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Abstract As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising
performance over its local counterparts and has drawn wide attention in image processing community. The implementation
of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute
the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second
step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a
two-step regularization framework for NLM in this paper. Meanwhile, using the framework, we reinterpret several non-local
filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter
for removing salt-pepper noise with encouraging experimental results.

Keywords non-local means, non-local median, framework, image denoising, regularization

1 Introduction

Denoising is an important task in the image process-
ing area. Up to date, a variety of denoising methods
have been developed in different forms. Because the
existing methods mostly assume that the images are
relatively smooth, their denoising results are usua-
lly achieved by a weighted averaging[1]. The typical
schemes, such as the mean or Gaussian filter, are ineffi-
cient in preserving details due to their isotropy charac-
teristic. In order to better preserve the details, several
edge-aware filtering schemes, e.g., anisotropic filter[2],
Yaroslavsky’s filter[3], Susan filter[4], bilateral filter[5],
have been invented respectively. Though improving
the preservation of details in different degrees, these
filters still have two defects[1]: 1) the weights involved
in averaging only depend on the single pixels, which
is not robust when these pixels are contaminated with
noise; 2) there exist artificial shocks in the denoised
results. And, a common point in the filters mentioned
above is that they all operate in a local neighborhood.

Motivated by the existence of high redundancy in
natural images[6], Buades et al. proposed a non-local
means filter (NLM)[1]. Unlike its precursors typically
operating in a local neighborhood, NLM operates in

a non-local area (even the whole image) by using a
dissimilarity measure between patches[7-8]. Despite its
simplicity and intuition, NLM has been empirically vali-
dated to clearly outperform other classic filters[7]. Simi-
lar to NLM, the UINTA filter proposed by Awate and
Whitaker[8] also restores the pixels by non-local and
path-based strategy which, in fact, has become a core of
most state-of-the-art filters including BM3D[9] and K-
SVD[10]. However, the main difference between UINTA
and NLM is that the former is an iterative algorithm,
while the latter is based on a non-iterative scheme.

As reviewed in [7], all the follow-up researches of
NLM can roughly be divided into 3 lines: 1) improv-
ing NLM itself, 2) combining it with other denoising
methods, and 3) adapting it to other image processing
tasks. Following line 1, we develop a two-step regu-
larization framework for NLM, whose idea is mainly
from the observations of the NLM’s implementation.
Though such a two-step viewpoint on NLM has ap-
peared in several literatures such as [11-14], our frame-
work is more general than the existing ones. For the
existing models, despite their two-step solving proce-
dures for filter designs, their objective functions are
single-step. Thus essentially, the definitions for the
existing models are single-step. By contrast, in our
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framework, not only the solving procedure but also the
objective definition is two-step. As a result, all compo-
nents (terms) involved in our framework can be selected
more flexibly. For example, one can naturally use dif-
ferent measures in the two steps. As illustrated shortly
in Subsection 2.3, some non-local filters can be inter-
preted by the proposed framework but cannot be done
by the existing models[11-14].

Finally, we summarize the contributions of this pa-
per as follows.

1) Inspired by the observations mentioned above, we
propose a two-step regularization framework for NLM.

2) To illustrate the effectiveness of the framework,
based on it, we reinterpret several non-local filters such
as NLM and NLEM[15] in a unified view.

3) The proposed framework provides a platform for
developing new non-local filters. With its help, we de-
velop a novel non-local median filter (NLMED) with
encouraging experimental results.

The rest of this paper is structured as follows. In
Section 2, we propose our framework and reinterpret
two classical non-local filters (NLM and NLEM) based
on it. In Section 3, based on the framework, we develop
a novel non-local filter (NLMED) to remove salt-pepper
noise. Finally, we give the concluding remarks in Sec-
tion 4.

2 Proposed Two-Step Regularization
Framework

2.1 Proposition of the Framework

Consider the following image denoising problem,

Y = X + N,

where Y is the observed (noisy) image, X is the ideal
(noise-free) image to be recovered, N is Gaussian noise
with mean zero, and Ω = [1, . . . , m] × [1, . . . , n] is a
bounded domain on which the image is defined.

Let X̂ denote the denoised results, which is an esti-

mate of X. For any pixels i, j ∈ Ω , wij = −‖Yi−Yj‖2
2,α

h2

is the similarity weight between i and j, C(i) is the
normalized factor of wij defined as

C(i) =
∑

j∈Ω

exp
(
− ‖Yi − Yj‖2

2,α

h2

)
, (1)

and the gray value X̂(i) is computed by NLM[1] in terms
of

X̂(i) =
1

C(i)

∑

j∈Ω

wijY (j), (2)

where Yi and Yj denote image patches of size P × P
centered at pixels i and j. h acts as a filtering para-
meter.

In (1), ‖·‖2,α is the Gaussian weighted L2 norm, and
α is the standard deviation of Gaussian kernel. That
means ‖Yi − Yj‖2,α is the weighted Euclidean distance
measure between Yi and Yj . For the sake of computa-
tion, a non-local search window of size S×S is generally
recommended to replace the whole image in (2) to re-
store gray value of each pixel i. Thus, the complexity
of NLM is O(P 2S2) per pixel. More details of NLM
can be found in [1, 7].

The implementation of NLM in (2) can be divided
into two steps, i.e., obtaining the weights and com-
puting the weighted means. Though superficially the
weights are directly defined in NLM, inspired by the
work in [12-13, 16], we know that they can be obtained
through optimizing some objective with Shannon en-
tropy regularizers. Meanwhile, the means also result
from optimizing a weighted least squares objective. It
is well known that different objectives can lead to dif-
ferent optimization results. And at the same time, dif-
ferent regularizers can reflect different problem priors.
Inspired by the observations above, we propose a two-
step regularization framework in (3)∼(4):

step 1 : ŵ =arg min
w

∑

i,j∈D

wp1
ij M1(Yi, Yj)+

λ1J1(w), (3)

step 2 : X̂ =arg min
X

∑

i,j∈D

ŵp2
ij M2(Xi, Yj)+

λ2J2(X), (4)

where Mk (k = 1, 2) are dissimilarity measures between
patches or points. Step 1 is to obtain the weights wij

by minimizing an objective regularized by J1(w). And
the objective depends on the patch dissimilarities, i.e.,
M1(Yi, Yj). Meanwhile, step 2 is to recover the ideal
image X by minimizing another regularized objective.
Both steps are described as corresponding optimization
problems. Some constraints associated with specific
problem could also be imposed. The two steps can work
not only independently but also iteratively if necessary.
The patches could be reduced to single pixels if needed.
Instead of being directly defined in many other non-
local algorithms such as [1, 17-18], the weights wij and
the image X both have clear optimization backgrounds
in our framework.

For convenience of the problem formulation, we spe-
cially call

∑
i,j∈D wp1

ij M1(·, ·) and
∑

i,j∈D ŵp2
ij M2(·, ·)

in the framework as harmonious terms. And Jk(·)
(k = 1, 2) are regularization terms associated with some
known priori knowledge. λk > 0 (k = 1, 2) are trade-
off parameters used to balance the two terms. D is
the working range of pixels i and j. Before introducing
these components of the framework in detail, we list key
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Table 1. Key Notations

Notation Description

X Ideal image

Y Noisy image

Ω = [1, . . . , m]× [1, . . . , n] A bounded domain on which the image is defined

Ω ′ ⊂ Ω Noise-free candidate index

D ⊂ Ω Working range of pixels

i = (i1, i2) ∈ Ω , j = (j1, j2) ∈ Ω Pixels

X(i) Gray value of pixel i

Xi Image patch centered at pixel i

Y t
i A patch whose size is varied and limited by threshold t

wij Similar weight between i and j

h Filtering parameter of NLM[1]

α Standard deviation of Gaussian kernel

u Meaning the operation is based on unpolluted (noise-free) pixels

t Threshold parameter in UNLM[19]

p1, p2 Nonnegative real number

P × P Size of image patch

S × S Size of search window

Mk (k = 1, 2) Dissimilarity measures between patches or points

Jk (k = 1, 2) Regularization terms

λk (k = 1, 2) Trade-off parameters

‖ · ‖1 L1 norm

‖ · ‖2 L2 norm

‖ · ‖2,α Gaussian weighted L2 norm where α is the standard deviation of Gaussian kernel

‖ · ‖2,α,u Measure based on unpolluted pixels

WMed{·, ·} Weighted median operator

notations involved in this paper in Table 1 for conve-
nient reading.

2.2 Components of the Framework

2.2.1 Harmonious Terms

In our framework, the harmonious terms aim to keep
consistence between the weights wij and the dissimila-
rities Mk. That is, large weight should correspond to
small dissimilarity (vice verse). In order to facilitate
solving, we restrict pk > 1. The dissimilarity measures
Mk satisfy the following definition[20]:

Definition 1. The dissimilarity measure M on a set
of vectors V is a real valued function on V ·V satisfying

M∗
a =M(a, a) 6 M(a, b)

=M(b, a) < ∞, ∀a, b ∈ V . (5)

Compared with the definition of distance, the
dissimilarity measure is not necessarily to be restrained
by triangle inequality. Thus it is generally more con-
venient for us to define a dissimilarity measure than
a distance. Some often-used dissimilarity measures are
listed and roughly classified into three categories in [21].
And according to specific conditions, different dissimila-
rities adopted will lead to different optimized results.

2.2.2 Regularization Terms

In the framework, the regularization terms Jk (k =
1, 2) are generally used to impose problem priori know-
ledge on the corresponding objective variables. For
example, in step 1, one often expects the weights
wij to have clear probability meaning. And thus we
need to impose the constraints:

∑
j wij = 1, wij >

0. In fact, there exists a class of (discrete) entropy
measures (called as generalized entropy) to describe
the uncertainty within a probability distribution, i.e.,
v = (v1, v2, . . . , vn)T ∈ ∆ = {v ∈ Rn|∑n

i=1 vi = 1,
vi > 0}[22]. And hence, any one of them can be used in
the framework according to problem prior. In what fol-
lows, we simply introduce the definition of generalized
entropy[23]:

Definition 2. Generalized entropy is a mapping
H : ∆ → R+ (R+ denotes the set of nonnegative
real numbers) that satisfies the following two criteria
(symmetry and concavity) :

1) H(va) = H(vb), for any va ∈ ∆ and any vb ∈ ∆
whose elements are a permutation of the elements of
va;

2) H(·) is a concave function.
We refer the reader to [24] for the details of some

typical examples of generalized entropy. Replacing J1

with −H in (3) means applying the maximum entropy
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priori knowledge in step 1 in our framework. Further,
due to the concavity of H(·) and linear constraints of
wij , the step becomes a convex subproblem and thus
can produce a global optimization solution.

In contrast to J1 which usually adopts generalized
entropy regularization for the desired property of the
weights wij , J2 plays the same regularization role but
respects a different desired property of the ideal image
X. For example, the image is usually expected to have
smoothness, sparsity, fidelity or other characteristics.
And some corresponding regularizations for the pro-
perties of the ideal image have been discussed deeply
in [11].

2.3 Reinterpretations of NLM and NLEM

As mentioned before, in NLM, the weights can be
obtained through optimizing an objective regularized
by Shannon entropy, and the means are also derived
from optimizing a weighted least squares problem. Fur-
thermore, with the help of the framework, we formulate
NLM as a two-step optimization procedure as follows:

step 1 : ŵ =arg min
w

∑

i,j∈Ω

wij‖Yi − Yj‖2
2,α +

h2
∑

i,j∈Ω

wij lnwij ,

s.t.
∑

j∈Ω

wij = 1, wij > 0, i, j ∈ Ω , (6)

step 2 : X̂ =arg min
X

∑

i,j∈Ω

ŵij‖X(i)− Y (j)‖2
2, (7)

where solution X̂(i) exactly equals that in (2). And
the detailed formulation can be found in Appendix A.1.
Different from the direct definition of NLM in [1], the
reinterpretation of the same filter provided in (6)∼(7)
is a specific case of our two-step framework, which is
beneficial for us to survey NLM in an alternative (op-
timization) view:

1) The filter is a weighted least square regression
process.

2) The weights wij result from optimizing a Shannon
entropy regularized objective.

3) More interestingly, h2 in NLM exactly plays a
role of regularization parameter. And the larger h2,
the larger the penalty imposed.

It should be noted that the above understanding
for NLM does not seem so apparent in its original
definition[1].

To further indicate the efficiency of the framework,
based on it, we reinterpret the robust version of NLM
(NLEM) too, which is recently proposed in [15]. Similar

to that of NLM, the reinterpretation is directly given
as follows:

step 1 : ŵ =arg min
w

∑

i,j∈Ω

wij‖Yi − Yj‖2
2 +

h2
∑

i,j∈Ω

wij lnwij ,

s.t.
∑

j∈Ω

wij = 1, wij > 0, i, j ∈ Ω ,

step 2 : X̂ =arg min
X

∑

i,j∈Ω

ŵij‖Xi − Yj‖2.

Step 1 can be solved in the same way as that in NLM in
(6). And the objective in step 2 is called the Euclidean
median (or geometric median)[25], which is computed
by iterations in [15]. The overall computational com-
plexity of NLEM is O(P 2S2Niter) per pixel, where Niter

is the average number of iterations.
When using the framework to interpret NLEM, we

find that the dissimilarity measures Mk (k = 1, 2) in
the two steps are different. Concretely, compared with
M1 = ‖ · ‖2

2 (the squares of the L2 norm), M2 = ‖ · ‖2

is more robust to heavy noise[25] and thus leads to
better performance in denoising. However, the incon-
sistence between M1 and M2 in NLEM also leads to
another consequence, i.e., this filter cannot be inter-
preted by the existing models[11-14]. Recently, a new
non-local median filter (INLEM) is developed in [26],
which not only compensates such inconsistence but also
improves the denoising performance of NLEM. Mean-
while, the filter shares the same computational com-
plexity of O(P 2S2Niter) per pixel as NLEM. Based on
our framework, an interpretation of INLEM will be
tabulated in the following section.

In addition to being able to reinterpret (analyze)
some existing non-local methods, the two-step frame-
work also provides us a platform to develop novel algo-
rithms. And, in the following section, a novel non-local
median filter for removing salt-pepper noise is deve-
loped based on it.

3 Non-Local Median Filter (NLMED)

3.1 Salt-Pepper Noise and Median Filters

It has been proved that NLM is a state-of-the-art
filter for Gaussian noise[7]. However image noise is not
only limited to this kind. For example, salt-pepper
noise exists pervasively in real world too, which can
usually be caused by analog-to-digital converter errors,
bit errors in transmission, faulty memory locations,
etc.[27] Denote the dynamic range of noisy image Y to
be [lmin, lmax], the noise model is defined as
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Y (i) =





lmin, with probability p/2,

lmax, with probability p/2,

X(i), with probability 1− p,

where p is the noise level.
Up to date, researchers have developed various fil-

ters to remove salt-pepper noise. For the typical me-
dian filter (MF), the fixed window and the equally-
weighted nature limit its performance to some ex-
tent. As a result, different improved methods, including
weighted median filter (WMF)[28], adaptive median fil-
ter (AMF)[29], etc., are successively developed. Among
them, AMF is still widely used for its significantly abi-
lity in removing salt-pepper noise. In its implemen-
tation, AMF first manages to distinguish whether the
pixel is polluted or not, and if true, then replace it by
the median. Such an “identification-based” idea is a
highlight of AMF. An overview of median-type filters
can be found in [30].

3.2 Motivations

There are two possible factors which lead to the fact
that NLM is not so effective in removing salt-pepper
noise.

1) According to the reinterpretation of NLM in (6),
the weight wij relies on the dissimilarity of two corre-
sponding patches Yi, Yj , and the patch-based dissimila-
rities can preserve the order for Gaussian noise, i.e., the
following equality (relation) holds[1].

E‖Yi − Yj‖2
2,α = ‖Xi −Xj‖2

2,α + 2σ2.

However, this equality is not true anymore for salt-
pepper noise.

2) An important characteristic of salt-pepper noise
is that only some of the pixels are corrupted and the
rest are all still noise free[29-30]. However, NLM mana-
ges to restore all pixels regardless of whether the pixels
have been corrupted or not.

3.3 Implementations

According to the first factor mentioned above, an
intuitive idea is to redefine the dissimilarity measures
Mk only based on the noise-free candidates.

In the framework described in (3)∼(4), let
[pmin, pmax] be the dynamic range of patches Yi and Yj ,
adopt a similar strategy to that of AMF, the noise-free
candidate index set of the two patches is then defined
by

Ku = {k|Y (i− k) ∈ Yi, Y (j − k) ∈ Yj , Y (i− k) 6∈
{pmin, pmax}, Y (j − k) 6∈ {pmin, pmax},
Y (j − k) 6∈ {pmin, pmax}}.

Next, specially taking M1 as the form of (8) as

M1(Yi, Yj) = ‖Yi − Yj‖2
2,α,u

=
∑

k∈Ku

Gα(k)(Y (i− k)− Y (j − k))2. (8)

Then, for a fixed Ku, we have

‖Yi − Yj‖2
2,α,u = ‖Xi −Xj‖2

2,α,n, (9)

i.e., M1(Yi, Yj) = M1(Xi, Xj). (See Appendix A.2 for
the characteristics of M1 in detail). (9) states that the
novel M1 can preserve the dissimilarity based on the
noise-free candidates.

Considering the fact pointed out in Subsection 3.2,
only some of the pixels are corrupted and the rests
are all noise free, and we divide all the pixels into
two classes, i.e., noise-free ones (Ω ′ = ∪Ku) and noisy
ones (Ω\Ω ′). And for the noise-free ones, we regu-
larize them with the fidelity regularization term, i.e.,∑

i ‖X(i)− Y (i)‖1.
Further, considering that L1 norm is more rea-

sonable than L2 norm for designing salt-pepper noise
filters[31], we replace L2 norm with L1 norm to define
the dissimilarity measure M2. Except for adjusting Mk

(k = 1, 2) and the working range, the other components
of the framework in (3)∼(4) are set to the same as those
for NLM in (6)∼(7). Now substituting the above set-
tings to the framework, we get

step 1 : ŵ =arg min
w

∑

i∈Ω\Ω ′,j∈Ω ′
wij‖Yi − Yj‖2

2,α,u +

λ1

∑

i∈Ω\Ω ′,j∈Ω ′
wij lnwij ,

s.t. wij > 0,
∑

j

wij = 1,

i ∈ Ω\Ω ′, j ∈ Ω ′, (10)

step 2 : X̂ =arg min
X

∑
i∈Ω\Ω ′,j∈Ω ′ ŵij‖X(i)−

Y (j)‖1 + λ2

∑

i∈Ω ′
‖X(i)− Y (i)‖1,

(11)

where Ω ′ = ∪Ku is the noise-free candidate index set
of the whole image.

Solving the above optimization problem (Appendix
A.3) turns out

X̂(i) =
{

Y (i), if i ∈ Ω ′,

WMed{wij , Y (j)}, if i ∈ Ω\Ω ′, j ∈ Ω ′,
(12)

where WMed{·, ·} is the weighted median operator[28]

and wij = exp(−‖Yi−Yj‖2
2,α,u

λ1
). The new non-local me-

dian filter is termed as NLMED for short. Similar
to NLM, the complexity of NLMED is mainly from
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computing patch-based dissimilarities in the non-local
search window, and thus is also O(P 2S2) per pixel.

Although NLMED can be developed and interpreted
based on our framework, similar to NLEM, it also can-
not be interpreted based on the existing models[11-14]

due to the difference between M1 and M2.
Here, a universal version of NLM (UNLM[19]) should

be noted, which also borrows the “identification-based”
idea from AMF to compute the patch-based dissimila-
rities. However, UNLM is significantly different from
our NLMED.

1) Similar to NLM, UNLM is still a mean filter.
2) In UNLM, the pixels are recovered without fidelity

regularization.
3) The patch size in UNLM is adaptive and limited

by a threshold. As a result, the corresponding dissimi-
larity measure in this filter is different from that in
NLMED.

4) The computational complexity of UNLM per pixel
can be up to O(P 2

maxS
2), where Pmax × Pmax is the

largest patch size adopted in UNLM. And our experi-
ments will corroborate that UNLM generally consumes
more denoising time than NLMED.

Here, we denote the dissimilarity measure in UNLM
by ‖Y t

i − Y t
j ‖2

2,α,u to distinguish from that in NLMED
(t is the threshold). For more details of UNLM filter,
we refer the reader to [19].

For more clarity, we summarize the non-local filters
involved above in Table 2, in terms of the framework
proposed in (3)∼(4). The corresponding two-step op-
timization problems can be solved in the similar ways
which have been proposed in Appendix A.1 and Ap-
pendix A.3 for reinterpreting NLM and NLMED re-
spectively.

From Table 2, we can observe that our framework
is very general and flexible. In addition, it leaves some
blanks which are able to be filled to develop novel fil-
ters. And we can design other type filters by modifying
the components in the framework. Naturally this work
is just an initial realization.

Furthermore, what needs to be stressed is the diffe-
rence between the existing models[11-14] and this pro-
posed framework. For the former, despite adopting
implementation in a two-step way, i.e., alternation be-
tween the computation of the non-local means and re-
estimating the weights, their objective functions in-
volved are all still single-step. Therefore, the operations
in the two steps of the existing models should be con-
sistent. And as have been illustrated, some non-local
filters cannot be interpreted via the existing models be-
cause of the inconsistency of the dissimilarity measures
employed respectively in the two steps. On the other
hand, for this proposed framework, not only the imple-
mentation but also the objective definition is two-step,
and thus it is more general and flexible than the existing
ones.

3.4 Experiments

3.4.1 Experimental Settings

Similar to NLM which generalizes the mean filter
from local to non-local, for removing salt-pepper noise,
NLMED generalizes the median filter (MF) from local
to non-local too. In the following experiments, we aim
to validate the effects of our generalization by compar-
ing it with its local counterparts, i.e., MF and WMF.
Since the “identification-based” idea is borrowed in our
generalization, we also compare it with AMF. Mean-
while, we take the universal version of NLM (UNLM)
into our experiments, due to its activity in removing
salt-pepper noise.

In the following experiments, we adopt 10 popularly-
used images with 256×256 resolutions as listed in Fig.1.

For testing their denoising performances, we cor-
rupt all the images using salt-pepper noises with dif-
ferent levels and then evaluate both visual effects and
quantitative index (PSNR) in denoising. The PSNR[30]

is defined as PSNR = 10 log10

(
2552

MSE

)
with MSE =

1
|Ω|

∑
i∈Ω (X̂(i)−X(i))2. For MF, WMF and AMF, we

conduct six rounds of experiments with 3×3, 5×5, . . .,

Table 2. Interpretations of Non-Local Filters Based on Our Framework

Step 1 (Optimizing w) Step 2 (Optimizing X)

Harmonious Term Regularization Term Harmonious Term Regularization Term∑
i,j∈D wp1

ij M1(Yi, Yj) λ1J1(w)
∑

i,j∈D ŵp2
ij M2(Xi, Yj) λ2J2(X)

D p1 M1 D p2 M2

NLM[1] i, j ∈ Ω 1 ‖Yi − Yj‖22,α h2
∑

i,j∈Ω wij ln wij i, j ∈ Ω 1 ‖X(i)− Y (j)‖22
UINTA[8] i ∈ Ω , j ∈ Ai 1 ‖Y m

i − Y m
j ‖22,α h2

∑
i,j∈Ω wij ln wij i, j ∈ Ω 1 ‖Xm+1(i)− Y m(j)‖22

NLEM[15] i, j ∈ Ω 1 ‖Yi − Yj‖22 h2
∑

i,j∈Ω wij ln wij i, j ∈ Ω 1 ‖Xi − Yj‖2
INLEM[26] i, j ∈ Ω 1 ‖Yi − Yj‖2 h2

∑
i,j∈Ω wij ln wij i, j ∈ Ω 1 ‖Xi − Yj‖2

UNLM[19] i, j ∈ Ω 1 ‖Y t
i − Y t

j ‖22,α,u h2
∑

i,j∈Ω wij ln wij i, j ∈ Ω 1 ‖X(i)− Y (j)‖22
NLMED i ∈ Ω\Ω ′, 1 ‖Yi − Yj‖22,α,u λ1

∑
i∈Ω\Ω′,j∈Ω′ wij× i ∈ Ω\Ω ′, 1 ‖X(i)− Y (j)‖1 λ2

∑
i∈Ω′ ‖X(i)−

j ∈ Ω ′ ln wij j ∈ Ω ′ Y (i)‖1
Note: UINTA is an iterative algorithm, m is the iteration flag, and Ai is a subset of Ω , chosen at random for each i.
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Fig.1. 10 popularly-used images on which we perform denoising experiments. (a) Lena. (b) Boats. (c) Peppers. (d) Man. (e) Barbara.

(f) Cameraman. (g) Mandrill. (h) Stream. (i) House. (j) Hill.

13 × 13 windows respectively, and report their largest
average PSNR on the 10 images respectively. In the
experiments, we take the bell-shaped WMF[32] con-
cretely. For UNLM, we set the parameters to the val-
ues recommended in the original references[19]. For our
NLEM, the 21 × 21 search window is adopted, as that
recommended in [1, 7] for NLM. And in order to suf-
ficiently guarantee many uncorrupted pixels, the patch
size in NLMED is set to 13×13, which is slightly larger
than that in NLM. From step 2, we know that different
λ2 > 0 will lead to the same result for X. Meanwhile, as
shown in Fig.2, by searching a large range of candidates
on two tested images (Lena and Boats), we empirically
set λ1 = 30 in NLMED.

3.4.2 Experimental Results

Firstly, we show the CPU time of the filters involved
in the experiments, where the test image “House” is cor-
rupted with salt-pepper noise (30% noise level) and all
the filters are implemented by MATLAB 7.11 codes on
a PC equipped with INTEL 2.5-GHz CPU and 2.00 GB
RAM. For the three local filters, the typical run time of
MF is about 3 seconds, and that for WMF is about 24
seconds. AMF is the fastest, which consumes less than
1 second. Compared with the local filters, the non-local
ones all need more time in denoising. The run time of
NLMED is about 200 seconds. Especially for UNLM,
the implementation consumes up to 1 500 seconds.

Fig.2. PSNR results filtered by NLMED versus different coefficients on two tested images. (a) Results on Lena. (b) Results on Boats.
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Then, we summarize and report the average PSNR
of the compared filters on all the 10 images respectively
in Fig.3 and Table 3.

Fig.3. Results of the average PSNR on the 10 images (* stands

for experiments conducted with 7 × 7 window).

Furthermore, we give the comparison of visual ef-
fects on the image “Barbara” with 30% noise level in
Fig.4 as well.

From these results, we can obtain the following ob-
servations.

1) For the three local filters involved, WMF and
AMF both more effectively than MF in removing salt-
pepper noise. Especially AMF is significantly more
powerful than the other two in all noise levels.

2) The two non-local filters (UNLM, NLMED) both
obtain significantly larger PSNR and better visual ef-
fects than the local ones involved.

3) Compared with the visual effects of NLMED, the
denoised result of UNLM shows over-smoothness on the
texture areas to a certain degree. And the proposed
NLMED obtains the best performance among the fil-
ters involved.

In addition to the observations above, a fact should
be noted that considering computational complexity,
NLMED just adopts the fixed rather than adaptive
patch size as used in UNLM. Undoubtedly, the adop-
tion of the adaptive technique can further improve the
performance of our NLMED.

4 Conclusions

In this paper, we proposed a general two-step regu-
larization framework for NLM. This framework is in-
stinctive and flexible, from which we can analyze some
non-local filters in a unified view. Moreover, this frame-
work provides a platform to improve existing filters or
design new ones. For instance, based on the framework,
a non-local median filter (NLMED) was developed just
through selecting dissimilarity measure, regularization
term, and so on. Our final experiments exhibit encour-
aging results.

It must be noted that, similar to NLM, NLMED also
has high computational complexity. Fortunately there
are some speed up schemes that have been studied and
designed[17-18]. Undoubtedly, they can be borrowed to
speed up our filtering process.

To conclude, we noted some recent interesting
studies[33-34], which generalize non-local schemes from
denoising and deblurring to more general inverse prob-
lems including positron emission tomography (PET)
image reconstruction, compressed sensing, etc. How-
ever, the objective functions involved in these schemes
are still one-step, and thus not so flexible as the sepa-
rate objective functions in the two-step framework pro-
posed in this paper, which naturally provides a room
for further improvement.
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Appendix A.1 Solving the Optimization
Problem in (6) and (7)

The optimization problem is described as follows:

step 1 : ŵ =arg min
w

∑

i,j∈Ω

wij‖Yi − Yj‖2
2,α +

h2
∑

i,j∈Ω

wij lnwij ,

s.t.
∑

j∈Ω

wij = 1, wij > 0, i, j ∈ Ω , (6)
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step 2 : X̂ = arg min
X

∑

i,j∈Ω

ŵij‖X(i)− Y (j)‖2
2.

(7)

For optimizing wij in (6), the corresponding Lagrangian
function is constructed as follows:

L(wij) :=
∑

i,j∈Ω

wij‖Yi − Yj‖2
2,α + h2

∑

i,j∈Ω

wij lnwij−

η
( ∑

i,j∈Ω

wij − 1
)
.

Let ∂L
∂wij

= ‖Yi − Yj‖2
2,α + h2(lnwij + 1)− η = 0, then

wij = exp
( η

h2
− 1

)
exp

(
− 1

h2
‖Yi − Yj‖2

2,α

)
.

Since
∑

j∈Ω wij = 1, we get

exp
( η

h2
− 1

)
=

1
∑

j∈Ω

exp
(
− 1

h2
‖Yi − Yj‖2

2,α

) .

Thus, we obtain

ŵij =
1

C(i)
exp

(
− ‖Yi − Yj‖2

2,α

h2

)
,

where, C(i) =
∑

j∈Ω exp
(− ‖Yi−Yj‖2

2,α

h2

)
.

Similarly, for (7), let

∂
∑

i,j∈Ω

ŵij‖X(i)− Y (j)‖2
2

∂X(i)
= 2wij(X(i)− Y (j)) = 0,

we get

X̂(i) =
∑

j∈Ω

ŵijY (j)

=
1

C(i)

∑

j∈Ω

exp
(
− ‖Yi − Yj‖2

2,α

h2

)
Y (j).

Appendix A.2 Characteristics of M1 in (8)

In (8), the dissimilarity measure M1 is defined as

M1(Yi, Yj) = ‖Yi − Yj‖2
2,α,u

=
∑

k∈Ku

Gα(k)(Y (i− k)− Y (j − k))2,
(8)

where

Ku = {k|Y (i− k) ∈ Yi, Y (j − k) ∈ Yj ,

Y (i− k) 6∈ {pmin, pmax}, Y (j − k) 6∈ {pmin, pmax},
Y (j − k) 6∈ {pmin, pmax}}.

For a fixed Ku, we have

M1(Yi, Yj) =
∑

k∈Ku

Gα(k)(Y (i− k)− Y (j − k))2

=
∑

k∈Ku

Gα(k)(X(i− k)−X(j − k))2

=M1(Xi, Xj),

which can preserve the dissimilarity based on the noise-
free candidates. Further, for any two image patches A
and B, M1 satisfies the following constraints clearly:

0 = M1(A,A) 6 M1(A,B) = M1(B,A) < ∞.

That is, it is a dissimilarity measure defined in (5).
However, M1 does not satisfy the triangle inequality,
which can be illustrated by the following three specific
patches:

255 0 0

255 0 255

0 255 0

Y1

255 60 0

255 80 100

200 130 120

Y2

60 60 0

60 80 100

150 160 255

Y3

The three patches are all 3×3 size, the maximum and
the minimum gray levels of them are {pmin, pmax} =
{0, 255}. From the definition in (8), it is clear that

M1(Y1, Y2) = 0; M1(Y1, Y3) = 0; M1(Y2, Y3) > 0.

And thus

M1(Y1, Y2) + M1(Y1, Y3) < M1(Y2, Y3),

i.e., it is not a distance metric.

Appendix A.3 Solving the Optimization
Problem in (10) and (11)

The optimization problem is described as follows:

step 1 : ŵ =arg min
w

∑

i∈Ω\Ω ′,j∈Ω ′
wij‖Yi − Yj‖2

2,α,u +

λ1

∑

i∈Ω\Ω ′,j∈Ω ′
wij lnwij ,

s.t. wij > 0,
∑

j

wij = 1,

i ∈ Ω\Ω ′, j ∈ Ω ′, (10)

step 2 : X̂ =arg min
X

∑

i∈Ω\Ω ′,j∈Ω ′
ŵij‖X(i)−

Y (j)‖1 + λ2

∑

i∈Ω ′
‖X(i)− Y (i)‖1.

(11)
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Similar to optimizing wij in Appendix A.1, we first con-
struct Lagrangian function for (10) as:

L(wij) =
∑

i∈Ω\Ω ′,j∈Ω ′
wij‖Yi − Yj‖2

2,α,u +

λ1

∑

i∈Ω\Ω ′,j∈Ω ′
wij lnwij −

η
( ∑

i∈Ω\Ω ′,j∈Ω ′
wij − 1

)
.

Then let ∂L
∂wij

= 0, we obtain

ŵij =
1

C(i)

∑

j∈Ω ′
exp

(
− ‖Yi − Yj‖2

2,α,u

λ1

)
Y (j),

where C(i) =
∑

j∈Ω ′ exp
(− ‖Yi−Yj‖2

2,α,u

λ1

)
is a normali-

zing factor.
To optimize (11), we note that the pixels to be re-

covered in both the harmonious term and the regu-
larization term are disjoint and thus can be optimized
separately. Specifically, for any i ∈ Ω ′ and λ2 > 0,
we have X̂(i) = Y (i) from the second term. Mean-
while, for any i ∈ Ω\Ω ′, we formally differentiate∑

i∈Ω\Ω ′,j∈Ω ′ wij‖X(i) − Y (j)‖1 with respect to X(i)

to get

∂
∑

i∈Ω\Ω ′,j∈Ω ′
ŵij‖X(i)− Y (j)‖1

∂X(i)

=
∑

i∈Ω\Ω ′,j∈Ω ′
wijsign(X(i)− Y (j)).

Zeroing the above derivative, we obtain

X̂(i) =WMed{wij , Y (j)}

=WMed

{(
1

C(i)
exp

(
− ‖Yi − Yj‖2

2,α,u

λ1

))
, Y (j)

}

=WMed
{

exp
(
− ‖Yi − Yj‖2

2,α,u

λ1

)
, Y (j)

}
,

where WMed{·, ·} is the weighted median operator.
That is

X̂(i) =
{

Y (i), if i ∈ Ω ′,

WMed{wij , Y (j)}, if i ∈ Ω\Ω ′, j ∈ Ω ′.
(12)

In this way, we solve the optimization problem com-
pletely.


