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Abstract Cloud computing has recently emerged as a leading paradigm to allow customers to run their applications
in virtualized large-scale data centers. Existing solutions for monitoring and management of these infrastructures consider
virtual machines (VMs) as independent entities with their own characteristics. However, these approaches suffer from
scalability issues due to the increasing number of VMs in modern cloud data centers. We claim that scalability issues can be
addressed by leveraging the similarity among VMs behavior in terms of resource usage patterns. In this paper we propose
an automated methodology to cluster VMs starting from the usage of multiple resources, assuming no knowledge of the
services executed on them. The innovative contribution of the proposed methodology is the use of the statistical technique
known as principal component analysis (PCA) to automatically select the most relevant information to cluster similar VMs.
We apply the methodology to two case studies, a virtualized testbed and a real enterprise data center. In both case studies,
the automatic data selection based on PCA allows us to achieve high performance, with a percentage of correctly clustered
VMs between 80% and 100% even for short time series (1 day) of monitored data. Furthermore, we estimate the potential
reduction in the amount of collected data to demonstrate how our proposal may address the scalability issues related to
monitoring and management in cloud computing data centers.
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1 Introduction

In the last few years the widespread adoption of
virtualization techniques and service-oriented architec-
tures have led to the popularity of the cloud computing
paradigm. In the Infrastructure as a Service (IaaS) per-
spective, cloud providers allow customers to run their
applications in modern virtualized cloud data centers.
Customer applications typically consist of different soft-
ware components (e.g., the tiers of a multi-tier Web
application) with complex and heterogeneous resource
demand behaviors. In a virtualized cloud data cen-
ter, multiple independent virtual machines (VMs) are
jointly hosted on physical servers, and each VM runs a
specific software component of a customer application.

Due to the rapid increase in size and complexity
of cloud data centers, the process of monitoring these
systems to support resource management (e.g., perio-
dic VMs consolidation) is becoming a challenge from a
scalability point of view. We should also consider that
providers of IaaS cloud infrastructures do not have di-
rect knowledge of the application logic inside a software
component, and can only track OS-level resource uti-
lization on each VM[1-2]. Hence, most monitoring and

management strategies consider each VM of a cloud
data center as a single object, whose behavior is in-
dependent of the other VMs. This approach exacer-
bates the scalability issues related to the monitoring of
cloud data centers due to the amount of data to collect
and store when a large number of VMs are considered,
each with several resources monitored at high sampling
frequency[3].

Existing monitoring solutions for IaaS cloud data
centers tend to address scalability issues by reducing
the number of VM resources that are taken into ac-
count, typically considering only CPU- or memory-
related information[4-8]. However, these approaches are
likely to suffer important drawbacks, because limiting
the monitoring to CPU or memory resources may not
be sufficient to efficiently support VMs consolidation
strategies that cope with I/O bound or network bound
applications.

We claim that the scalability of monitoring in cloud
infrastructures may be improved by leveraging the simi-
larity between VMs behavior, considering VMs not as
single objects but as members of classes of VMs run-
ning the same software component (e.g., Web server or
DBMS of the same customer application). In particu-
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lar, we refer to a cloud scenario characterized by long-
term commitments, that is, we focus on customers that
outsource their data centers to a cloud provider pur-
chasing VMs for extended periods of time (for exam-
ple, using the Amazon so-called reserved instances①).
This scenario is expected and is a significant part of
the cloud ecosystem[9]. Hence, we can assume that cus-
tomer VMs change the software component they are
running with a relatively low frequency, in the order
of weeks or months. Once we have identified classes of
similar VMs, we may select a few representative VMs
for each class and carry out fine-grained monitoring
only on these representatives, with a major benefit on
cloud monitoring scalability.

In this paper we propose an innovative methodology,
namely PCA-based, to automatically cluster together
similar VMs on the basis of their resource usage. To
the best of our knowledge, the proposal of techniques
for automatic clustering of similar VMs is new, and is
only recently analyzed in [10-11]. The main innovation
of our proposal is the use of the principal component
analysis (PCA) to automatically remove not relevant
information from the VM behavior description, provid-
ing an improvement in terms of performance and com-
putational costs.

We apply the proposed methodology to two case stu-
dies: a dataset coming from an enterprise cloud data
center with VMs running Web servers and DBMS, and
a dataset originated by a virtualized testbed running e-
business applications with a synthetic workload. We
demonstrate that our methodology can achieve high
performance in automatic clustering even for short time
series (1 day) of monitored VM resource usage. Experi-
mental results show that the use of the PCA-based ap-
proach allows us to automatically select the most rele-
vant information for the clustering process, thus achiev-
ing a twofold improvement with respect to previous
studies[10-11]: first, we obtain better and more stable
clustering performance, with a percentage of correctly
classified VMs that remains between 100% and 80% for
every considered scenario; second, we reduce the com-
putational cost of the VM clustering phase. Finally, we
quantify the reduction in the amount of data collected
for management support in our enterprise cloud case
study, demonstrating the potential benefit for moni-
toring scalability.

The remainder of this paper is organized as follows.
Section 2 describes the reference scenario and motivates
our proposal, while Section 3 describes the methodology
for automatically clustering VMs with similar behavior.
Section 4 presents the two case studies and Section 5
describes the results of the methodology evaluation. Fi-

nally, Section 6 discusses the related work and Section 7
concludes the paper with some final remarks.

2 Motivation and Reference Scenario

In a complex scenario such as an IaaS cloud system,
resource management strategies are needed to guaran-
tee an efficient use of the system resources, while avoid-
ing overload conditions on the physical servers. We
consider a management strategy for the cloud system
which consists of two mechanisms, as in [12]: 1) a re-
active VM relocation that exploits live VM migration
when overloaded servers are detected[2]; 2) a periodic
consolidation strategy that places customer VMs on
as few physical servers as possible to reduce the in-
frastructure costs and avoid expensive resource over
provisioning[4,13].

The consolidation task is carried out periodically
with the aim to produce an optimal (or nearly optimal)
VM placement which reduces the number of shared
hosts. Existing consolidation decision models typically
try to predict VM workload over a planned period of
time (e.g., few hours) based on resource usage patterns
observed on past measurements, that are usually car-
ried out with a fine-grained granularity (e.g., 5-minute
intervals)[4,13]. Since consolidation strategies usually
consider each VM as a stand-alone object with inde-
pendent resource usage patterns, detailed information
has to be collected with high sampling frequency about
each VM, thus creating scalability issues for the moni-
toring system.

The proposed methodology aims to address cloud
monitoring scalability issues by automatically cluster-
ing similar VMs. The main goal is to cluster together
VMs running the same software component of the same
customer application, and therefore showing similar be-
haviors in terms of resource usage. For each identified
class, only few representative VMs are monitored with
fine-grained granularity to collect information for the
periodic consolidation task, while the resource usage
of the other VMs of the same class is assumed to fol-
low the representatives behavior. On the other hand,
the non-representative VMs of each class are monitored
with coarse-grained granularity to identify behavioral
drifts that could determine a change of class. At the
same time, sudden changes leading to server overload
are handled by the reactive VM relocation mechanism.
This approach allows us to significantly reduce the
amount of information collected for periodic consoli-
dation strategies.

The process of VM clustering is carried out periodi-
cally with a frequency sufficient to cope with changes in
the VM classes. We recall that our reference scenario

①Amazon EC2 Reserved Instances, http://aws.amazon.com/ec2/reserved-instances/, June 2013.
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is a cloud environment characterized by long-term com-
mitment between cloud customers and providers, where
we can assume that the software component hosted on
each VM changes with a relatively low frequency in the
order of weeks or months. Hence, clustering can be car-
ried out with a low periodicity (e.g., once every one or
few weeks). Furthermore, the clustering may be trig-
gered when the number of exceptions in VMs behavior
exceeds a given threshold, where for exception we mean
newly added VMs or clustered VMs that changed their
behavior with respect to the class they belong to. Any-
way, a precise determination of the activation period or
strategy of the clustering process is out of the scope of
this paper.

Fig.1 depicts the reference scenario. The scheme rep-
resents a cloud data center where each physical server,
namely host, runs several VMs. On each host we have
a hypervisor, with a monitor process that periodically
collects resources usage time series for each VM. The
collected data are sent to the time series aggregator
running on the host. The time series aggregator selects
the data to be communicated (with different periodi-
city) to the clustering engine, which executes the pro-
posed methodology to automatically cluster VMs, and
to the cloud controller, which is responsible for running
the consolidation strategy. On each host we also have a
local manager, which performs two tasks. First, it is re-
sponsible for taking decisions about live VM migration
to trigger in case of host overload[2]. Second, it executes
the consolidation decisions periodically communicated
by the cloud controller.

Let us now consider the dynamics occurring in the
considered cloud system to support VM clustering and

server consolidation. The process of VM clustering
starts from the collection of time series describing the
resources usage for each VM over a certain period of
time. The monitor processes are responsible for this
data collection. Then, the time series aggregator of each
host sends the data to the clustering engine, which exe-
cutes the proposed methodology with the aim to cluster
together VMs belonging to the same customer applica-
tion and running the same software component. Once
the clustering is complete, few representative VMs are
selected for each class. It is worth noting that more
than two representatives (at least three) should be se-
lected for each class, due to the possibility that a se-
lected representative unexpectedly changes its behavior
with respect to its class: quorum-based techniques can
be exploited to cope with byzantine failures of repre-
sentative VMs[14].

The information on VM classes and selected rep-
resentatives are sent to the time series aggregators
on each host and to the cloud controller for periodic
consolidation tasks. The time series aggregators selec-
tively collect the resource time series of the represen-
tative VMs of each class, then send the data to the
cloud controller. This latter component carries out the
consolidation task, exploiting the resource usage of the
representative VMs to characterize the behavior of ev-
ery VM of the same class. The consolidation decisions
are finally communicated to the local manager on each
host to be executed.

Let us now provide a motivating example for our pro-
posal showing how the clustering of similar VMs may
improve the scalability of the monitoring system. We
consider a multi-tier Web application characterized by

Fig.1. Cloud system.
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a high degree of horizontal replication. The applica-
tion is deployed on 110 VMs, divided in front-end Web
servers and back-end DBMS servers. We consider that
this application is going to be migrated from an enter-
prise data center to an IaaS cloud system. This scenario
is a typical case where moving to an IaaS platform in-
volves long term commitments, that is the VMs are
unlikely to change frequently in typology. As the cloud
provider has no knowledge on the software component
running in each VM, it is necessary to monitor every
VM at fine-grained granularity to accomplish periodic
consolidation tasks. Assuming that monitoring consid-
ers K resources for each VM, which are collected with a
frequency of one sample every five minutes, we have to
manage a volume of data 288×K samples per day per
VM. Considering 110 VMs, the total amount of data
is in the order of 32 × 103 × K samples per day. The
proposed methodology automatically identifies two sets
of similar VMs and monitors at the granularity of five
minutes only a few representative VMs per class, while
the remaining VMs can be monitored with a coarse-
grained granularity, for example of one sample every
few hours. Assuming to select three representatives for
each of the two VM classes the amount of data to col-
lect after clustering is reduced to 1.7×103×K samples
per day for the class representatives; for the remain-
ing 104 VMs, assuming to collect one sample of the K
metrics every six hours for VM, the data collected is
in the order of 4.2 × 102 ×K samples per day. Hence,
we observe that our proposal may reduce the amount
of data collected for periodic consolidation by nearly a
factor of 15, from 32× 103 ×K to 2.1× 103 ×K.

3 Methodology for Automatic VMs Clustering

In this section we describe the PCA-based methodo-
logy to automatically cluster similar VMs on the basis
of their resource usage. We first present the overview
of the methodology, then we detail the main steps. Fi-
nally, we describe the previous approach to VMs clus-
tering presented in [11], which will be used as a term of
comparison in the methodology performance evaluation
(Section 5).

3.1 Methodology Overview

To cluster together VMs running the same soft-
ware component, the proposed methodology has to
automatically capture the similarities in VMs behav-
ior. To this aim, we exploit the correlation between
the usage of different VM resources. The basic idea is
that capturing the inter-dependencies among the usage
of several resources, such as CPU utilization, network
throughput or I/O rate, allows us to describe the VM
behavior during the monitored period of time. For ex-

ample, network usage in Web servers is typically related
to the CPU utilization[15], while in the case of DBMS
CPU utilization tends to change together with storage
activity[16].

A first näıve approach to clustering VMs based on
correlation of resource usage has been proposed in [10-
11]. Considering only CPU and memory resources,
as typically done by resource management strategies
in cloud data centers, leads to poor performance in
automatic VMs clustering[10]. However, the high-
dimensional dataset consisting of multiple resources us-
age information may contain data which are not rele-
vant for VM clustering and may have a twofold negative
effect on methodology performance. First, clustering
algorithms typically have a computational complexity
that grows with the size of the input feature vector
describing each VM. Second, not relevant information
may be detrimental for the clustering performance, be-
cause it may introduce elements that hinder the capa-
bility of the clustering algorithm to correctly classify
similar VMs. For this reason, we need an automatic
mechanism to discriminate between relevant and less
relevant information in the description of VMs behav-
ior.

We consider variance as a main statistical property
that quantifies the relevance of a resource in the overall
system behavior, as in [17]. In literature, there are seve-
ral algorithms to reduce the dimensionality of a high-
dimensional and heterogeneous dataset, such as In-
dependent Component Analysis (ICA)[18], Correspon-
dence Analysis[19], Factor Analysis[20]. To automati-
cally select the most relevant information in terms of
variance, we exploit the statistical technique of princi-
pal component analysis (PCA)[21], because it is able to
express the intrinsic structure of a dataset in terms of
variance without requiring any prior knowledge about
the statistical characteristics of the initial datasets. The
use of PCA allows us to identify and retain just the
most relevant information, thus reducing the problem
dimensionality and improving the performance of the
VM clustering. In the rest of this section we describe
the main steps of the methodology in details.

3.2 Methodology Steps

Fig.2(a) outlines the main steps of the PCA-based
methodology:

• computation of correlation matrices describing the
VMs behavior;

• eigenvalue decomposition of the correlation matri-
ces to discriminate between relevant and not relevant
information;

• selection of principal components to eliminate
scarcely relevant data from the VM description;
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Fig.2. (a) Steps of PCA-based methodology. (b) Alternative

correlation-based approach.

• clustering to identify classes of similar VMs.
It is worth noting that the first two steps of the

methodology represent the core operations of a prin-
cipal component analysis over the original time series.

Fig.2(b) describes the alternative approach, namely
correlation-based, which has been presented in a pre-
vious study[11]. In this case, the main difference is that
the final clustering step operates directly on the cor-
relation values among the VM metrics, after a simple
removal of redundancies in the VM correlation matri-
ces. We now describe in detail each step of the pro-
posed PCA-based methodology and of the alternative
correlation-based approach.

3.2.1 Computation of Correlation Matrices

Given a set of N VMs, we consider each VM n,
∀n ∈ [1, N ], as described by a set of M metrics, where
each metric m ∈ [1,M ] represents the usage of a VM
resource. Let (Xn

1 ,X
n
2 , . . . ,X

n
M ) be a set of time se-

ries, where Xn
m is the vector consisting of the resource

usage samples represented by the metric m of VM n.
Before computing the correlation between metric

time series, we should consider the presence of periods
where the VMs are in an idle state: during idle periods,
the correlation between the metrics is not meaningful to
describe the VM behavior and, consequently, may lead
to a wrong final clustering, as we will demonstrate in
the experimental evaluation (Subsection 5.1.2). More-
over, the presence of idle periods is likely to have the
worst effects for short time series, where they may rep-

resent a significant portion of the monitored data. To
avoid this issue, it could be necessary to apply a fil-
tering technique to eliminate the idle periods from the
VM metric time series. Specifically, we consider that a
VM is in an idle period when its CPU usage is below a
given threshold for a specific time window.

After data filtering, we compute the correlation to
capture the inter-dependencies between VM metrics.
For each VM n we compute a correlation matrix Sn,
where snm1,m2

= corr(Xn
m1

,Xn
m2

) is the correlation co-
efficient of the filtered time series Xn

m1
and Xn

m2
of

metrics m1 and m2, respectively. We choose the Pear-
son product-moment correlation coefficient (PPMCC)
to measure the correlation between pairs of time series
defined as:

snm1,m2
=

X∑

i=1

(xn
m1

(i)− x̄n
m1

)(xn
m2

(i)− x̄n
m2

)

√√√√
X∑

i=1

(xn
m1

(i)− x̄n
m1

)2

√√√√
X∑

i=1

(xn
m2

(i)− x̄n
m2

)2

,

where X is the length of the metric time series (X =
|Xn

m|, ∀m ∈ [1,M ], ∀n ∈ [1, N ]), while xn
m(i) and x̄n

m

are the i-th element and the average value of the time
series Xn

m, respectively.
Finally, the correlation matrices are given as input

to the second step of the methodology.

3.2.2 Eigenvalue Decomposition

This step applies an eigenvalue decomposition to the
VM correlation matrices. This operation results in a
PCA coordinate transformation that maps the initial
dataset, that is the M time series, on a new coordinate
system of M axes, which are called principal compo-
nents. For each correlation matrix Sn of a VM n, we
compute the matrix En of eigenvectors as:

(En)−1SnEn = Dn,

where Dn is the diagonal matrix of the eigenvalues of
Sn. Matrix En has dimension M x M and contains M
column vectors, each of length M , representing the M
eigenvectors of the correlation matrix Sn. Each eigen-
vector is associated with a principal component and
with an eigenvalue, which represents the magnitude of
variance along the corresponding principal component.

3.2.3 Selection of Principal Components

By convention, eigenvalues are sorted from large to
small according to their contribution to the overall var-
iance. We exploit these values to discriminate between
relevant information, represented by the principal com-
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ponents associated with large eigenvalues, from less
relevant information, corresponding to the least impor-
tant components in terms of variance. Several methods
exist[21] to choose the number H of principal compo-
nents to retain, ranging to the Kaiser criterion, that
takes into account the eigenvalue related to the compo-
nents, to graphical approaches as the scree plot, which
is based on the percentage of variance expressed by each
component. We exploit the scree plot method, which
is widely used for its reliability and easy interpretation.
It is worth noting that typically we have H ¿ M , thus
allowing us to significantly reduce the dimensionality of
the problem.

After selecting the H principal components to re-
tain, we build for each VM n the corresponding feature
vector V n, which is given as input to the final cluster-
ing step. The feature vector V n consists of the first
H eigenvectors of the matrix En. Fig.3 provides an
example of creation of the feature vector V n from the
eigenvector matrix En in the case H = 2.

Fig.3. Creation of VM feature vector for the PCA-based ap-

proach.

3.2.4 Clustering of Virtual Machines

The feature vector V n is used by the clustering al-
gorithm as the coordinate of VM n in the feature space.
We define C as the vector resulting from the cluster-
ing operation. The n-th element of vector C, cn, is
the number of the cluster to which VM n is assigned.
Many algorithms exist for clustering, starting from the
widespread k-means to more complex kernel-based solu-
tions, up to clustering based on spectral analysis[22-23].
We choose to adopt one of the most popular solutions,
that is the k-means clustering algorithm[22]. It is worth
noting that the execution of the k-means algorithm
starts from the selection of a random set of centroids.
To ensure that the k-means clustering solution is not
affected by local minimums, we iterate the k-means

multiple times. Finally, we select as clustering output
C the best clustering solution across multiple k-means
runs, which is the solution that maximizes inter-cluster
distances and minimizes intra-cluster distances[22].

Once the clustering is complete, we select few repre-
sentative VMs for each class for the purpose of simplify-
ing the monitoring task. Clustering algorithms such as
k-means provide as additional output the coordinates
of the centroids for each identified class. In our sce-
nario, the representative VMs can be selected as the
VMs closest to the centroids.

3.3 Alternative Correlation-Based Approach

Fig.2(b) represents the correlation-based approach
for VM clustering proposed in [11]. In this naive ap-
proach, the problem dimensionality is reduced simply
by removing the redundancy implicit in the correla-
tion matrices. Specifically, the redundancy is caused
by the symmetric nature of the correlation matrices,
which have the main diagonal consisting of “1” values.
We build the feature vector V n using the elements of
the lower triangular sub-matrix; the feature vector is
defined as:

V n = (sn2,1, s
n
3,1, s

n
3,2, . . . , s

n
M,1, . . . , s

n
M,M−1).

Fig.4 provides an example of creation of the feature
vector from the correlation matrix in the case M = 4.

Fig.4. Creation of VM feature vector for the correlation-based

approach.

Then, the feature vector V n is fed into the final clus-
tering step. Also in this case, we use the k-means algo-
rithm for the clustering step, which produces the final
solution C of the alternative approach.

4 Case Studies

To evaluate the performance of the proposed
methodology we consider two case studies: 1) a dataset
coming from a virtualized testbed hosting typical e-
business applications with synthetic workload; 2) a real
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dataset coming from an enterprise data center hosting
Web-based applications. Let us describe the two case
studies in details.

4.1 EC2 Amazon Case Study

The first case study, namely EC2 Amazon, is based
on a dataset coming from a virtualized testbed running
a Web-based e-commerce application. The considered
application, based on the TPC-W benchmark②, is
specifically built to evaluate the PCA-based methodo-
logy and is deployed over the Amazon Elastic Comput-
ing infrastructure. The application uses a java-based
application server, a DBMS and a set of emulated
browsers, issuing both HTTP and HTTPS requests.
The benchmark is hosted on a set of 36 VMs (we use
the micro instances of VM provided by Amazon EC2),
with 12 VMs dedicated to emulated browsers, 12 to
Web servers and 12 to DBMS. The monitoring system
periodically collects samples about the VM resource
usage. Each sample provides an average value com-
puted over the period between subsequent samplings.
In this scenario, the virtualized infrastructure is moni-
tored through a framework explicitly designed for cloud
platforms[24]. The complete list of the metrics collected
by the monitoring system is provided in Table 1 along
with a short description.

Table 1. VM Metrics for EC2 Amazon Case Study

Metric Description

X1 BlockOut Rate of blocks written to storage
(Blk/s)

X2 CtxSwitch Rate of context switches (Cs/s)

X3 CPUIdle CPU idle time (%)

X4 CPUSystem CPU utilization (system mode) (%)

X5 CPUUser CPU utilization (user mode) (%)

X6 CPWait CPU waiting time (%)

X7 Interrupts Rate of interrupts (Int/s)

X8 MemBuff Size of filesystem in memory
(Read/Write access) (MB)

X9 MemCache Size of filesystem in memory (Read
only access) (MB)

X10 MemFree Size of free memory (MB)

X11 NetRxBs Rate of network incoming bytes (B/s)

X12 NetRxPkts Rate of network incoming packets
(pkts/s)

X13 NetTxBs Rate of network outgoing bytes (B/s)

X14 NetTxPkts Rate of network outgoing packets
(pkts/s)

X15 ProcRun Number of running processes

As the considered application is supporting a syn-
thetic workload, the patterns of client requests are sta-
ble over time without the typical daily patterns that

characterize Web traffic. For this reason, we collect
samples only for one day: longer time series would not
provide additional information from a statistical point
of view in this steady state scenario. On the other hand,
having a complete control on the monitoring infrastruc-
ture allows us to change the sampling frequency for the
metrics of each VM. Specifically, we consider sampling
frequencies ranging from 1 to 5 minutes.

4.2 Enterprise Data Center Case Study

The second case study, namely Enterprise data cen-
ter, is based on a dataset coming from an enterprise
data center hosting one customer Web-based applica-
tion for e-health deployed according to a multi-tier ar-
chitecture. The application is composed of a front-end
tier, that hosts the J2EE application implementing the
presentation and business logic, and a back-end, that
is a set of partitioned and replicated databases on an
Oracle DBMS. The application is accessed by a few
thousands of users, both private citizens and hospital
operators, with the typical daily usage patterns charac-
terized by high resource utilization in the office hours
and lower utilization during the night. The data center
is composed of 10 nodes on a blade-based system (Pro-
Liant BL460c blades). Each blade is equipped with two
3GHz quad-core CPUs, and each blade hosts 64GB of
RAM. The data center exploits virtualization to sup-
port the Web application. The blades host 110 VMs
that are divided between Web servers and back-end
servers (that are DBMS).

Data about the resource usage of every VM are col-
lected for different periods of time, ranging from 1 to
120 days. The samples are collected with a frequency of
5 minutes, considering average values over the sampling
period. For each VM we consider 11 metrics describing
the usage of several resources including CPU, memory,
disk, and network. The complete list of the metrics is
provided in Table 2 along with a short description.

Table 2. VM Metrics for Enterprise Data Center Case

Metric Description

X1 SysCallRate Rate of system calls (req/s)

X2 CPU CPU utilization (%)

X3 DiskAvl Available disk space (%)

X4 CacheMiss Cache miss (%)

X5 Memory Global memory utilization (%)

X6 UserMem User-space memory utilization (%)

X7 SysMem System-space memory utilization (%)

X8 PgOutRate Rate of memory pages swap-out (pages/s)

X9 InPktRate Rate of network incoming packets (pkts/s)

X10 OutPktRate Rate of network outgoing packets (pkts/s)

X11 ActiveProc Number of active processes

②TPC-W, http://www.tpc.org/tpcw/, June 2013.
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4.3 Methodology Application

Let us now describe the application of the proposed
methodology to the considered case studies. For the
EC2 Amazon case study, the final goal of our methodo-
logy is to cluster the VMs in three classes: Web servers,
DBMS and emulated browsers. We also consider the
emulated browsers to increase the number of VMs
classes that are taken into account. For the Enterprise
data center case study, we aim to cluster the VMs in
two classes: Web servers and DBMS servers.

It is worth noting that for the EC2 Amazon case
study we do not need to apply a filter to the moni-
tored data, because we have short time series of a sin-
gle day not containing idle periods. On the other hand,
in the Enterprise data center case study we have to
apply a preliminary step of data filtering because we
have idle periods in the monitored time series. For
this scenario, we remove from the original data the se-
quences of samples where the CPU utilization is be-
low 10%[25-26] for periods of at least four consecutive
hours. Then, the methodology computes a correlation
matrix for each VM. An eigenvalue decomposition is
carried out on the correlation matrices to identify the
principal components of the dataset and discriminate
between relevant and less relevant information. To re-
duce the dimensionality of the problem, we select the
principal components associated with the highest eigen-
values. To this aim, we exploit the visual method of the
scree plot, which is based on the components percent-
age of variance. We compute and sort the percentages
of variance in decreasing order to separate the most
important components, characterized by high variance,
from the least important ones, characterized by low val-
ues. The analysis carried out on both case studies shows
that we can consider just the first principal component
(H = 1), while discarding the other ones. The scree
plot for one VM belonging to the first case study is
shown in Fig.5 as an example of the variance behavior

Fig.5. Scree plot.

in our datasets: we see that a sharp “elbow” is clearly
visible in the graph. This allows us to select the most
relevant information included in the first principal com-
ponent, which contributes to almost the 70% of var-
iance, while discarding the other irrelevant components,
which contribute to the overall variance of the dataset
for less than 10% each.

As discussed in Section 3, the first eigenvector cor-
responding to the selected principal component is used
to build the feature vector describing VMs behavior.
Then, the feature vectors are given as input to the last
step of the methodology, which uses the k-means algo-
rithm to cluster similar VMs. As the k-means algorithm
starts each run with a set of randomly-generated cluster
centroids, we run the final clustering 1000 times, then
we select the best clustering solution. Finally, we com-
pare the output of the clustering step with the ground
truth, represented by the correct classification of VMs,
to evaluate the clustering results. To evaluate the per-
formance of the methodology, we aim to measure the
fraction of VMs which are correctly identified by the
clustering. To this purpose, we consider the clustering
purity[27], that is one of the most popular measures for
clustering evaluation. The clustering purity is obtained
by comparing the clustering solution C with the vector
C∗, which represents the ground truth. Purity is thus
defined as:

purity =
|{cn : cn = cn∗,∀n ∈ [1, N ]}|

|C| ,

where |{cn : cn = cn∗, ∀n ∈ [1, N ]}| is the number of
VMs correctly clustered and |C| = N is the number of
VMs.

5 Experimental Results

In this section we present the results of a set
of experiments to evaluate the proposed PCA-based
methodology in different scenarios. We first evaluate
the performance of the PCA-based methodology ap-
plied to the case studies described in Section 4, and
compare the results with those obtained through the
correlation-based approach. Then, we analyze the com-
putational cost of the methodology for varying number
of VMs and considered metrics. Finally, we perform a
sensitivity analysis to evaluate how the clustering pu-
rity is influenced by the number of selected principal
components and by the number of VMs to cluster.

5.1 Performance Evaluation

We now compare the PCA-based and the
correlation-based approaches for the two considered
case studies.
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5.1.1 EC2 Amazon Case Study

The EC2 Amazon case study represents a dataset
obtained in a controlled and reproducible environment
with a limited number of VMs that are monitored for
24 hours at different sampling frequencies (from 1 to
5 minutes). We exploit this case study for a twofold
purpose: to have a first comparison of PCA-based and
correlation-based approaches, and to investigate how
the frequency of metric sampling may affect the per-
formance of VM clustering. As for the latter goal, we
should consider the potential trade-off related to the
choice of the metric sampling frequency: a fine-grained
monitoring of the considered metric is likely to produce
a detailed and precise representation of the VM behav-
ior, which could improve the performance of the clus-
tering; on the other hand, a coarse-grained monitoring
reduces the amount of data collected for metric sam-
pling, thus reducing the scalability issues of the moni-
toring system. Hence, it is interesting to investigate
how a different granularity of the resource monitoring
affects the performance of the proposed methodology.

Fig.6 shows the clustering purity of PCA-based and
correlation-based approaches for different sampling fre-
quencies ranging from 1 to 5 minutes. We observe that
the proposed PCA-based methodology correctly iden-
tifies a high percentage of VMs (ranging from 88% to
94%), and outperforms the correlation-based approach
for every sampling frequency, thus giving us a first con-
firmation that the automatic selection of the informa-
tion to feed into the clustering algorithm has a positive
effect on the methodology performance.

Fig.6. Clustering purity for different sampling frequencies.

If we focus on the impact of the sampling frequency,
we note that the difference in the clustering purity
grows as the frequency decreases, with a gap ranging
from 0.02 up to 0.13 for the lowest considered frequency
(5 minutes). We can deduce that the correlation-based
approach is significantly more sensible to the granula-

rity of the monitoring sampling, while the performance
of the proposed methodology is stable for different sam-
pling frequencies. This represents an important result
for the applicability of our methodology to large-scale
cloud data centers for a twofold reason: first, the stabil-
ity of the results allows to avoid high sampling frequen-
cies that would increase the amount of the collected
data and worsen the scalability issues of the moni-
toring systems; second, the methodology is compatible
with existing monitoring systems of cloud data centers,
which usually exploit a sampling frequency of 5 minutes
to monitor VM resources.

5.1.2 Enterprise Data Center Case Study

Now we consider the Enterprise data center case
study, which represents a real dataset where VMs are
monitored at a sampling frequency of 5 minutes. In this
case, we aim to evaluate the clustering performance of
the PCA-based and correlation-based approaches as a
function of the length of the metric time series. Specifi-
cally, we consider time series ranging from 1 to 120 days.
First we apply the two clustering approaches without
carrying out the preliminary filtering of idle periods on
the metric time series.

The histogram in Fig.7 presents the clustering pu-
rity for this experiment. We observe that for every time
series length the proposed PCA-based methodology
equals or exceeds the purity achieved by the correlation-
based approach. This result confirms, also in a real
scenario, the superiority of the proposed methodology
with respect to a naive approach, which directly ex-
ploits the correlation values between pairs of metrics
for VMs clustering.

Fig.7. Clustering purity for different time series lengths.

Considering the clustering purity as a function of
time series length, we observe that for very long time
series the clustering is perfect, that is every Web server
and every DBMS are correctly identified. On the other
hand, the purity significantly decreases as we reduce
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the monitoring period. In particular, when the length
of the time series is below 20 days, the purity is below
0.7, reaching 0.65 for a time series of only 5 days. The
significant purity reduction for short time series is due
to the presence of idle periods in the data. Indeed, we
find that some VMs present a bimodal behavior, with
periods of time where the VM is mostly idle (CPU uti-
lization below 10%) mixed with periods where the VM
is heavily utilized. In particular, for very short time
series (1∼5 days) some VMs are characterized almost
exclusively by idle periods. During the idle periods,
the correlation between the metrics describing the VM
is altered, thus leading to a wrong clustering which ex-
plains the poor performance of both approaches.

To avoid this effect, we apply the preliminary fil-
tering of the metric time series to extract a sequence
of samples not containing idle periods, as described in
Section 4. Fig.8 compares the results of PCA-based
and correlation-based approaches applied to short time
series (from 1 to 15 days) of filtered and not filtered
data.

Fig.8. Impact of idle data filtering for short time series.

As expected, filtering idle periods from the moni-
tored data significantly improves the performance of
the VM clustering for both approaches. However, the
PCA-based methodology is confirmed to outperform
the correlation-based approach. The gain achieved by
the proposed methodology ranges from 3% to 19% with
respect to the purity obtained by the correlation-based
approach, reaching higher gains for shorter time series
(1 and 2 days). Moreover, the purity never drops be-
low 0.8 even for the shortest considered time series.
It is worth noting that the capability of the proposed
methodology to achieve good performance for short
time series allows us to reduce the period of time during
which we need to monitor VM resources before applying
clustering.

Fig.9 explains why the PCA-based approach out-
performs the alternative. The graph shows the scatter

plots of the distances separating each VM from the cen-
troids of the two clusters (Web servers and DBMS) in
the case of time series of one day. Web servers are repre-
sented by circles, while DBMSes correspond to crosses.
The x-axis measures the distance from the centroid of
the DBMS cluster (represented by the cross on the y-
axis), while on the y-axis we have the distances from the
centroid of Web servers cluster (represented by the cir-
cle on the x-axis). The distance is computed using the
multi-dimensional feature vectors describing the VMs.
Fig.9(a) refers to the PCA-based methodology, while
Fig.9(b) represents the correlation-based approach. In
both graphs we draw the bisector line that identifies
points that are equidistant from the two centroids. All
the points above the bisector line are classified as be-
longing to the DBMS cluster, while every point below
the line is associated with the Web servers cluster.

Fig.9. VMs distances from cluster centroids. (a) PCA-based

methodology. (b) Correlation-based approach.

Fig.9 clearly shows that the PCA-based approach
is more effective in discriminating between the two
classes of VMs. In Fig.9(a) the points are spread on
a wider area, while in Fig.9(b) they are located closer
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to the bisector line. This means that the feature vec-
tors computed with the PCA-based methodology can
better capture and express the differences in behavior
between VMs belonging to different clusters, thus fa-
cilitating the clustering task and improving the overall
performance. It is worth noting that such advantage
of the PCA-based approach is more evident with very
short time series, as in the considered case where the
time series length is equal to one day.

5.2 Methodology Computational Cost

Even if clustering is carried out with a low fre-
quency, compared with other monitoring and mana-
gement operations, it is worth investigating the com-
putational costs of VM clustering. In particular, we
evaluate to which extent the PCA-based methodology
may reduce the execution time of the clustering step
with respect to the correlation-based approach. We fo-
cus on the final clustering phase because every previous
step of the methodology can be distributed over differ-
ent nodes of the infrastructure. For example, we can
consider to generate the feature vectors of each VM di-
rectly at the level of the time series aggregator on each
host. On the other hand, clustering is more difficult
to parallelize and its computational cost may affect the
scalability of the methodology. The computational cost
of the clustering step depends on two main elements:
the number of considered metrics, which determines the
length of the feature vectors given in input to the clus-
tering algorithm, and the number of VMs to cluster. As
pointed out in Section 3, the feature vectors generated
by the proposed PCA-based methodology to describe
VMs behavior are shorter than those computed through
the correlation-based approach for the same number of
considered metrics. To evaluate the reduction of the
computational cost, we exploit the Enterprise data cen-
ter case study; in particular, we consider a number of
VMs equal to 50 and 110, and metric time series of 15
days. Fig.10 shows the execution time of the clustering
step as a function of the number of metrics, ranging
from 2 to 11, for PCA-based and correlation-based ap-
proaches.

The graph clearly shows the different trends of the
clustering execution time for the two approaches. In
the case of PCA-based methodology we observe a linear
growth of the time required for clustering as the number
of metrics increases, while for the correlation-based al-
ternative the growth of clustering time is super-linear.
This result is consistent with the theoretic computa-
tional complexity of the k-means algorithm[28], which
is in the order O(IKNV ), where I is the number of ite-
ration of the k-means clustering, K is the number of
clusters, N is the number of VMs, and V is the length

Fig.10. Clustering time for varying number of metrics and VMs.

of the feature vector used to describe each VM. In the
PCA-based case, V = M ×H, with H = 1 because we
consider for the feature vector only the principal com-
ponent associated with the first eigenvector of the VM
correlation matrix. For this reason, the dependency be-
tween clustering time and number of metrics is linear.
On the other hand, in the case of correlation-based ap-
proach the length of the feature vector V corresponds
to the size of the lower triangular sub-matrix of the
VM correlation matrix (V = M2−M

2 ); hence, V has
a quadratic dependence on the number of metrics M ,
thus explaining the super-linear growth of the cluster-
ing time with respect to M .

From Fig.10, we also observe that the difference in
clustering execution time grows as the number of met-
rics increases, with a reduction for the PCA-based ap-
proach of 39% and 41% with respect to the correlation-
based approach for 50 and 110 VMs, respectively. The
graph shows just one exception for the case of two
metrics, where the correlation-based clustering is faster
than the PCA-based. This can be explained by con-
sidering that in this case the feature vector in the
correlation-based approach consists of just one element
(the correlation coefficient between the two considered
metrics).

5.3 Sensitivity Analysis

Now we investigate the sensitivity of the PCA-based
methodology to 1) the number of principal components
selected to build the feature vectors and 2) to the num-
ber of VMs to cluster. The sensitivity analyses are
based on the Enterprise data center case study.

5.3.1 Impact of Principal Components Selection

The computational cost of the methodology is
proved to be significantly reduced with respect to the
correlation-based approach thanks to the choice of se-
lecting just the first principal component to build the
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VM feature vectors. Hence, it is important to evalu-
ate how the performance is affected by the number of
principal components considered. We select a number
of principal components ranging from 1 to 10 to build
the VM feature vectors. Fig.11 shows the results of the
PCA-based methodology for short time series lengths
of 1, 3, 5 and 10 days.

Fig.11. Clustering purity for increasing number of selected prin-

cipal components.

We observe that the clustering purity does not in-
crease as the number of principal components grows,
but remains rather stable for almost all the considered
time series lengths, with a more marked decrease for
time series of 10 days. Fig.11 confirms that the first
principal component, which is the most relevant com-
ponent in terms of contribution to the overall variance
of the dataset, is sufficient to characterize the VM be-
havior for our purpose of clustering (as indicated by the
scree plot in Section 4). Adding more principal compo-
nents does not add any relevant information: the data
introduced into the feature vector by the additional
components represent just background noise. In most
cases this noise contribution just scatters evenly among
the VMs over the newly added dimensions and does not
affect the outcome of the clustering process. We present
also a case (for the time series of 10 days) where the
noise component determines a different clustering out-
come, thus hindering the quality of the methodology
results.

5.3.2 Impact of Virtual Machine Number

The last sensitivity analysis concerns the evaluation
of the methodology performance for different numbers
of VMs to cluster. This analysis is critical to demon-
strate that the proposed approach can provide stable
clustering performance even for large-scale cloud data
centers where each customer may acquire large sets of
VMs to run his/her applications.

We evaluate the clustering purity for different time
series lengths and numbers of VMs. Table 3 shows
how the clustering purity changes as the number of
VMs grows from 20 to 110, considering time series with
length of 1, 5, and 10 days.

Table 3. Impact on Purity of VM Number

Number of VMs Time Series Length

10 Days 5 Days 1 Day

20 0.86 0.85 0.82

30 0.84 0.86 0.81

40 0.85 0.86 0.82

50 0.84 0.86 0.80

60 0.85 0.84 0.80

70 0.84 0.85 0.81

80 0.85 0.85 0.80

90 0.84 0.86 0.80

100 0.85 0.85 0.81

110 0.84 0.83 0.80

We observe that the clustering purity is mostly un-
affected by the numbers of elements to cluster. We
consider the stability of the clustering performance
very important because it means that the proposed
methodology is a viable option in the case of large data
centers.

5.4 Summary of Results

The experimental results can be summarized as fol-
lows:

• The proposed PCA-based methodology outper-
forms the correlation-based approach in both case stu-
dies, achieving good clustering purity even for very
short time series of only one day (94% for the EC2
Amazon and 80% for the Enterprise data center case
studies), as shown in Subsections 5.1.1 and 5.1.2.

• The performance of the PCA-based methodology
remains stable for sampling frequencies ranging from 1
to 5 minutes. Good performance is achieved for 5 minu-
tes sampling frequency, that is commonly used in data
centers monitoring systems (Subsection 5.1.1).

• The computational cost of VM clustering shows
a linear dependency on the number of metrics against
the quadratic trend of the correlation-based approach.
Hence, the clustering of the PCA-based methodology
provides good scalability especially when a large num-
ber of metrics is used (Subsection 5.2).

• The automatic selection of principal components
can reduce the problem dimensionality by identifying
the most relevant information; in our case studies, con-
sidering more than one principal component does not
improve the clustering performance (Subsection 5.3.1).

• The performance of the automatic VM clustering
is stable with respect to varying number of VMs to
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cluster, thus confirming the viability of the proposed
methodology even for large data centers (Section 5.3.2).

6 Related Work

The research activities related to the scalability is-
sues in cloud data centers concern two main topics that
are strictly correlated: resource management and in-
frastructure monitoring.

Resource management strategies in large virtualized
data centers can be divided in two categories: reac-
tive on-demand solutions that can be used to avoid
and mitigate server overload conditions, and periodic
solutions that aim to consolidate VMs through opti-
mization algorithms. The two approaches can be com-
bined together[12]. Examples of reactive solutions are
[5] and [6], that propose a mechanism based on adaptive
thresholds regarding CPU utilization values. A similar
approach was described also byWood et al. in [2] with a
rule-based approach for live VM migration that defines
threshold levels about the usage of few specific physical
server resources, such as CPU-demand, memory allo-
cation, and network bandwidth usage. We believe that
this type of solution can be integrated in our proposal at
the local manager level. On the other hand, an example
of periodic VM consolidation solutions was proposed by
Kusic et al. in [29], where VM consolidation is achieved
through a sequential optimization approach. Similar
solutions were proposed in [4, 8]. However, these ap-
proaches are likely to suffer from scalability issues in
large-scale distributed systems due to the amount of
information needed by the optimization problem. So-
lutions like our proposal, aiming to reduce the amount
of data to collect and consider for the management of
cloud data centers, may play a major role to improve
the scalability of consolidation strategies for cloud sys-
tems. The first proposal to address scalability issues
in monitoring through VM clustering was proposed in
[10-11]. These studies exploit the correlation of VMs re-
sources usage to identify similar behavior among VMs.
However, these solutions suffer from some drawbacks:
the clustering performance decreases rapidly for short
metric time series as well as in presence of time periods,
even short, during which VMs are idle. This paper rep-
resents a clear step ahead with respect to the previous
studies: the proposed methodology based on principal
component analysis can achieve better and more stable
results with respect to the correlation-based approach
in different scenarios. Moreover, improvements of the
computational cost are obtained thanks to the auto-

matic selection and reduction of the information fed
into the clustering algorithm.

As for the issue of monitoring large data centers, cur-
rent solutions typically exploit frameworks for periodic
collection of system status indicators, such as Cacti③,
Munin④ and Ganglia⑤. Cacti is an aggregator of data
transferred through SNMP protocol, while Munin is a
monitoring system based on a proprietary local agent
interacting with a central data collector. Both these so-
lutions are typically oriented to medium to small data
centers because of their centralized architecture that
limits the overall scalability of the data collection pro-
cess. Ganglia provides a significant advantage over the
previous solutions as it supports a hierarchical archi-
tecture of data aggregators that can improve the scala-
bility of data collection and monitoring process. As
a result, Ganglia is widely used to monitor large data
centers[30-31], even in cloud infrastructures[32], by stor-
ing resource usage time series describing the behavior of
nodes and virtual machines. Another solution for scal-
able monitoring was proposed in [3], where data analy-
sis based on the MapReduce paradigm is distributed
over the levels of a hierarchical architecture to allow
only the most significant information to be processed
at the root nodes. However, all these solutions share
the same limitation of considering each monitored node
independent of the others. This approach fails to take
advantage from the similarities of objects sharing the
same behavior. On the other hand, a class-based mana-
gement allows the system to perform a fine-grained
monitoring for only a subset of nodes that are represen-
tative of a class, while other members of the same class
can be monitored at a much more coarse-grained level.
Our proposal explicitly aims to address this problem.

7 Conclusions

The rapid increase in size and complexity of modern
cloud data centers poses major challenges in terms of
scalability for the monitoring and management of the
system resources. In this paper we proposed to address
scalability issues by clustering VMs into classes that
share similar behaviors, starting from their resource us-
age. To cluster similar VMs, the proposed methodology
considers multiple resources, ranging from CPU to sto-
rage and network, and exploits the statistical technique
principal component analysis to automatically remove
not relevant information from the VM description. The
application of the proposed methodology to two case
studies, a virtualized testbed and a real enterprise data

③Cacti, http://www.cacti.net/, June 2013.
④Munin, http://munin-monitoring.org/, June 2013.
⑤Ganglia Monitoring System, http://ganglia.sourceforge.net/, June 2013.
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center hosting multi-tier Web applications, showed that
the accuracy of VMs clustering ranges between 100%
and 80% for every considered scenario, including the
case of very short time series of the monitored resources
with length of only one day. It is worth noting that the
automatic selection of relevant data obtained thanks to
the PCA technique leads to a twofold advantage, both
in terms of performance and computational cost of VM
clustering, with respect to the naive correlation-based
approach. Furthermore, we demonstrated that the pro-
posed methodology can reduce the amount of collected
data, thus effectively contributing to address the scala-
bility issues of the monitoring system.
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