System for Analytics architecture: A platform for high performance data warehousing and analytics.
http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf, Dec. 2014.

3○ Teradata past, present, and future. http://isg.ics.uci.edu/scalable dml lectures2009-10.html, May 2014.
4○ https://voltdb.com/, May 2014.
5○ http://www.vertica.com/, May 2014.
6○ http://project-voldemort.com/, May 2014.
7○ http://aws.amazon.com/en/simpledb/, May 2014.
8○ http://hbase.apache.org/, May 2014.
9○ http://hypertable.org/, May 2014.
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Fig.1. Landscape of representative data management systems.

database products. HadoopDB[21] is to connect multi-

ple single-node database systems using Hadoop as the

task coordinator and the network communication layer.

Queries are parallelized across nodes using the MapRe-

duce framework. There are also a number of commer-

cialized systems that combine parallel DBMSs with the

MapReduce framework such as Cloudera 10○, Teradata

Aster 11○.

The landscape of representative data management

systems can be divided into two categories, as summa-

rized in Fig.1. The relational zone includes systems

supporting relational data, such as conventional rela-

tional databases, appliances and New SQL systems.

Systems in the non-relational zone evolve from emerg-

ing infrastructures such as the key-value store, Bigtable,

and Hadoop.

1.2 Synopsis

Having set the stage for large-scale data manage-

ment systems, in this survey, we delve deeper to present

our insights into the critical aspects of big data appli-

cations. We study the essential aspects as follows.

• Data Model. We capture both physical and con-

ceptual aspects of the data model for large-scale data

management systems.

• System Architecture. We give a comprehensive

description of diverse architectures by examining and

distinguishing the way how various modules are orches-

trated within a system and how the data flow control

logic is distributed throughout the system.

• Consistency Model. We investigate progressive

consistency levels applied by existing systems, and ana-

lyze various consistency models ranging from the weak-

est one to the strongest one.

Based on our taxonomies and analysis, we then iden-

tify the principles for the implementation of large-scale

data management systems including:

• facilitating the close integration of data modeling

and data partitioning by the hybrid storage layout;

• obtaining high scalability with the SEDA/Map-

Reduce architecture;

• scaling out the concurrency control protocol based

on timestamps;

• developing restrictions on strong consistency mod-

els properly for scalability;

• overcoming the weakness of BASE through stron-

ger consistency models such as BASIC.

The remainder of this survey is organized as follows.

Section 2 discusses the different designs of data model

from two aspects of the physical layout and the concep-

tual schema. Section 3 undertakes a deep study on the

diverse scalable architecture designs. Section 4 presents

the different levels of consistency models, and the trade-

off for scalability. Section 5 provides our analysis based

on the taxonomies, and proposes principles on the im-

plementation for large-scale data management systems.

Section 6 concludes this survey.

2 Data Model

Data model consists of two essential levels: the

physical level and the conceptual level. The details of

10○ https://www.cloudera.com/, May 2014.
11○ http://www.asterdata.com/, May 2014.
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how data is stored in the database belong to the physi-

cal level of data modeling 12○. The schemas specifying

the structure of the data stored in the database are

described in the conceptual level.

2.1 Physical Level

A key factor affecting the performance of any data

management system is its storage layout on the physi-

cal layer used to organize the data on database hard

disks. There are three mechanisms to map the two-

dimensional (2D) tables onto the 1D physical storage,

i.e., row-oriented layout, column-oriented layout, and

hybrid-oriented layout.

Row-Oriented Layout. Data has been organized

within a block in a traditional row-by-row format,

where all attributes data of a particular row is stored

sequentially within a single database block. Traditional

DBMSs towards ad-hoc querying of data tend to choose

the row-oriented layout.

Column-Oriented Layout. Data is organized in a

significant deviation of the row-oriented layout. Eve-

ry column is stored separately in the column-oriented

layout and values in a column are stored contiguously.

Analytic applications, in which attribute-level access

rather than tuple-level access is the frequent pattern,

tend to adopt the column-oriented layout. They can

then take advantage of the continuity of values in a

column such that only necessary columns related with

the queries are required to be loaded, reducing the I/O

cost significantly[22].

Hybrid-Oriented Layout. The design space of the

physical layout is not limited to merely row-oriented

and column-oriented layouts, but rather that there is a

spectrum between these two extremes, and it is possible

to build the hybrid layout combining the advantages of

purely row- and column-oriented layouts.

Hybrid-oriented layout schemas are designed based

on different granularities. The most coarse-grained

granularity essentially adopts different layouts on diffe-

rent replicas like fractured mirrors[23]. The basic idea is

straightforward: rather than two disks in a mirror being

physically identical, they are logically identical in which

one replica is stored in the row-oriented layout while the

other one is in the column-oriented layout. Fractured

mirror can be regarded as a new form of RAID-1, and

the query optimizer decides which replica is the best

choice for corresponding query execution. The fine-

grained hybrid schema[24-25] integrates row and column

layouts in the granularity of individual tables. Some

parts of the table are stored with the row-oriented lay-

out, while other parts apply the column-oriented layout.

An even finer schema is based on the granularity of disk

blocks. Data in some blocks is aligned by rows while

some is aligned by columns. To some extent, we can

consider that, row-oriented layout and column-oriented

layout are special extreme cases of hybrid-oriented lay-

out.

2.2 Conceptual Level

Obtaining maximum performance requires a close

integration between the physical layout and the concep-

tual schema. Based on the interpretation of data, three

different conceptual data structures can be defined, i.e.,

unstructured data store, semi-structured data store,

and structured data store.

Unstructured Data Store. All data items are unin-

terrupted, isolated, and stored as a binary object or a

plain file without any structural information. Unstruc-

tured data store takes the simplest data model: a map

allowing requests to put and retrieve values per key.

Extra efforts are required from programmers for the in-

terpretation on the data. Under the restricted and sim-

plified primitives, the key-value paradigm favors high

scalability and performance advantages[7-8,11]. Due to

the lack of structural information to extract data items

separately, the row-oriented physical layout is the only

choice for the unstructured data store.

Semi-Structured Data Store. A semi-structured

data store is used to store a collection of objects that is

richer than the uninterrupted, isolated key/value pairs

in the unstructured data store. A semi-structured data

store, being schemaless, has certain inner structures

known to applications and the database itself, and

therefore can provide some simple query-by-value ca-

pability, but the application-based query logic may be

complex[12]. Because of its nature of schemalessness, a

semi-structured data store can only adopt row-oriented

layout on the physical layer.

Structured Data Store. A structured data store is

used to store highly structured entities with strict re-

lationships among them. Naturally, a structured data

store is defined by its data schema, and usually supports

comprehensive query facilities. As a representative of

structured data store, the relational database organizes

data into a set of tables, enforces a group of integrity

constraints, and supports SQL as the query language.

12○ By physical level, we mean a lower level of storage schemas, not actual file structures on disk.
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2.3 Data Model Taxonomy

Based on the classification of the physical layout and

the conceptual schema, we analyze currently prevailing

database systems and categorize them in an approp-

riate taxonomy, as demonstrated in Fig.2, based on our

observations outlined below.

Amazon’s Dynamo[7], Yahoo! PNUTS[8], Volde-

mort and SimpleDB are the typical systems belonging

to the category with the row-oriented physical layout

and the unstructured conceptual data store, since they

are built on the simple key-value paradigm by storing

data as binary objects (i.e., blobs) identified by unique

keys. These systems are all unstructured data stores

that can only use the row-oriented physical layout.

Google’s Bigtable[12] and some Bigtable-like sys-

tems like Cassandra[9], HBase, and Hypertable, are rep-

resentatives of semi-structured data stores built on the

hybrid-oriented physical layout. They treat each indi-

vidual table as a sparse, distributed, multi-dimensional

sorted map that provides the semi-structured data.

CouchDB 13○ and MongoDB 14○ considered as docu-

ment stores 15○, are another typical class of semi-

structured data stores while using the row-oriented

physical layout. Data in a document store is serialized

from XML or JSON formats so that row-oriented layout

is applied, similar to key-value stores.

C-store[6,26] supports the relational structured data

model, whereas tables are stored column-oriented

physically. MonetDB/X100[27-28] and commercial sys-

tems SyBase IQ 16○ and Vertica adopt the similar idea

of C-store. These systems benefit greatly from data

caching and compressing techniques. Having data from

each column with the same data type and low informa-

tion entropy stored close together, the compression ra-

tio can be dramatically enhanced to save a large amount

of storage.

Megastore[13] and Spanner[14] define a structured

data model based on relational tables stored on

Bigtable. Since they are built on top of Bigtable, the

hybrid layout is applied on the physical level. Same

as traditional relational databases, the data model is

declared in a schema. Tables are either entity group

root tables or child tables, which must declare a single

distinguished foreign key referencing a root table.

Oracle’s Exadata, IBM’s Netezza Server and

Greenplum[20] evolved from traditional parallel

database systems, and thus support the structured

data store. Furthermore, Exadata introduces hybrid

columnar compression (HCC) in the granularity of disk

blocks. HCC employs the similar idea of partition at-

tributes across (PAX)[29] combined with compression.

Netezza integrates row- and column-oriented layouts

on each individual table. Greenplum provides multiple

storage mechanisms with a variety of formats for diffe-

rent levels of compression modes. The column-oriented

13○ http://couchdb.apache.org/, May 2014.
14○ http://www.mongodb.org/, May 2014.
15○ http://en.wikipedia.org/wiki/Document-oriented database, May 2014.
16○ http://sybase.com/, May 2014.
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store with the slightly compressed format is applied

for data that is updated frequently, and append-only

tables are using the row-oriented store with the heavily

compressed format. These systems adopt the hybrid-

oriented layout.

3 System Architecture

The system architecture is the set of specifications

and techniques that dictate the way how various mo-

dules are orchestrated within a system and how data

processing logic works throughout the system.

In this section, we are going to classify systems ac-

cording to diverse architectures. There are four histori-

cal shifts in the architecture technology behind large-

scale data management systems:

1) invention of databases on the cluster of processors

(single or multi-core) with shared memory;

2) improvement of databases on the cluster of pro-

cessors with distributed memory but common storage

disks;

3) rise of parallel databases processing on shared-

nothing infrastructure;

4) popularization of the MapReduce parallel frame-

work and the distributed file system.

3.1 SMP on Shared-Memory Architecture

The symmetric multi-processing (SMP) on shared-

memory architecture, as illustrated in Fig.3, involves

a pool of tightly coupled homogeneous processors run-

ning separate programs and working on different data

with sharing common resources such as memory, I/O

device, interrupt system, and system bus. The single

coherent memory pool is useful for sharing data and

communication among tasks. This architecture is fairly

common that most conventional database management

systems have been deployed on such high-end SMP ar-

chitectures.

However, a small-scale SMP system consisting of

a few processors is not capable of managing large-

scale big data processing. It can be scaled “up” by

adding additional processors, memories and disks de-

vices, but is inevitably bounded by the resources limi-

tation. In particular, when data volumes are increasing

enormously, the memory bus bandwidth will be the ceil-

ing for scaling-up, and similarly I/O bus bandwidth can

also be clogged.

Processor

Thread Thread Thread

Thread Thread Thread

Memory Bus

Large Memory

I/O

I/O Bus

Storage Area Network

Processor Processor

Fig.3. SMP on shared-memory architecture.

In addition, the initial expense of scaling up SMP

server is quite high due to the larger capabilities and

often more complex architectures[30]. It has been ob-

served that the efficiency, scalability, and cost effective-

ness of SMP systems degrade beyond 32 modern high

performance microprocessors 17○. The SMP on shared-

memory architecture has the disadvantage of limited

scalability.

3.2 MPP on Shared-Disk Architecture

The massively parallel processing (MPP) on shared-

disk architecture is built on top of SMP clusters execut-

ing in parallel while sharing a common disk storage, as

demonstrated in Fig.4. Each processor within an SMP

cluster node shares the memory with its neighbors and

accesses to the common storage across a shared I/O

bus.

The shared-disk infrastructure necessitates disk ar-

rays in the form of a storage area network (SAN) or a

network-attached storage (NAS)[31]. For instance, Ora-

cle and HP grid solution orchestrates multiple small

server nodes and storage subsystems into one virtual

machine based on the SAN[30]. Unlike the shared-

memory infrastructure, there is no common memory lo-

cation to coordinate the sharing of the data. Hence ex-

plicit coordination protocols such as cache coherency[32]

and cache fusion[33] are needed[30].

The MPP on shared-disk architecture is commonly

used in several well-known scalable database solutions.

Two notable systems are Oracle Exadata Database Ma-

chine and IBM Netezza Performance Server (NPS).

17○ IBM. Scaling —– Up or out. IBM Performance Technical Report, 2002. http://www.redbooks.ibm.com/redpapers/pdfs/re-
dp0436.pdf, Dec. 2014.
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Exadata is a complete, pre-configured Oracle system

that combines Oracle RAC 18○ with new Exadata sto-

rage servers. Exadata improves parallel I/O and filters

only data of interest before transmitting. This process

of filtering out extraneous data as early in the data

stream as possible close to the data source can minimize

the I/O bandwidth bottleneck and free up downstream

components such as CPU and memory, thus hav-

ing a significant multiplier effect on the performance.

Netezza integrates the server, storage, and database, all

in a single compact platform. It proposes Asymmetric

Massively Parallel Processing (AMPP) mechanism with

query streaming technology that is an optimization on

the hardware level.
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Processor

Thread

Processor

Thread

Processor
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Thread Thread Thread Thread
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Fig.4. MPP on shared-disk architecture.

3.3 Sharding on Shared-Nothing Architecture

Based on the idea that data management systems

can be parallelized to leverage multiple commodity

servers in a network to deliver increased scalability and

performance, the parallelism on the shared-nothing in-

frastructure was coined for the new computing clus-

ters. The sharding on the shared-nothing architecture

is currently widely used in large-scale data management

systems[3,7-9,11-13].

In order to harness the power of this architecture,

data is partitioned across multiple computation nodes.

Each node hosts its own independent instance of the

database system with operating on its portion of data.

Each node is highly autonomous, performing its own

scheduling, storage management, transaction manage-

ment and replication. The autonomy allows additional

nodes to be involved without concerning about inter-

ruption with others.

Sharding on shared-nothing architecture has a two-

tier system design, as shown in Fig.5. The lower pro-

cessing unit tier is composed of dozens to hundreds of

processing machines operating in parallel. All query

processing is decoupled at the processing unit tier. In

the host tier, the assigned coordinator receives queries

from clients, divides the query into a sequence of sub-

queries that can be executed in parallel, and dispatches

them to different processing units for execution. When

processing units finish, the central host collects all in-

termediate results, handles post-processing and delivers

results back to the clients. There are two flavors of this

architecture that are centralized topology and decen-

tralized topology.
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Fig.5. Sharding on shared-nothing architecture.

Centralized Topology. Centralized topology uti-

lizes a dedicated centralized coordinator to manage

the system-wide membership state. The central server

hosts the entire metadata and periodically communi-

cates with each data server via heartbeat messages to

collect the status of each member. The central server

also takes charge of activities, typically including iden-

tifying the nodes that own the data with the key, rout-

ing the request to the nodes, and integrating for the

responses. The centralized topology simplifies the de-

sign and implementation of the complex architecture

since the central node has an authoritative view of the

whole system[8].

18○ http://www.oracle.com/technetwork/products/clustering/overview/index.html, May 2014.
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To prevent the central master server from easily be-

coming the bottleneck of the heavy workload, shadow

master mechanism is employed[11]. The key idea is to

separate the control flow and the data flow of the sys-

tem. The central master is only responsible for the

metadata operation, while clients communicate directly

with the data servers for reads and writes bypassing the

central master. This design also delivers high aggregate

throughput for high concurrent readers and writers per-

forming a variety of tasks.

Decentralized Topology. Unlike the centralized

topology, systems such as Dynamo[7] and Cassandra[9]

choose the implementation of decentralized topology.

All nodes take equal responsibility, and there are no

distinguished nodes having special roles. This decen-

tralized peer-to-peer topology excels the centralized one

on the aspect of single point failure and workload ba-

lance. The gossip-based membership protocol[34] is a

classical mechanism to ensure that every node keeps a

routing table locally and is aware of the up-to-date state

of other nodes. Consistent hashing[35] is widely used

in the decentralized topology implementation. Consis-

tent hashing is a structure for looking up a server in

a distributed system while being able to handle server

failures with minimal effort. A client can send requests

to any random node, and the node will forward the

requests to the proper node along the ring.

3.4 MapReduce/Staged Event-Driven Archi-

tecture

In the last decade, the importance of shared-nothing

clusters has been enhanced in the design of web ser-

vices. Interesting architectures have been proposed to

deal with massive concurrent requests on large data vo-

lumes of excessive user basis. One representative design

is the well-known MapReduce framework for processing

large datasets[15]. Another design is the Staged Event-

Driven Architecture (SEDA), which is intended to allow

services to be well conditioned for loading, preventing

resources from being over-committed when the demand

exceeds service capacity[35].

Applications programmed with MapReduce frame-

work are automatically parallelized and executed on a

large cluster of commodity servers. The framework con-

sists of two abstract functions, Map and Reduce, which

can be considered as two different stages as well. The

Map stage reads the input data and produces a collec-

tion of intermediate results; the following Reduce stage

pulls the output from Map stage, and processes to final

results. The trend of applying MapReduce framework

to scale out configurations with lower-end commodity

servers has become popular, due to the drop in prices

of the hardware and the improvement in performance

and reliability.

Staged event-driven architecture (SEDA) is de-

signed based on the event-driven approach that has

been introduced and studied for various software ap-

plications, such as dynamic Internet servers and high

performance DBMSs[35-36]. The event-driven approach

implements the processing of individual task as a fi-

nite state machine (FSM), where transitions between

states in the FSM are triggered by events. The basic

idea of this architecture is that a software system is con-

structed as a network of staged modules connected with

explicit queues, as illustrated in Fig.6[35]. SEDA breaks

the execution of applications into a series of stages con-

nected by explicitly associated queues. Each stage rep-

resents a set of states from the FSM, and can be re-

garded as an independent, self-contained entity with its

own incoming event queue. Stages pull a sequence of

requests, one at a time, off their incoming task queue,

invoke the application-supplied event handler to pro-

cess requests, and dispatch outgoing tasks by pushing

them into the incoming queue of the next stage. Each

stage is isolated from one another for the purpose of

easy resource management, and queues between stages

decouple the execution of stages by introducing ex-

plicit control boundaries[35]. It has been shown that the

aforementioned MapReduce framework can also be re-

garded as an architecture based on SEDA, and the basic

MapReduce framework resembles the two-staged SEDA

architecture. The general MapReduce extensions[37-38],

introducing pipelined downstream data flow between

multiple functional MapReduce pairs, behave identi-

cally as SEDA[39].

Event Queue Event Handler

Thread Pool

Controllers

Outgoing

Events

Fig.6. Staged event-driven architecture.

There has been some recent work on bringing ideas

from MapReduce/SEDA to database management sys-
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tems. The SEDA design has been applied to im-

prove the staged database performance through exploit-

ing and optimizing locality at all levels of the memo-

ry hierarchy of the single symmetric multiprocessing

system at the hardware level[36]. Some systems aim

to integrate query construction into the MapReduce

framework to allow greater data independence, auto-

matic query optimization, and instruction reusability

at the query level[17-18]. There are also attempts to

program the MapReduce/SEDA over high performance

parallel databases as a hybrid solution at the systems

level[19-21,40].

3.5 System Architecture Taxonomy

Based on the above analysis, we present the taxono-

my of the large-scale data management system architec-

ture in Fig.7.

Due to the long-time popularity of the shared-

memory multi-thread parallelism, almost all major tra-

ditional commercial DBMS providers support products

with the SMP on shared-memory architecture, such

as Microsoft SQL Server, Oracle Berkeley DB and

Postgres-R, to name a few.

Microsoft Azure server[3] is built on Microsoft (MS)

SQL Server and uses centralized topology over the

shared-nothing infrastructure. This architectural ap-

proach is to inject the specific cluster control with

minimal invasion into the MS SQL Server code base,

which retains much of the relational features of MS SQL

Server. To enhance the scalability, MS Azure also as-

sembles multiple logical databases to be hosted in a sin-

gle physical node, which allows multiple local database

instances to save on memory with the internal database

structures in the server.

MySQL Cluster 19○ applies a typical sharding on

shared-nothing architecture based on MySQL. Data is

stored and replicated on individual data nodes, where

each data node executes on a separate server and main-

tains a copy of the data. MySQL Cluster automati-

cally creates node groups from the number of replicas

and data nodes specified by the user. Each cluster also

specifies the central management nodes.

H-Store[5] is a highly distributed relational database

that runs on a cluster of main memory executor nodes

on shared-nothing infrastructure. H-Store provides an

administrator node within the cluster that takes a set

of compiled stored procedures as inputs.

Megastore[13] is a higher layer over Bigtable[12].

Megastore blends the scalability of Bigtable with the

traditional relational database. Megastore partitions

data into entity groups, providing full ACID seman-

tics within groups, but only limiting consistency across

them. Megastore relies on a highly available and per-

sistent distributed lock service for master election and

location bootstrapping.

Yahoo! PNUTS[8] is a massively parallel and geo-

graphically distributed system. PNUTS uses a pub-

lish/subscribe mechanism where all updates are firstly

forwarded to a dedicated master, and then the master

propagates all writes asynchronously to the other data

sites.

System 

Architecture

Shared-Resources

SMP on Shared-Memory

Sharding

Centralized

Decentralized

MapReduce/SEDA

MPP on Shared-Disk

Microsoft SQL Server

Postgre-R, BerkeleyDB

Traditional Database

Oracle RAC, ExaData

IBM Netezza, Exalytics

Teradata

MS Azure, MySQL Cluster

Megastore, PNUTS, H-Store

Calvin

Dynamo, Cassandra

Spanner, F1

Hive, Pig, SCOPE

Greenplum, HadoopDB

Dremel, Dryad, SAP HANA

Spark, Rubato DB

Shared-Nothing

Fig.7. Taxonomy of system architecture.

19○ MySQL Cluster architecture overview. MySQL Technical White Paper, 2005. http://wiki.jokeru.ro/wp-content/uploads/-
2013/10/mysql-cluster-technical-whitepaper.pdf, Dec. 2014.
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Calvin[41] is designed to serve as a scalable transac-

tional layer above any storage system that implements

a basic distributed non-transactional storage. Calvin

organizes the partitioning of data across the storage

systems on each node, and orchestrates all network

communication that must occur between nodes in the

course of transaction execution with optimized locking

protocol.

Systems above all elect and utilize certain logi-

cally central nodes to manage the coordination of the

whole cluster, and thus they all belong to the centrali-

zed topology category. Dynamo[7], Cassandra[9] and

Spanner[14] opt for the symmetric structure on the

decentralized topology over the centralized one based

upon the understanding that the symmetry in decen-

tralization can simplify the system provisioning and

maintenance. Systems with the decentralized topology

basically employ a distributed agreement and group

membership protocol to coordinate actions between

nodes in the cluster.

Dynamo uses techniques originating in the dis-

tributed system research of the past years such as

DHTs[42], consistent hashing[43], quorum[44]. Dynamo

is the first production of system to use the synthesis of

all these techniques[7].

Facebook Cassandra[9] is a distributed storage sys-

tem for managing very large amounts of structured data

spread out across many commodity servers. Cassandra

brings together the data model from the Bigtable and

the distributed system technologies from Dynamo.

Spanner[14] is a scalable, multi-version, globally dis-

tributed database system based on the “True Time”

API, which combines an atomic clock and a GPS clock

to timestamp data so that it can be synchronized across

multiple machines without the need of centralized con-

trol. F1[45] is built on top of Spanner, which provides

extremely scalable data storage, synchronous replica-

tion, and strong consistency and ordering properties.

Hive[19,40], Scope[18], and Pig latin[17], built on top

of Hadoop, compile SQL-like declarative queries into

a directed acyclic graph of MapReduce jobs executed

on Hadoop. They systematically leverage technologies

from both parallel databases and MapReduce frame-

work throughout the software stack.

Spark[46] introduces resilient distributed dataset

that lets applications keep data in memory across

queries, and automatically reconstruct data nodes in

failure. Its parallel operations fit into the iterative

MapReduce which extends the traditional framework

to support iterative data analysis. Spark focuses on

applications that reuse a set of data across multiple

parallel operations. Shark[47] is a low-latency system

built on Spark, which can efficiently combine SQL en-

gine and machine learning workloads, while supporting

fine-grained fault recovery.

Greenplum[20] is a hybrid system that enables to

execute write functions in SQL queries across multi-

ple nodes in MapReduce style. It makes the effort for

parallel loading of Hadoop data, retrieving data with

MapReduce, and accessing Hadoop data by SQL.

HadoopDB[21] is built based on the idea of providing

Hadoop access to multiple single-node DBMS servers

and pushing data as much as possible into the engine.

HadoopDB is to connect multiple single-node database

systems by using Hadoop as the task coordinator and

the network communication layer. Queries are paral-

lelized across nodes using the MapReduce framework.

Dremel[48] uses a multi-level serving tree to execute

queries that resemble the SEDA during data process.

Each query gets pushed down to the next level in the

serving tree, and is rewritten at each level. The result

of the query is assembled by aggregating the replies re-

ceived from the leaf servers at the lowest level of the

tree, which scan the tablets in the storage layer in par-

allel.

Dryad[39] is based on a direct acyclic graph (DAG)

that combines computational vertices with communica-

tion channels to form a data flow graph. The vertices of

the graph are on a set of available computers, commu-

nicating through files, TCP pipes, and shared-memory

FIFOs. Dryad schedules vertices to run simultaneously

on multiple computers for parallelism. The arbitrary

execution data flow through the communication chan-

nel in Dryad is identical to SEDA.

SAP HANA[49] database is the core of SAP’s new

data management platform. It introduces the calcula-

tion graph model that follows the classical data flow

graph principle. The calculation model defines a set

of intrinsic operators based on different types of nodes.

Source nodes represent persistent table structures or

the outcome of other calculation graphs. Inner nodes

reflect logical operators consuming one or multiple in-

coming data flows and produce any number of outgoing

data flows.

Rubato DB[4] is constructed as a network of grid en-

capsulated modules on the shared-nothing infrastruc-

ture. Each staged grid encapsulated module runs on

a grid node and accesses only the data stored in the

DAS (direct-attached storage) of the node. All grid

nodes are connected by a (high speed or otherwise)
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network. Rubato DB utilizes different communication

channels among all stages, depending on locations of

stages and/or the system resources. A set of soft-

ware instructions are also introduced to specify all basic

operations and/or data packets. Each instruction car-

ries all necessary information required for a request or a

data packet, and the system will process in a relay-style

by passing the instruction from one staged grid module

to the next one until it is completed.

4 Consistency Model

One of the challenges in the design and implementa-

tion of big data management systems is how to achieve

high scalability without sacrificing consistency. The

consistency property ensures the suitable order and de-

pendency of operations throughout the system, helping

to simplify application development. However, most

large-scale data management systems currently imple-

ment a trade-off between scalability and consistency, in

that strong consistency guarantees, such as ACID[50],

are often renounced in favor of weaker ones, such as

BASE[8]. In this section, we are going to classify sys-

tems according to different consistency levels based on

ACID and BASE.

4.1 ACID Properties

There are a set of properties that guarantee

that database transactions are processed reliably, re-

ferred to as ACID (atomicity, consistency, isolation,

durability)[50]. Database management systems with

ACID properties provide different isolation levels,

mainly including serializability, snapshot isolation, and

read committed[51].

Serializability, the highest isolation level, guarantees

that the concurrent execution of a set of transactions

results in a system state that would be obtained if trans-

actions were executed serially, i.e., one after another. It

is typically implemented by pessimistic reads and pes-

simistic writes, achieving the condition that unless the

data is already updated to the latest state, the access

to it is blocked.

Snapshot isolation is a multi-version concurrency

control model based on optimistic reads and writes. All

reads in a transaction can see a consistent committed

snapshot of the database. A data snapshot is taken

when the snapshot transaction starts, and remains con-

sistent for the duration of the transaction. Restrictions

such as “The First-Committer Wins” rule allow snap-

shot isolation to avoid the common type of lost update

anomaly[52].

Read committed, allowing applications trading off

consistency for a potential gain in performance, gua-

rantees that reads only see data committed and never

see uncommitted data of concurrent transactions.

If we use the symbol > to represent the stronger

relationship between two isolation levels, it is shown

that[51]:

serializability > snapshot isolation > read committed.

To provide high availability and read scalability,

synchronous replication is an important mechanism.

With synchronous replication, rather than dealing with

the inconsistency of the replicas, the data is made un-

available until update operations are propagated and

completed in all or most of replicas. Update operations

may be rejected and rolled back if they fail to reach

all or a majority of the destination replicas within a

given time. When serializable consistency is combined

with synchronous replication, we can achieve one-copy

serializability[52], in which the execution of a set of

transactions is equivalent to executing the transactions

in the serial order within only one single up-to-date

copy. Similarly, combining read committed and snap-

shot isolation with synchronous replication, one-copy

read committed and one-copy snapshot isolation can be

obtained, respectively[53].

4.2 BASE Properties

The ACID properties work fine with horizontally

scalable, relational database clusters. However, they

may not well fit in the new unstructured or non-

relational, large-scale distributed systems, in which

flexible key/value paradigm is favored and the network

partition or node failure can be normal rather than rare.

Naturally, many large-scale distributed key-value store

systems, such as Amazon Dynamo[7], Yahoo! PNUTS[8]

and Facebook Cassandra[9], choose BASE, a consis-

tency model, weaker than ACID. BASE, standing for

basically available, soft-state, eventually consistent, can

be summarized as: the system responds basically all

the time (basically available), is not necessary to be

consistent all the time (soft-state), but has to come to

a consistent state eventually (eventual consistency)[54].

Various BASE consistency models have been speci-

fied, and thus we first categorize these models and

present multiple system implementations to demon-

strate different levels of consistency model.
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4.2.1 Eventual Consistency

Eventual consistency, one of the fundamental re-

quirements of BASE, informally guarantees that, if no

new updates are made to a given data item, eventua-

lly all accesses to that data item will return the last

updated value.

Even though a system with eventual consistency

guarantees to “eventually” converge to a consistency

state, it increases the complexity of distributed soft-

ware applications because the eventual consistency does

not make safety guarantees: an eventually consistent

system can return any value before it converges[54-55].

Eventual consistency may not provide a single image

system since it makes no promise about the time inter-

vals before the convergence is reached. In addition, the

value that eventually achieved is not specified. Thus,

additional restriction is required from applications to

reason the convergence[56-58].

4.2.2 Causal Consistency

Causality is described as an abstract condition that

ensures execution in a cluster agrees on the relative or-

dering of operations which are causally related. Con-

ditions of causality based on reads and writes derive

from causal memory[59]. Causal consistency guarantees

the relative ordering of read and write operations that

are causally related[55,60]. Causality is described as an

abstract condition that ensures execution in a cluster

agrees on the relative ordering of causally related ope-

rations. The causality exists between two operations

op1 and op2, if one of the following conditions holds:

1) write-read dependency: op1 → op2, if op1 is a

write operation that writes the data item x, and op2 is

a read operation that reads x after op2;

2) read-write dependency: op1 → op2, if op1 is a

read operation that reads the data item x, and op2 is a

write operation that overwrites the value of x op1 has

read;

3) write-write dependency: op1 → op2, if both op1
and op2 are write operations on the same data item x,

and op2 overwrites the value written by op1.

The dependency order defines the relative ordering

of read and write operations that are causally related.

It requires that reads respect the order of causally re-

lated writes. Under causality, all operations that could

have influenced one operation must be visible before the

operation takes effect. Implementation of causal con-

sistency usually involves dependency tracking[55,60-61].

Dependency tracking associated with each operation

is employed to record meta-information for reasoning

about the causality. Each process server reads from

their local data items and determines when to apply

the newer writes to update the local stores based on

the dependency tracking.

4.2.3 Ordering Consistency

Instead of merely ensuring partial orderings between

causality dependent operations, ordering consistency

is an enhanced variation of causal consistency ensur-

ing global ordering of operations. Ordering consistency

provides the monotonicity guarantee of both read and

write operations to each data item.

1) The “monotonic writes” guarantee ensures that

write operations being applied in the identical order on

all nodes.

2) The “monotonic reads” guarantee ensures that

reads only see progressively newer versions of data on

each node.

The “monotonic writes” guarantee can be enforced

by ensuring that write operation can be accepted only if

all writes made by the same user are incorporated in the

same node[62]. It can be achieved by designating one

node as the primary node for every record; and then all

updates to that record are first directing to the primary

node. The primary node orders operations by assigning

them monotonically increasing sequence numbers. All

update operations, together with their associated se-

quence numbers, are then propagated to non-primary

nodes by subscribing them to a queue ensuring updates

are delivered successfully. In the case that the primary

node fails, one of the non-primary nodes is elected to

act as the new primary node[8,55,63].

From the analysis above, causal consistency is

stronger than eventual consistency. Further, it is not

difficult to see that ordering consistency is stronger than

causal consistency in that a system that guarantees or-

dering consistency also guarantees causal consistency,

but not vice versa, since the causal consistency does

not prevent conflicting updates[61]. If we use the sym-

bol > to represent the stronger relationship among two

consistency models, the following demonstrates that all

the three consistency models form a linear order:

ordering consistency > causal consistency >

eventual consistency.

More generally, if we consider each operation in

BASE as a single operation transaction 20○, the opera-

20○ By the view of single operation transaction, we mean “start transaction” and “commit” are added before and after each and
every database operation respectively.
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tion schedule in BASE can have an equivalent schedule

in the view of single operation transaction in ACID.

Considering the bounded staleness[64-65] for values ob-

served by read, the ordering consistency permits pos-

sibly stale of data for read at low cost; however, the

read committed guarantees that every read observes the

most recent and consistent value of data committed be-

fore the start of the transaction. We may conclude the

stronger relationship among all consistency models in

both ACID and BASE as:

serializability > snapshot isolation >

read committed > ordering consistency >

causal consistency > eventual consistency.

4.3 Consistency Model Taxonomy

Based on the discussion of consistency models, we

categorize the implementation of different systems into

the taxonomy as shown in Fig.8. The classification is

based on our ensuing analysis.

Spanner[14,45], Megastore[13] and Spinnaker[66] pro-

vide one-copy serializability with a two-phase commit

and Paxos-based protocol[67]. Megastore and Spinnaker

provide serializable pessimistic transactions using strict

two-phase locking protocol. Spanner adopts strong

timestamp semantics. Every transaction is assigned a

commit timestamp, and these timestamps allow Span-

ner to correctly determine whether a state is sufficiently

up-to-date to satisfy a read. Paxos protocol ensures

that data will be available as long as the majority of the

replicas are alive. To support transactions across mul-

tiple sites, the two-phase commit protocol and Paxos

are usually combined, such as MDCC[68], 2PC-PCI[61],

Paxos-CP[69], and a group of engines have been imple-

mented, such as Chubby[70] and ZooKeeper[71]. Rubato

DB[4] supports serialization by introducing a formula

protocol that is a variation of the multiversion times-

tamp concurrency control protocol. The formula pro-

tocol reduces the overhead of conventional implementa-

tion by using formulas rather than multiple versions. A

dynamic timestamp ordering mechanism is also used to

increase concurrency and reduce unnecessary blocking.

VoltDB and H-Store[5,72-73] support the SQL

transaction execution through the stored procedure. By

initiating a global order before execution, all nodes can

asynchronously execute the stored procedures serially

with the same order. Furthermore, H-Store and VoltDB

perform the sequential execution in a single-threaded

manner without any support for concurrency. The com-

bination of above mechanisms makes the transaction

execution in those systems resemble a single operation

call.

MySQL Cluster and Microsoft Azure[3] combine tra-

ditional read committed with the master-slave mode

synchronization. Exadata isolates read-only transac-

tions using snapshot isolation. High water mark with

low-overhead mechanism is introduced for keeping track

of the value in multi-replica environment in C-Store[6].

SAP HANA[49] relies on MVCC as the underlying con-

currency control mechanism to synchronize multiple

writers and provide distributed snapshot isolation.

HyperDex[74] provides ordering consistency with a

chaining structure, in which nodes are arranged into a

value-dependent chain. The head of the chain handles

all write operations and dictates the total order on all

updates to the object. Each update flows through the

chain from the head to the tail, and remains pending
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Fig.8. Taxonomy of consistency model.
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until an acknowledgement of commit received from the

tail. Read operations can be dealt with by different

nodes as long as the latest committed value of data can

be obtained on that node.

Yahoo! PNUTS[8] provides a per-record timeline

consistent model that preserves ordering consistency.

PNUTS introduces a pub/sub message broker, which

takes charge of receiving updates from a master node

and sending them to other nodes in an identical se-

quence order.

GFS[11] and Bigtable[12] both use Chubby[70], a dis-

tributed locking mechanism for distributed node coor-

dination. They rely on Chubby with a lease agreement

to apply mutations to each chunk in the same order.

The global mutation order is defined by the lease grant

order.

COPS[55,63] and Eiger[61] track dependencies on ver-

sions of keys or operations to enforce causal consistency.

An operation does not take effect until verifying that

the operation’s dependencies are satisfied.

Bolt-on[60] provides a shim layer that upgrades the

eventual consistency of an underlying general-purpose

data store to the causal consistency for the application.

Bolt-on sets a generalized, declarative specification of

causal cut as the criterion to determine which writes

are made visible to clients.

Dynamo[7], Voldemort and Cassandra[9] provide

eventual consistency for allowing applications with “al-

ways writeable” property, that is, write operations can

always be accepted by any node. Vector clock, also

named as version vector, is associated with data to de-

termine the eventual consistent state during reconcilia-

tion.

5 Implementation Principles for Large-Scale

System

So far, we have built the taxonomies for the state-

of-the-art large-scale data management systems based

on the data model, the system architecture, and the

consistency model. In this section, we will discuss and

analyze the scalability limitation for different designs

and implementations, and provide our principles for the

implementation of the next generation large-scale data

management systems.

5.1 Data Model Implementation

To achieve high scalability, systems need to dis-

tribute data to different nodes. The simplest way for

the data distribution is to deploy individual tables at

different nodes. However, since concurrent transactions

usually access different portions of one table, the ta-

ble partition can improve the performance by parallel

execution on a number of nodes. In addition, when

processing a single query over a large table, the re-

sponse time can be reduced by distributing the exe-

cution across multiple nodes[20]. Partitioning can be

either horizontal or vertical, and systems require a close

integration between data model and data partition.

Physical Level. For the row-oriented layout, hori-

zontal partitioning is properly used where each par-

tition contains a subset of the rows and each row is

in exactly one partition. For column-oriented or hy-

brid layout, vertical or mixed partitioning can be ap-

plied. The fine-grained mixed partitioning is often im-

plemented by vertically partitioning columns of a table

into frequent and static column groups. Columns fre-

quently accessed together are clustered into the same

frequent column group, while columns seldom accessed

are gathered into static column groups[24,72]. In ad-

dition, columns with large-size data are separated in-

dependently to take the advantage of the compression

benefits of column stores[26].

Conceptual Level. Regarding to the conceptual

schema, numerous NoSQL high scalable systems such as

key-value stores[7] and Bigtable-like stores[12] represent

a recent evolution of making trade-off between scala-

bility and schema complexity. These NoSQL systems

adopt the variant of schema-less unstructured data for

large-scale data applications. However, some NewSQL

systems (relative to NoSQL) seek to provide the high

scalability and throughput characteristics of NoSQL,

while still preserve the high level of structured data

model of the relational database[5,13-14,20].

To achieve the high scalability of a structured data

store, the partitioning must be based on the rela-

tional schema and query workloads in order to mini-

mize the contention. Inappropriate partitioning may

cause data skew. The skewed data will decline the re-

sponse time and generate hot nodes, which easily be-

come a bottleneck throttling the overall performance

and scalability[75-76]. For example, to obtain the opti-

mal partitioning, the schema of OLTP workload always

transits to a tree structure. Tuples in every descen-

dent table are partitioned according to the ancestor

that they descend from. As a consequence, data ac-

cessed within a transaction will be located in the same

data node[24,72].

Based on the analysis above and the taxonomy in

Section 2, we believe that:
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1) The data model with lower conceptual level can

simplify the design and implementation for scale-out ca-

pability, but data model with higher conceptual level is

not an obstacle of scalability as long as an optimal par-

titioning strategy is applied according to the schema;

2) The hybrid storage is the most flexible to leverage

the advantages of row stores and column stores. And

hybrid storage facilitates the close integration of data

modeling and data partitioning.

5.2 Architecture Scalability

Systems based on shared-resources infrastructure

can only be scaled up with inevitable bound due to

resources contention and limitation. For example,

the internal bus bandwidth, the number of CPUs,

the hardware coordination mechanism[30], the context

switches[73,77], all can inhibit scalability.

In the sharding on shared-nothing architecture, lo-

cal resources serve local processors; thus it overcomes

the disadvantage of shared-resource infrastructure. The

shared-nothing design is intended to support scaling out

smoothly by involving new computation nodes. The

centralized topology uses one dedicated centralized co-

ordinator for managing system-wide membership state.

Thus, it may suffer the single point failure and the cen-

tral node is susceptive to become the bottleneck. The

scalability of the decentralized peer-to-peer topology

can excel that of the centralized one[7,9].

Though systems on sharding on shared-nothing ar-

chitecture are desired to achieve ultimate scalability,

and have been proven to scale really well into tens of

hundreds of nodes. However, there are very few known

data management system deployments with thousands

of nodes[21,39,45,48]. One reason is that at such scale,

node failure becomes rather common, while most shard-

ing systems such as parallel relational databases are not

fault tolerant enough[21,45].

SEDA/MapReduce architecture is able to scale to

thousands of nodes due to its superior scalability, fault

tolerance, and flexibility. In particular:

1) The architecture facilitates the use of shared-

nothing infrastructure as a scalable platform for appli-

cations, which is easy to scale out the critical compo-

nents by adding more computing resources. Computing

resources can be distributed flexibly to wherever more

computation power is needed to eliminate bottleneck.

2) The decomposition of a complex database mana-

gement system into various stages connected by queues

not only enables modularity and reuse of stage modules,

but also allows two types of parallel data processing:

pipeline parallelism and partition parallelism.

3) Since a data flow is distributed not only between

multiple server instances (usually running on different

physical nodes) but also between different staged mod-

ules, multiple identical stages can be executed on mul-

tiple cluster machines with data replication in order to

achieve high availability for fault tolerance.

4) The architecture easily supports data parti-

tion. Different partitions can be distributed to different

staged modules on multiple computing nodes. Different

stage modules are communicated by passing operation.

The downstream module can start consuming operation

when the producer module passes the operation.

A large number of system applications based on this

architecture are such good examples.

1) Google uses the MapReduce framework internally

to process more than 20 PB datasets per day, achiev-

ing the ability to sort 1 PB data using 4 000 commodity

servers[15].

2) Hadoop at Yahoo! is assembled on 3 000 nodes

with 16 PB raw disk[16].

3) At Facebook, Hive[19] forms the storage and ana-

lytics system infrastructure that stores 15 PB data and

processes 60 TB new data everyday with thousands of

nodes[40].

4) Microsoft Dryad conducts data mining style ope-

rations to tens of perabytes data using a cluster of

around 1 800 computers[39].

5) Google Dremel manages trillion-record, multi-

perabyte datasets, running on 1 000∼4 000 nodes with

near-linear scalability[48].

Based on the above empirical evidence and the sys-

tem taxonomy in Section 3, we can have that the scala-

bility capacity of these different architectures can be

ordered as:

SEDA/MapReduce >> Sharding Decentralized >

Sharding Centralized >> Shared-Disk MPP >

Shared-Memory SMP.

Thus, the SEDA/MapReduce architecture is the

most suitable for large-scale data management systems.

5.3 Consistency Model Implementation

We propose a consistency model taxonomy in which

the model in a higher level provides stricter guarantees

than the model in a lower level. Now we discuss the

relationship between consistency and scalability, espe-

cially how the implementation of different consistency

models affects the scalability.
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5.3.1 Protocols for ACID

The common implementation to provide serializabi-

lity is based on distributed two-phase locking (2PL)

protocol[13,66]. However, the locking-based protocol

adds overhead to each data access due to the ma-

nipulation to acquire and release locks, and it limits

concurrency and scalability in case of conflicting ac-

cesses, and adds overheads due to deadlock detection

and resolution[78-80]. Another similar pessimistic con-

currency control protocol implementation is based on

distributed serialization graph testing (SGT), which

characterizes conflict serializability via the absence of

cycles in the conflict graph[79]. The limitation of this

implementation is closely related to the problem of test-

ing a distributed graph for cycles, which also arises the

deadlock detection issue. Thus, the transactions exe-

cuted by a distributed large-scale database should not

cause distributed deadlocks that are rather difficult and

expensive to deal with.

Optimistic protocol is lock-free, assuming that con-

flicts between transactions are rare. However, to gua-

rantee that the validation phase can produce consis-

tent results, a global order checking is required, which

will degrade performance heavily in large-scale dis-

tributed data systems[14]. Additionally, in the presence

of slower network connection, more transactions may

crowd into the system causing excessively high chances

of rollbacks[78]. Therefore, the timestamp-based con-

currency control is the most suitable for large-scale data

management systems, and Google Spanner[14] based on

“True Time” is such a good example.

The communication latency caused by various pro-

tocol implementations (e.g., two-phase commit, three-

phase commit, Paxos) can limit the scalability due

to the overhead caused by multiple network round-

trips[81]. Though a protocol implementation performs

well within a small scale cluster, it may severely limit

the scalability of large-scale systems, since the avail-

ability and coordination overheads become worse as the

number of nodes increases[82-83].

Constraining the scope of transactions is one typi-

cal way to minimize the high-latency communication

overhead. The restriction of transactions alleviates the

transaction coordination protocol and reduces message

delays. A list of systems such as Azure[3], MySQL Clus-

ter, Megastore[13], Sinfonia[84] and H-Store[5,73] only

support restricted transactions that can be executed in

parallel to completion without requiring communica-

tion with other repositories or any commit vote phase.

This restrictive scope is reasonable for the applications

where data can be well deployed, so that distributed

transactions will be very rare in such cases.

5.3.2 Alternative for BASE

BASE can achieve high scalability much easier than

ACID, but it has its own potential disadvantages.

• Firstly, eventual consistency makes only liveness

rather than safety guarantee, as it merely ensures the

system to converge to a consistent state in the future[55].

• Secondly, the soft state presents challenges for de-

velopers, which requires extremely complex and error-

prone mechanisms to reason the correctness of the sys-

tem state at each single point in time[7-8,45].

• Thirdly, additional restriction is required for the

soft state to converge to the eventual consistency[56-58].

We first use a simple example to demonstrate de-

ficiencies of BASE listed above. Consider one data

item 21○ with three columns (fields) L, S, and H, and

the following three atomic operations on the data item

that are non-commutative 22○:

1) a(x): Wa(L = L×(1+x%), S = S×(1+x%),H =

H × (1 + x%));

2) b(y): Wb(L = L+ y, S = S + y,H = H + y);

3) check: Rc(L, S,H), Assert(L = S = H).

Naturally, we assume that the state of the system

transits from one consistent state to another if and only

if it is caused by the completion of an atomic opera-

tion. We also assume that, due to column partitioning

and grid partitioning for scalability, columns L, S, H

are partitioned into different tables and distributed to

three different nodes N1, N2, N3, respectively. For sim-

plicity, we assume initial values in the columns L, S, H

are 100.

Consider a schedule

S = {a(20), b(10), check, check},
as shown in Table 1, with overlaps as follows.

1) a(20) is incomplete when b(10) starts at t2.

2) The first check is issued at t3 before a(20) is done.

In such schedule, both checks return inconsistent

states. The first check suffered from soft state that

requires users to reason about the correctness. The

second check, even though being issued after t4, can-

not guarantee the eventual consistent state. Thus ad-

ditional restriction is required to achieve reconciliation.

21○ For simplicity, we consider only one data item, but all the discussions are valid for a set of data items.
22○ Commutative operations such as increment/decrement can exchange the execution order without affecting the result.
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Table 1. Schedule S = {a(20), b(10), check, check} with Write/Write and Read/Write Overlaps

Schedule Value

Time Node N1 Node N2 Node N3 L S H

t1 Wa1(L× (1 + 20%)) Wa2(S × (1 + 20%)) 120 120 100

t2 Wb1(L+ 10) Wb2(S + 10) Wb3(H + 10) 130 130 110

t3 Rc1(L = 130) Rc2(S = 130) Rc3(H = 110)

t4 Wa3(H × (1 + 20%)) 130 130 132

t5 Rc1(L = 130) Rc2(S = 130) Rc3(H = 132)

Note: Wai,Wbi, Rci represent the corresponding actions of operations a, b and check on node Ni, i = 1, 2, 3 respectively.

In order to resolve the weakness of BASE, BASIC

properties[85] are proposed, standing for Basic Availa-

bility, Scalability, and Instant Consistency.

• Basic availability: the system can response to all

continuously operations.

• Scalability: the system is able to scale out by

adding more resources for increasing workloads.

• Instant consistency: all data seen by reads reflects

a consistent state of the system, i.e., each read returns

the result that reflects all write operations that have

received response successfully prior to the read.

The BASIC properties aim to achieve the availabi-

lity and scalability same as BASE properties while get-

ting rid of the soft state by introducing instant consis-

tency.

Intuitively, a schedule satisfies instant consistency

if its equivalent schedule in the view of single opera-

tion transaction is serializable. Because of the write

latency and data distribution, it is very difficult, if not

impossible, to use only serial schedules in large-scale

data management systems. We can define instant con-

sistency based on snapshot as following.

Definition 1. A snapshot of a database represents

a complete copy of all the data items updated by a se-

rial schedule. A schedule of a set of operations satisfies

instant consistency if any READ operation reads from

a snapshot.

Rubato DB[4] implemented a timestamp-based for-

mula protocol that guarantees BASIC properties. It

demonstrates that BASIC can be achieved with linear

scalability, and the performance decline induced by

BASIC is acceptable compared with the extra efforts

needed to manipulate inconsistent soft states of BASE.

That is, BASIC pays a reasonable price for a higher

consistency than BASE.

Based on the discussion above and the classification

in Section 4, we believe that:

1) The weak consistency model like BASE can

achieve high scalability much easier than the strong

consistency model like ACID. But the strong consis-

tency model does not hinder the scale-out capability as

long as a proper implementation (or reasonable restric-

tion) is developed.

2) The timestamp-based concurrency control proto-

cols are the most suitable to scale out.

3) Consistency models stronger than BASE, such as

BASIC, are desirable for application developers.

6 Conclusions

In this survey, we investigated, categorized, and

studied several critical aspects of large-scale data mana-

gement systems. These systems have several unique

characteristics mainly including scalability, elasticity,

manageability, and low cost-efficiency. We first enume-

rated various data models on physical layouts and con-

ceptual representations. Further on, we focused on the

design and implementation of system architectures. We

developed architecture taxonomies for prevailing large-

scale database systems to classify the common architec-

ture designs and provide comparison of the capability

for scale-out. We then compared two categories of the

consistency models and classified prevailing systems ac-

cording to the respective taxonomies. With this map-

ping, we have gained insights into the trade-off between

consistency and scalability.

Based on our taxonomies and characterization, we

identify the principles for the implementation of large-

scale data management systems including:

• the hybrid storage layout can facilitate the close

integration of data modeling and data partitioning;

• the SEDA/MapReduce architecture is the optimal

to achieve high scalability;

• the timestamp-based protocol is the most suitable

to scale out;

• the strong consistency model is not an obstacle for

scalability with a proper implementation (or reasonable

restriction);

• BASE is so weak that a stronger consistency model

like BASIC is desirable.

To conclude, this work delves deeper to lay down

a comprehensive taxonomy framework that not only
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serves as a direction of analyzing the large-scale data

management systems for the big data application, but

also presents references and principles for what future

implementation and efforts need to be undertaken by

developers and researchers.
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