
Yang D, Shen DR, Yu G et al. Query intent disambiguation of keyword-based semantic entity search in dataspaces.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 28(2): 382–393 Mar. 2013. DOI 10.1007/s11390-013-

1338-0

Query Intent Disambiguation of Keyword-Based Semantic Entity Search

in Dataspaces

Dan Yang1,2 (杨 丹), Student Member, CCF, Member, ACM
De-Rong Shen1,∗ (申德荣), Senior Member, CCF, Member, ACM, IEEE
Ge Yu1 (于 戈), Senior Member, CCF, Member, ACM, IEEE, Yue Kou1 (寇 月), Member, CCF, ACM
and Tie-Zheng Nie1 (聂铁铮), Member, CCF, ACM

1College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
2Software College, University of Science and Technology LiaoNing, Anshan 114044, China

E-mail: yangdan@research.neu.edu.cn; {shenderong, yuge, kouyue, nietiezheng}@ise.neu.edu.cn

Received February 16, 2012; revised September 25, 2012.

Abstract Keyword query has attracted much research attention due to its simplicity and wide applications. The inherent
ambiguity of keyword query is prone to unsatisfied query results. Moreover some existing techniques on Web query, keyword
query in relational databases and XML databases cannot be completely applied to keyword query in dataspaces. So we
propose KeymanticES, a novel keyword-based semantic entity search mechanism in dataspaces which combines both keyword
query and semantic query features. And we focus on query intent disambiguation problem and propose a novel three-step
approach to resolve it. Extensive experimental results show the effectiveness and correctness of our proposed approach.

Keywords query intent disambiguation, semantic entity search, dataspace

1 Introduction

Keyword query becomes the most popular search
model due to its simplicity and wide applications.
Meanwhile as the dataspaces have evolved into a data
rich repository, it is very common that users search for
various entities (e.g., phone numbers, papers, projects,
conferences, persons) in dataspaces. So we propose
KeymanticES, a novel keyword-based semantic entity
search mechanism in dataspaces to satisfy user’s infor-
mation needs. And in this paper we focus on solving
keyword query intent disambiguation problem. First let
us consider the following motivating scenarios to illus-
trate the main problems need to be solved to effectively
do keyword-based semantic entity search in dataspaces.

Scenario 1. The user submits keyword query
“Halevy, dataspaces, SIGMOD 2011” to find all pa-
pers written by Halevy published in SIGMOD 2011
about dataspaces. If considering each keyword inde-
pendently without semantic associations will produce
many unrelated searching results. So it needs to infer
keywords connections by considering the implicit se-
mantic associations among these keywords.

Scenario 2. The user inputs keyword query “paper,
dataspaces, SIGMOD 2011” to find all papers about
dataspaces published in SIGMOD 2011. Here “paper”
is the object type the user intends to find. Take another
query “company, Zhongguancun, founders, Tsinghua
graduates” as an example, the user wants to search the
list of companies and their founders with searching con-
ditions that the company is located in Zhongguancun
and its founders are Tsinghua graduates. Here there
are two object types: company and founder that the
user wants to find. So it needs to infer the target entity
class(es) the user wants to find out, e.g., paper, confer-
ence, or person whatever.

Scenario 3. The user who intends to find some IT
experts whose research area is dataspace will proba-
bly submit query “IT expert, research area, dataspace”
while not “Person, research area, dataspace”. A user
may not know which keywords to use for his/her spec-
ified search needs. Here assume the underlying entity
class in the dataspace is Person but not IT Expert. So
it needs to fill the concept gap or mismatch between
the user and search mechanism to resolve such kind of
queries.

Regular Paper
This research was supported by the National Basic Research 973 Program of China under Grant No. 2012CB316201, the National

Natural Science Foundation of China under Grant Nos. 60973021, 61033007, 61003060, and the Fundamental Research Funds for the
Central Universities of China under Grant No. N100704001.

∗Corresponding Author
©2013 Springer Science+Business Media, LLC & Science Press, China

Dan Yang et al.: Query Intent Disambiguation of Keyword-Based Semantic Entity Search in Dataspaces 383

Although many research efforts have been conducted
in keyword query over Web, relational databases (RDB)
and XML databases, keyword query in dataspaces still
faces many new challenges as follows: 1) Dataspace is
a heterogeneous environment which involves different
types of entities. Moreover there exist many different
and rich associations among these entities which are
more complex than primary-foreign-key relationships in
RDB. It is of great challenge to leverage these associa-
tions effectively to grasp users’ query intent. 2) Datas-
pace is short of unified or complete schema informa-
tion. So some existing approaches of keyword query
over relational databases leveraging schema graph, such
as approaches based on Candidate Network (CN)[1-3],
template-based[4-5] approach, are not fully applicable
in dataspace. 3) With respect to query intent dis-
ambiguation, Web query tends to leverage Web log or
search log to mine users’ query pattern (e.g., statistics
of users’ click-through, analyzing URL, co-occurrence of
keywords in the Web page). And XML keyword search
can adopt LCA (lowest common ancestor)[6] or smallest
LCA[7-9] semantic in tree data model. However these
techniques are not fully applicable in dataspaces due to
the lack of reliable query log and different data models.

The main contributions in this paper can be sum-
marized as follows. 1) We propose KeymanticES, a
novel keyword-based semantic entity search mechanism
in dataspaces which combines the flexibility of keyword-
based retrieval of entities with the ability to query on
metadata/knowledge base which is typical of semantic
search system. KeymanticES can find out user-desired
entities in the underlying entity repository on-the-fly
by issuing a keyword query. To the best of our know-
ledge, currently there is no keyword-based semantic en-
tity search related work in dataspaces environment. 2)
We propose a novel three-step query intent disambigua-
tion approach which mainly consists of keyword seman-
tic item mapping, goal entity class recognizing, and can-
didate query set generating leveraging rich associations
of entity classes. 3) We propose an effective keyword
semantic item mapping algorithm and an effective goal
entity class recognizing algorithm. And we also propose
a candidate query ranking function. 4) We conduct ex-
tensive experiments on real-world data to evaluate the
effectiveness and correctness of our query intent disam-
biguation approach.

The rest of the paper is organized as follows. Sec-
tion 2 presents our proposal, KeymanticES. In Section
3 query intent disambiguation approach and related al-
gorithms are introduced in detail. Experimental results
and analysis are provided in Section 4. Section 5 dis-
cusses related work and comparisons with our work.
Section 6 summarizes the main contributions of the pa-
per and our future work.

2 Our Proposal: KeymanticES

In this section, we first present the data model used
in KeymanticES, then the definition of the keyword-
based semantic entity search problem, and finally the
overview of KeymanticES.

2.1 Data Model

In our previous work we proposed Layered Graph
Data Model (lgDM)[10] in dataspaces which consists of
entity data graph GD and entity schema graph GS .
GD is a directed labeled graph with labels correspond-
ing to entities and associations of entities. GS is a di-
rected labeled graph to describe metadata information
and associations of entity classes. They are both stored
in the entity repository and at the same time treated
as a semantic knowledge base (KB). And in order to
solve the problem illustrated in Scenario 3, we propose
a primitive concept graph GPC (see Definition 1) which
is also treated as part of KB. GPC is domain dependent
and can be built by domain expert or system developer.

Definition 1 (Primitive Concept Graph). A primi-
tive concept graph GPC is a directed graph which con-
sists of primitive concept nodes, and their parent-child
(hierarchy) and similar relationship edges. The primi-
tive concept is an entity class or type that entities belong
to (e.g., Scientist, IT expert).

Fig.1(a) shows an example of GD which contains en-
tities of six entity classes (Paper, Person, Conference,
Project, Publisher, and Journal). And an example of
corresponding GS is shown in Fig.1(b). Here we call
associations from an entity class to itself self associa-
tions (e.g., Co-author: Paper, Co project: Project).
Each self association has a target entity class related
with it (e.g., Paper, Project). Fig.2 shows an example
of GPC . The one-way arrow directed edges indicate
parent-child relationships of two concepts; the two-way
arrow edges represent similar relationships. Through-
out this paper, to provide context and specificity to our
presentation, we will use such an academic publication
example in our discussion.

2.2 Problem Statement

We formulate the problem of keyword-based seman-
tic entity search in dataspaces as below.

Definition 2 (Keyword-Based Semantic Entity
Search). Given a keyword query Q = {k1, k2, . . . , k|Q|}
submitted by a user, keyword-based semantic entity
search is to translate (query intent disambiguation)
query Q into some semantic meaningful queries by
leveraging associations (semantics) of keywords, then
search them in the entity repository of dataspace, and
finally return the ranked list of entities to the user.

384 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

Fig.1. Example of data graph GD and schema graph GS . (a) Data graph GD. (b) Schema graph GS .

Fig.2. Example of primitive concept graph GPC .

2.3 Overview of KeymanticES

Fig.3 shows the architecture of KeymanticES which
is composed of the offline part and the online part.
The offline part mainly deals with the preprocessing
which consists of entity extraction (i.e., entity reposi-
tory building) module and indexing module. In this
work we only consider entities that are recognized, ex-
tracted, and stored in the entity repository, and in-
dexed offline for efficient query processing. The online

part mainly deals with semantic entity search process-
ing which consists of three phases.

Phase 1: keyword query intent disambiguation to
generate candidate query set.

Phase 2: semantic entity search according to each
candidate query in the candidate query set.

Phase 3: search results ranking.
Issuing a keyword query by a user, KeymanticES

tries to understand the user’s query intent and on-the-
fly finds out user-desired entities in the entity repository
by analyzing semantics of keywords.

3 Query Intent Disambiguation Approach

The goal of query intent disambiguation is to au-
tomatically interpret the user’s all possible search in-
tentions and to generate candidate query set CQ =
{cq1, cq2, . . . , cqn}, n > 1, of keyword query Q. The

Fig.3. Architecture of KeymanticES.

Dan Yang et al.: Query Intent Disambiguation of Keyword-Based Semantic Entity Search in Dataspaces 385

format of each candidate query cq i is “goal en-
tity class(es) 〈(entity class1 attribute1 value1 ∧ · · · ∧
attributen valuen) [association (entity class2 attribute1

value1 ∧ · · · ∧ attributen valuen)]+〉”, where “+” indi-
cates zero or more, and contents inside “[]” are op-
tional. Different cqs, correspond to different interpre-
tations. Given a keyword query it is reasonable to in-
fer different candidate queries because search intention
may not be unique according to semantics of the query
and the underlying entities. All possible combinations
for the different semantic meanings of keywords are
generated. The candidate queries may be cast as ei-
ther SQL queries to be processed by a typical database
system or keyword queries with additional predicates to
be processed by a typical IR engine. In this paper we
propose a novel three-step query intent disambiguation
approach (shown in Fig.4).

Step 1: Keyword Semantic Item Mapping

↓ SIMR = {M1, M2, . . . , Mn}, n > 1

Step 2: Goal Entity Class Recognizing

↓ GEC (Mi)

Step 3: Candidate Query Set Generating

Fig.4. Steps of query intent disambiguation.

3.1 Semantic Item Mapping

When inferring the user’s query intent, first we
should find out the role of each keyword in the query.
In this subsection we first give some related definitions,
then describe the core challenges and our solution, at
last give out our keyword semantic item mapping algo-
rithm.

Definition 3 (Semantic Item). The semantic item
(SI) indicates the semantic role of a keyword. Se-
mantic items in KeymanticES include entity class
(EC), entity attribute (EA), value of attribute (V),
association(A), primitive concept (PC), i.e., SI =
{EC ,EA,V ,A,PC}.

Definition 4 (Semantic Item Mapping). Seman-
tic item mapping (SIM) is the process of mapping each
keyword ki in Q into one of the five elements of SI
(i.e., EC, EA, V, A, PC). The SIM result is a set
composed of all mapping results denoted as SIMR =
{M1,M2, . . . , Mn}, n > 1, where each Mi is composed
of three parts, i.e., Mi = 〈EC i, Ai, Vi〉, EC i ∈ EC,
Ai ∈ A, Vi ∈ V .

Here we assume each keyword in a query denotes an
element of interest to the user and is not a stop-word
or unrelated word. In this paper we do not address
keyword query cleaning issues. So a keyword in the
query may refer to either data instances (i.e., value of
attribute), the meta-data (i.e., entity classes, entity at-
tributes, associations), or primitive concept.

3.1.1 Core Challenges of SIM

One challenge of SIM is that when a keyword is
mapped to an attribute’s value, the result is not unique.
We call it SIM ambiguity 1. For example, in query
“paper, dataspaces”, the mapping result of keyword
“dataspaces” may be value of Paper.topic, or be value
of Paper.title.

The other is that keywords in a query are semanti-
cally inter-dependent, which is called SIM ambiguity 2.
For example, keyword “dataspaces” in query “paper,
dataspaces” is probably the title attribute value of the
Paper because of the co-occurence with entity class Pa-
per; in query “person, dataspaces” it probably means
the research area of Person because of co-occurence
with Person; in query “project, dataspaces” it prob-
ably means name of Project due to the co-occurence
with Project; while in query “conference, dataspaces”
it probably indicates the name of Conference because
of the co-occurence with Conference.

3.1.2 Statistic Information Table

Aiming at the core challenges mentioned above, we
give a threshold-based mapping results filtering stra-
tegy. First we build a keyword statistic information
table (denoted as SIT) based on frequency of each key-
word in the underlying data which provides an objective
way of solving SIM ambiguity 1 and ambiguity 2. Table
1 shows an example of SIT.

Table 1. Example of Statistic Information Table

Keyword ki Entity class.attribute [Frequency f] Sum of f

dataspaces Paper.topic[250], Paper.title[200], Per-
son.researchArea[50], Project.name[15],
Conference.workshop[10], Person.ema-
il[1]

526

...
...

...

Google Paper.title[150], Person.affiliation[100] 250

Halevy Person.name[3], Person.email[4] 7

Take the first row in Table 1 as an example. It indi-
cates that keyword “dataspaces” appears in the value
of Paper.topic attribute 250 times, value of Paper.title
attribute 200 times, value of Person.researchArea at-
tribute 50 times, value of Project.name attribute 15
times, value of Conference.workshop attribute 10 times
and Person.email attribute once. Then we can calculate
the relative frequency rf for each “entity class.attribute”
of ki in the SIT as follows.

rf (T [ki]j) =
T [ki]j × f

sf
, (1)

where T [ki]j is the j-th “entity class.attribute” in
the second column of the same row with ki, sf

386 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

is the sum of frequencies of ki in SIT. For exa-
mple, for keyword “dataspace”, rf(Paper.topic) =
250/526 = 0.475, rf(Paper.title) = 200/526 = 0.38,
rf(Person.researchArea) = 50/526 = 0.095, rf(Pro-
ject.name) = 15/526 = 0.029, rf(Conference.workshop)
= 10/526 = 0.019, rf(Person.email) = 1/526 = 0.002.

Intuitively keywords referring to the same or related
entities are adjacent in a query. For example, when a
keyword is mapped to a meta-data, it becomes more
likely that an adjacent keyword should be mapped to a
value in the domain of that meta-data. So we introduce
the concept of reward score to this kind of mappings.

Reward Score (rs). If any nearest neighbour of
ki (ki−1 or ki+1) is matched with any part of T [ki]j
(entity class or attribute), then rs(T [ki]j) of ki is
set to 1, else 0. For example, for keyword “datas-
pace”, in query “person, dataspace, email”, the neigh-
bour keywords of it are “person” and “email”. So
rs(Person.researchArea) and rs(Person.email) are both
set to 1, reward scores of other items (e.g., Paper.topic,
Paper.title, Project.name, Conference.workshop) are 0.

Final Score (fs). fs of ki is the sum of its rs and rf.

fs(T [ki]j) = rs(T [ki]j) + rf (T [ki]j). (2)

In order to reduce some unrelated mapping results
or noisy items, we adopt a filtering strategy based on
final score fs. Set a threshold θ (θ ∈ [0..1]) to fs,
items of ki with fs more than θ in SIT are selected
as valid mapping results of ki. Suppose θ = 0.01,
fs(Person.email) = 0.002. Then Person.email will be
filtered and not treated as a reasonable mapping result
of keyword.

3.1.3 Keyword SIM Algorithm

We observe that in a domain the number of at-
tributes and their values are usually much larger than
that of primitive concepts, entity classes and associa-
tions. So our SIM algorithm (shown in Algorithm 1)
employs a greedy procedure which first determines the
less ambiguous and simple mapping of keywords to
primitive concepts, entity classes and associations, then
determines the more complex mapping of keywords to
other semantic items. Algorithm 1 assumes that each
keyword can only be mapped to one kind of semantic
items in each Mi. For example, “paper” in keyword
query “Paper, Halevy” cannot be mapped to entity
class and attribute at the same time in Mi.

3.2 Goal Entity Class Recognizing

When inferring a user’s query intent it is a key prob-
lem to determine which object (entity class) the user
wants. In this subsection, after giving some related

Algorithm 1. Keyword Semantic Item Mapping

Input: Keyword query Q = {k1, k2, . . . , k|Q|},
GPC , GS , SIT,

fs: final score, θ: threshold of fs

Output: SIMR = {M1, M2, . . . , Mn}, n > 1

1: if (Q is not NULL) then

2: for i = 1 to |Q| do

3: Scan PC set;

4: if (matched (ki) == TRUE) then

5: Fec(ki).addTo(EC i);

6: Q.remove(ki); //entity class of ki is denoted

as Fec(ki)

7: end if

8: scan EC set;

9: if (matched(ki) ==TRUE) then

10: ki.addTo (EC i);

11: Q.remove(ki);

12: end if

13: scan A set;

14: if (matched(ki) ==TRUE) then

15: ki.addTo (Ai);

16: Q.remove(ki);

17: end if

18: end for

19: if (Q is not NULL) then

20: for j = 1 to |Q| do

21: Scan SIT;

22: for each fs(T [km]n) > θ do

23: kj .addTo(Vi);

24: if (Fec(kj) is not in EC i) then

25: Fec(kj).addTo (EC i);

26: Q.remove(km);

27: end if

28: end foreach

29: end for

30: end if

31: end if

32: return SIMR

definitions, we describe the core challenges and our
heuristic rules, and then describe our goal entity class
recognizing algorithm.

Definition 5 (Goal Entity Class). Given a key-
word query Q and its semantic item mapping result set
SIMR = {M1,M2, . . . , Mn}, n > 1, for each Mi ∈
SIMR, goal entity class (GEC) of it is denoted as
GEC(Mi) which is composed of all the possible search-
ing target entity class(es) sets of Mi, i.e., GEC (Mi) =
{GEC (Mi)1, GEC (Mi)2, . . . ,GEC (Mi)j}, j > 1,
where GEC (Mi)j = {ec1, ec2, . . . , ecn}, n > 1, ec ∈
EC.

Dan Yang et al.: Query Intent Disambiguation of Keyword-Based Semantic Entity Search in Dataspaces 387

Definition 6 (Goal Entity Class Recognizing). Goal
entity class recognizing is the process of inferring each
Mi’s possible implicit target entity class(es) involved in
the searching entity results.

For each Mi ∈ SIMR, we do GEC recognizing and
try to infer goal entity class(es) the user desires. And
from scenario 2 we notice that sometimes users want to
find more than one target entity classes in the query.
Consequently the size of each GEC (Mi)j is equal or
greater than one, i.e., |GEC (Mi)j | > 1.

3.2.1 Core Challenges of GEC Recognizing

One challenge of GEC recognizing is that keyword-
based entity search in dataspaces involves many diffe-
rent entity classes, not simply one entity classes in
some other systems (e.g., product search system, pa-
per search system). And usually users do not explicitly
input GEC as a keyword in a query. For instance, a
user submits query “Mary, SIGMOD 2011” to find all
papers Mary published in SIGMOD 2011. Here Paper
is the goal entity class but it does not appear in the
query as a keyword.

Another is that usually an entity class has many
self associations and associations related to it. That is
to say there are many semantic combinations for these
keywords. For example, a user submits query “Mary,
JCST”. There are many direct or indirect associa-
tions between Person and Journal (e.g., “Person editorOf−−−−→
Journal”, “Person authorOf−−−−−→ Paper

publishedIn−−−−−−→ Journal”).
So the user maybe intends to find all Mary’s papers
published in JCST or some person whose name is Mary
and who is the editor of JCST, etc.

3.2.2 GEC Recognizing Heuristic Rules

To address the challenges above we propose a GEC
recognizing strategy which makes semantic associations
of entity classes first-class citizen. When association
subset AS i of Mi is not null, namely there is(are) ex-
plicit association(s) appearing in the query, we infer
GEC by the association of the known entity class di-
rectly. For example, association “authorOf” appears
directly in query “authorOf, dataspaces tutorial” or
query “authorOf, paper, dataspaces tutorial”, and as-
suming “dataspaces tutorial” is mapped to entity class
Paper, according to GS there exists association “Per-
son authorOf−−−−−→ Paper”, we assume that the user intends
to find person entities who are authors of the paper
“dataspaces tutorial”, so here GEC (Mi)1 = {Person}.
Otherwise we give some GEC recognizing heuristic rules
according to entity class subset EC i of Mi. Firstly two
related definitions used in heuristic rules are given.

Definition 7 (Association Tree). An association

tree (AT) is a tree composed of at least three different
entity classes(nodes) and their associations. The re-
lated degree of an entity class ec (denoted as R(ec)) in
each AT is represented by the sum of indegree and out-
degree of each node. For example, AT “project ← per-
son → paper → conference”, the related degree of each
entity class is as follows: R(Project) = 1, R(Person) =
2, R(Paper) = 2, R(Conference) = 1.

Definition 8 (Association Chain) An association
chain (AC) is a chain composed of at least three diffe-
rent entity classes and their associations which is a spe-
cial AT. The length of an AC is the number of entity
classes in the chain. Each path (if the path length > 3)
from the root to leaf in AT can be looked as an AC, e.g.,
“Person → Paper → Conference”.

Rule 1. If Mi includes only one entity class ec (i.e.,
|EC i| = 1) and the name of entity class ec appears
in the query Q directly, then generally it is GEC (Mi)
by default, namely GEC (Mi) = {ec}. For instance,
keyword “paper” appears in query “paper, dataspaces”
directly, so here GEC (Mi)1 = {Paper}.

Rule 2. If Mi includes only one entity class ec
(i.e., |EC i| = 1), then if the number of entities in-
volved are more than one, then each GEC (Mi)j is com-
posed of the target entity class of each self association
of ec according to GS , namely GEC(Mi)j = {target
entity class of the j-th self association of ec}; else
GEC (Mi)1 = {ec}. For example, Mi of query “Halevy,
Xin Dong” involves two entities, entity class Person
has two self associations, e.g., co author, co project.
So GEC (Mi)1 = {Paper}, GEC (Mi)2 = {Project}.
For another example, assuming Mi of keyword query
“Halevy” includes only one entity class Person and in-
volves only one entity, so here GEC (Mi)1 = {Person}.

Rule 3. If Mi includes three or more entity classes
(i.e., |EC i| > 3), and these entity classes can form ACs
or ATs directly or by another entity class indirectly,
then GEC(Mi)j is composed of entity class ec with max-
imum related degree R(ec) of each AC or AT, namely
GEC (Mi)j = {arg max

ec
R(ec)j}, where ec ∈ EC i. Oth-

erwise refer to rules 4∼6. For instance, assuming there
exists an AC for the three entity classes of Mi “Person
→ Paper→ Conference”, so GEC (Mi) = {Paper}. As-
suming there exists an AT for the following four entity
classes of Mi: “Project ← Person → Paper → Confer-
ence”, then GEC(Mi)1 = {Paper} and GEC(Mi)2 =
{Person}. For another example, assuming Mi includes
three entity classes Journal, Person and Conference, ac-
cording to Fig.2 they form an AT “Conference ← Per-
son → Journal” directly, and an AT “Person → Pa-
per → Conference/Journal” through Paper indirectly,
so GEC(Mi)1 = {Person} and GEC(Mi)2 = {Paper}
respectively.

388 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

Rule 4. If Mi includes two entity classes (i.e.,
|EC i| = 2), and they can form AC or AT indirectly
through the third entity class, then refer to rule 3. For
example, Mi includes two entity classes person and con-
ference which can form an AC “Person → Paper →
Conference” indirectly by Paper, so according to rule
3, GEC(Mi)1 = {Paper}.

Rule 5. If Mi includes two entity classes (i.e.,
|EC i| = 2), and there exists no indirect AC or AT
through the third entity class, but there is(are) di-
rect association(s) between them, then GEC(Mi) is
composed of these two entity classes. For example,
Mi includes two entity classes Person and Project
which have a direct association “Person → Project”,
so GEC(Mi)1 = {Person, Project}.

Rule 6. If Mi includes two entity classes (i.e.,
|EC i| = 2), and there exists no indirect AC or
AT and no direct associations between them, then
GEC(Mi) is composed of these two entity classes,
namely GEC(Mi)1 = {ec1} and GEC(Mi)2 = {ec2}.

3.2.3 GEC Recognizing Algorithm

Algorithm 2 gives the pseudo-code of GEC reco-
gnizing algorithm based on the above heuristic rules.

3.3 Candidate Query Set Generating

In the step for each Mi we supplement possible asso-
ciations for mapped entity classes in EC i according to
GS , and generate candidate query set CQ. In order to
provide users a ranked interpretation list of candidate
queries according to the relevance of each candidate
query cq to query Q, we define a ranking function Score
(cq, Q) which also gives preference to semantic associa-
tions of entity classes. Score(cq, Q) contains three com-
ponents (shown in (3)) which reflect our four principles
in designing the function. The first component consid-
ers whether exists AC or AT and length of AC (denoted
as Length(AC)), namely the query with highly corre-
lated keywords is with high score. The second compo-
nent considers average importance degree I of all en-
tity class(es) in GEC. Since entity classes in a datas-
pace do not have the same importance, users may be
more interested in cq with more important goal entity
class(es). The importance degree of an entity class I
can be got by calculating the score of each node (entity
class) in GS using PageRank algorithm[11], which is a
classic algorithm to measure comparative importance of
nodes in a graph structure. The third component con-
siders the sum of final score fs of each keyword mapped
to an entity’s attribute value. The fourth component is
keywords translation completeness. Ideally we prefer a
complete candidate query including all the keywords of

Algorithm 2. Goal Entity Class Recognizing

Input: Mi ∈ SIMR; keyword query Q;

Output: GEC (Mi)

1: if (EC i is not NULL) then

2: Initialization: C ← ∅;

3: switch (size of ECi)

4: case 1: if (size of involved entities) > 1) then

5: GEC(Mi)j = {target entity class of the

j-th self association of ec};
6: else GEC(Mi)1 = {ec};
7: end if

8: break;

9: case 2: if (exists indirect AC or AT between ec1

and ec2) then

10: goto case 3;

11: else if (exists direct association(s)

between ec1 and ec2) then

12: GEC(Mi) = {ec1, ec2};
13: else GEC(Mi)1 = {ec1};

GEC (Mi)2 = {ec2}
14: end if

15: end if

16: Break;

17: case > 3: if (exists AC or AT between

entity classes) then

18: GEC(Mi) = arg max
ec

(R(ec))

19: end if

20: Break;

21: return GEC(Mi);

query to an incomplete mapping with only a subset of
keywords.

Score(cq , Q) =
Length(AC of cq)

MaxLength
⊕

AVG(I(ec ∈ GEC))⊕
p∑

i=1

fs(ki)⊕|ki ∈ cq ∩Q|
|Q| , (3)

where⊕ is a binary aggregation function, and each com-
ponent of the formula can have a weight set by the user
or system and the sum of weights is 1; MaxLength is
the possible maximum length of ACs (be varied ac-
cording to different domains), e.g., MaxLength = 10;
I(ec ∈ GEC) indicates the importance degree of cq’s
GEC, and AVG is its average score; p is the num-
ber of keywords mapped to an entity’s attribute.value;
|ki ∩ cq ∩ Q| is the number of common keywords of cq
with Q; |Q| is the number of keywords of query Q. Each
component in the formula is normalized to [0..1].

Dan Yang et al.: Query Intent Disambiguation of Keyword-Based Semantic Entity Search in Dataspaces 389

4 Experiments

In this section, we first introduce datasets and query
sets used in our experiments and then show and discuss
the experimental results on query intent disambigua-
tion performance study and KeymanticES performance
study respectively.

4.1 Experimental Setup

We implement our method and conduct the exper-
iments on a 3.16 GHz Pentium 4 machine with 4 GB
memory and 500 GB of disk. We employ a CN-based
keyword search approach DISCOVER-II[2] as the base-
line. Though its underlying data is different from ours,
the goal is similar to our approach, because both met-
hods infer query structures from keywords and do se-
mantic search.

Datasets. Our experiments are based on two real
datasets. 1) DBLP. It is a global person register for re-
searchers of computer science and neighboring sciences.
We extract entities and associations from the four re-
search areas of DBLP dataset: DB (database), DM
(data mining), IR (information retrieval), and AI (arti-
ficial intelligence). In addition we modify and extend it
manually for our experimental requirements. For exa-
mple, we introduce a new entity class Project, and add
attributes and values (e.g., affiliation, research area) to
some entities (e.g., Person entities). Accordingly we
add some associations among these entity classes (e.g.,

Person authorOf−−−−−→ Project, Paper
supportedBy−−−−−−−→ Project). Fi-

nally the dataset contains entities of six entity classes
(i.e., Paper, Person, Conference, Project, Journal, Pub-
lisher) and their associations. 2) DBLife[12]. It mana-
ges information for the database research community.
And the dataset comprises five entity tables (person,
publication, topic, organization, conference), and nine
relationship tables (relatedPeople, relatedTopic, related-
Org, serveConf, giveConfTalk, giveOrgTalk, coAuthor,
writePub, giveTutorial). We extract five entity classes
and their associations from these tables.

Query Sets. We manually select keywords from
above two datasets respectively to form queries with
length from 1 to 6 (denoted as N1 ∼ N6). Each query
type (N1 ∼ N6) contains five queries on each dataset.
The query sets include different types of queries such
as flat queries (i.e., search for entities with only at-
tributes constrains but no associations), chain queries
(i.e., search for entities with nesting of associations or
conjunction of associations). All the queries contain
ambiguities: SIM ambiguity 1 or SIM ambiguity 2 or
both. Most of the queries do not contain explicit goal
entity class(es). And the number of goal entity class
of some queries is more than 1. For each query of

N1 ∼ N6, we ask for six students in our lab to give
their desired query intents (e.g., goal entity class, can-
didate queries, ranking of them) for each query.

4.2 Query Intent Disambiguation Performance
Study

Effectiveness. The experiments include: 1) the qua-
lity of the GEC recognizing; 2) the effectiveness of CQ
generating.

GEC Recognizing. The average precision compari-
son of goal entity class recognizing on the two datasets
is shown in Table 2. We can see that our approach is
able to infer a desired goal entity class with high preci-
sion in most cases and even high when the number of
keywords is more than 4.

Table 2. Average Precision of GEC Recognizing

Dataset
Number of Keywords

1 2 3 4 5 6

DBLP 0.97 0.95 0.93 0.93 0.92 0.92

DBLife 0.95 0.94 0.92 0.91 0.91 0.89

CQ Generating. First we evaluate the effectiveness
of candidate query set ranking strategy. We use three
widely adopted measures: 1) number of top-1 answers
that are relevant; 2) reciprocal rank (R-rank); 3) mean
average precision (MAP). The experimental results on
the two datasets are shown in Table 3. We find that
our approach can return top-1 cq in most cases and has
an average R-rank greater than 0.8 and even over 0.9
on DBLP.

Table 3. Ranking Performance

Dataset Top-1 Number/Total Number R-Rank MAP

DBLP 27/30 0.95 0.925

DBLife 25/30 0.89 0.853

Then we measure the effect of associations to the
size of candidate query set CQ on the two datasets.
We experiment when the number of associations (#as)
is 5, 8, and 12 respectively (shown in Fig.5). From the
figure we can see the overall trend is that the size of CQ
increases with the number of keywords. Moreover, the
larger the number of associations is, the larger the size
of CQ is. It shows that associations are very important
to the effectiveness of query intent disambiguation.

Efficiency. We examine the average execution time
of each step of our query intent disambiguation ap-
proach. The experimental results are shown in Fig.6.
From the figure we can see that the full execution time
of query intent disambiguation is incremental with the
increasing of the number of keywords gradually. Addi-
tionally, as the number of keywords increases, the

390 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

Fig.5. Effect of associations on the size of CQ. (a) DBLP. (b)

DBLife.

Fig.6. Time performance of query intent disambiguating. (a)

DBLP. (b) DBLife.

execution time of SIM increases; the time spending on
GEC recognizing increases very little because the num-
ber of entity classes in the mapping results has a small
change; the execution time of CQ generating increases
due to the size of candidate query set increasing. In
general the CQ generating accounts for large fraction
of the total execution time.

Scalability. Due to the evolution feature of datas-
paces, it is not uncommon that the number of under-
lying entity classes and their associations change with
time. So we experiment on DBLife dataset to evaluate
the flexibility and scalability of our approach. Fig.7
shows the average execution time of our query intent
disambiguation approach when the number of entity
classes (#ecs) is 3, 4 and 5 respectively. We observe
that the runtime increases with the increment of the
number of entity classes. And the runtime is stable
between 6 ms and 16 ms.

Fig.7. Scalability of query intent disambiguation on DBLife.

4.3 KeymanticES Performance Study

Effectiveness. We use the following metrics: pre-
cision, recall and F -score defined in (4) to compare
the effectiveness of KeymanticES and DISCOVER-II on
the two datasets. The experimental results are shown
in Fig.8 and Fig.9 respectively. From the figures it
can be seen that KeymanticES performs better than
DISCOVER-II. Because DISCOVER-II cannot return
results for queries containing keywords such as “paper”,
“person”, “authorOf”, “Scientist”. The improvement is
due to the reason that unlike DISCOVER-II, instead of
mapping keyword to the value of attribute in the table’s
text column, KeymanticES maps the keyword to either

Fig.8. Effectiveness comparisons on DBLP database. (a) Precision. (b) Recall. (c) F -score.

Dan Yang et al.: Query Intent Disambiguation of Keyword-Based Semantic Entity Search in Dataspaces 391

Fig.9. Effectiveness comparisons on DBLife database. (a) Precision. (b) Recall. (c) F -score.

meta-data, data instance, or primitive concept.

precision =
searchedRelatedEntities

allSearchedEntities
,

recall =
searchedRelatedEntities

allRelatedEntities
,

F score =
2× precision× recall

precision + recall
. (4)

Scalability. We examine the scalability of Keyman-
ticES on DBLife dataset when the number of keywords
(#keywords) is 3, 4, 5, and 6 respectively. The exper-
imental result is shown in Fig.10. From the figure we
can see that the query time increases in a sub-linear
fashion with the increase of size of the dataset, and the
query time is stable between 7 ms and 26ms.

Fig.10. Scalability of keymanticES DBLife.

5 Related Work

Keyword search is becoming a widely accepted query
mechanism for information searching due to its sim-
plicity. But keyword query is by nature ambiguous,
and one of its challenges is to infer users’ query intent
from limited keywords. Query intent disambiguation
query translation, or query transformation is to make
keyword query have semantic information or structure
information to better represent the user’s underlying
intent. The problem has been studied mainly in the
fields of IR, Web query, the context of keyword search
over relational databases or semi-structure XML data.
In IR, the state-of-the-art is to use statistics models

like conditional random fields (CRF), hidden Markov
model (HMM), Markov random field (MRF) or statis-
tical language models[13] like n-gram language models
to find the dependency between keywords in a query.
Some related work proposes to answer keyword query
by query forms[14-15] which infer structures from exis-
ting structured query templates. Related work about
web query leverages the query log or click log to do
keywords translation, such as [16-19]. Some related
work does query disambiguation based on structure
information of underlying relational database such as
[4-5, 20-23]. Keymantic[22] translates the ambiguous
keyword queries into full specified SQL expressions.
It treats the keyword search as a bipartite graph as-
signment problem and uses an extended version of the
Hungarian algorithm. Related work in [23] has a goal
similar to that of [22], but it follows a different ap-
proach. It proposes a probabilistic approach based on
a hidden Markov model. SQLSUGG

[5] suggests SQL
queries based on queryable templates as users type in
keywords. Its goal is similar to ours, but our method
can match keywords to primitive concepts and associa-
tions, which is not supported by SQLSUGG. More-
over it transforms the query template to SQL query
which is the combination of all matched attributes of
keywords in SELECT clause. Instead of records, our
approach can further identity goal entity class of the
query and return entities to users. In the context of se-
mantic XML keyword search, XML-oriented query en-
gine SphereSearch[24] supports concept-aware, context-
aware and abstraction-aware search on XML data by
leveraging the implicit structure and context of Web
pages. However it does not take into account specific
labeled relationships between entities. XSeek[8] adopts
smallest LCA semantic and considers a node type as
an concept leveraging DTD. It infers return nodes by
analyzing patterns of query keyword matches and data
semantics. However it does not consider ranking prob-
lem and keyword ambiguity problem. XReal[25] exploits
the statistics of underlying XML database to address
search intention identification (i.e., identifying search
for nodes, search via nodes), result retrieval and rele-
vance oriented ranking without using any schema know-

392 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

ledge. The strategy is more suitable for tree models and
falls short in our context. Though the goal of our query
intent disambiguation approach is similar to XReal and
both of them are to identify the user search intention,
we use different method due to different data models.
In terms of keyword search over heterogeneous data
sources, EASE[26] extends Steiner tree with r-radius
Steiner graph as the query response unit. It models
unstructured, semi-structured and structured data as
graphs with nodes being documents, elements and tu-
ples respectively. By contrast KeymanticES models en-
tities as nodes in our layered graph data model aiming
at entity search. Besides, though the research back-
ground of EASE is similar to dataspace, it focuses on
the issues of indexing and ranking.

Our proposal KeymanticES is different from the
above related work and has the following advantages:
1) KeymanticES is an entity search mechanism aim-
ing at all kinds of heterogonous data sources in datas-
paces, not limited to documents, structured relational
databases, or XML databases. 2) KeymanticES pro-
vides semantic search (but not OR and AND semantic
of keywords) using simple keyword-based search model
by leveraging rich associations of entity classes. 3) Key-
manticES supports searching for entities of multiple en-
tity classes instead of just one entity class. 4) Our
three-step query intent disambiguation approach can
effectively translate a keyword query to ranked candi-
date queries step by step.

6 Conclusions and Future Work

In this paper, we studied the problem of keyword-
based semantic entity search in dataspaces and pro-
posed a novel mechanism: KeymanticES. Furthermore,
focusing on keyword query intent disambiguation prob-
lem we proposed a novel three-step approach which
effectively solves the semantic ambiguity of keyword
query problem and improves the precision of keyword
query in dataspaces. Experimental results show the ef-
fectiveness and correctness of the proposed approach.
Our future work will consider the effect of sequence or
order of keywords, e.g., keyword query “paper, datas-
paces” and “dataspaces, paper” may be with different
query intents or search focuses.

References

[1] Hristidis V, Papakonstantinou Y. Discover: Keyword search
in relational databases. In Proc. the 28th VLDB, Aug., 2002,
pp.670-681.

[2] Hristidis V, Gravano L, Papakonstantinou Y. Efficient IR-
style keyword search over relational databases. In Proc. the
29th VLDB, Sept. 2003, pp.850-861.

[3] Luo Y, Lin X, Wang W et al. Spark: Top-k keyword search
engine on relational databases. In Proc. ICDE, Apr. 2008,
pp.1552-1555.

[4] Demidova E, Zhou X, Nejdl W. IQp: Incremental query con-
struction, a probabilistic approach. In Proc. the 26th ICDE,
Mar. 2010, pp.349-352.

[5] Fan J, Li G L, Zhou L Z. Interactive SQL query suggestion:
Making databases user-friendly. In Proc. the 27th ICDE,
Apr. 2011, pp.351-362.

[6] Schmidt A, Kersten M L, Windhouwer M. Querying XML
documents made easy: Nearest concept queries. In Proc. the
17th ICDE, Apr. 2001, pp.321-329.

[7] Xu Y, Papakonstantinou Y. Efficient keyword search for
smallest LCAs in XML databases. In Proc. SIGMOD, June
2005, pp.537-538.

[8] Liu Z Y, Walker J, Chen Y. XSeek: A semantic XML search
engine using keywords. In Proc. the 33rd VLDB, Sept. 2007,
pp.1330-1333.

[9] Li Y, Yu C, Jagadish H V. Schema-free XQuery. In Proc. the
30th VLDB, Aug. 31-Sept. 3, 2004, pp.72-83.

[10] Yang D, Shen D R, Nie T Z et al. Layered graph data model
for data management of dataspace support platform. In Proc.
the 12th WAIM, Sept. 2011, pp.353-365.

[11] Brin S, Page L. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems,
1998, 30(1/7): 107-117.

[12] Derose P, Shen W, Chen F et al. DBLife: A community
information management platform for the database research
community. In Proc. CIDR, Jan. 2007, pp.169-172.

[13] Zhai C. Statistical language models for information retrieval:
A critical review. Foundations and Trends in Information
Retrieval, 2008, 2(3): 137-213.

[14] Chu E, Baid A, Chai X et al. Combining keyword search and
forms for ad hoc querying of databases. In Proc. SIGMOD,
June 29-July 2, 2009, pp.349-360.

[15] Tata S, Lohman G M. SQAK: Doing more with keywords. In
Proc. SIGMOD, June 2008, pp.889-902.

[16] Venkatesh G, Yeye H, Dong X. Keyword++: A framework
to improve keyword search over entity databases. In Proc.
VLDB, Sept. 2010, pp.711-722.

[17] Nikos S, Stelios P, Panayiotis T. Structured annotations of
web queries. In Proc. SIGMOD, June 2010, pp.771-782.

[18] Paprizos S, Ntoulas A, Shafer J et al. Answering web queries
using structured data sources. In Proc. SIGMOD, June 29-
July 2, 2009, pp.1127-1130.

[19] Cheng T, Lauw H W, Paparizos S. Fuzzy matching of Web
queries to structured data. In Proc. ICDE, Mar. 2010,
pp.713-716.

[20] Demidova E, Zhou X, Zenz G et al. SUITS: Faceted user in-
terface for constructing structured queries from keywords. In
Proc. DASFAA, Apr. 2009, pp.772-775.

[21] Pound J, IIyas I F, Weddell G E. Expressive and flexible
access to web-extracted data: A keyword-based structured
query language. In Proc. SIGMOD, June 2010, pp.423-434.

[22] Bergamaschi S, Domnori E, Guerra F. Keyword search over
relational databases: A metadata approach. In Proc. SIG-
MOD, June 2011, pp.565-576.

[23] Bergamaschi S, Guerra F, Rota S et al. A hidden Markov
model approach to keyword-based search over relational
databases. In Proc. ER, Oct. 31-Nov. 3, 2011, pp.328-331.

[24] Graupmann J, Schenkel R, Weikum G. The sphereSearch en-
gine for unified ranked retrieval of heterogeneous XML and
web documents. In Proc. VLDB, Aug. 30-Sept. 2, 2005,
pp.529-540.

[25] Bao Z F, Ling T W, Chen B et al. Effective XML key-
word search with relevance oriented ranking. In Proc. ICDE,
Mar. 29-Apr. 2, 2009, pp.517-528.

[26] Li G L, Ooi B C, Feng J H et al. EASE: An effective 3-in-1
keyword search method for unstructured, semi-structured and
structured data. In Proc. SIGMOD, June 2008, pp.903-914.

Dan Yang et al.: Query Intent Disambiguation of Keyword-Based Semantic Entity Search in Dataspaces 393

Dan Yang received her M.S. de-
gree in computer software and the-
ory from Northeastern University of
China, Shenyang, in 2004. She is
currently a Ph.D. candidate in com-
puter software and theory, North-
eastern University. She is a student
member of the CCF and member
of the ACM. Her research interests
include dataspace and data integra-
tion.

De-Rong Shen received her B.S.
degree and M.S. degree in com-
puter science from Jilin University of
China in 1987 and 1990, respectively,
Ph.D. degree in computer science
from Northeastern University, China,
in 2004. She is a professor of North-
eastern University. She is a senior
member of the CCF and a member of
the ACM, IEEE. Her research inter-

ests include Web data processing and distributed database.

Ge Yu received his B.S. degree
and M.S. degree in computer scie-
nce from Northeastern University of
China in 1982 and 1986, respectively,
Ph.D. degree in computer science
from Kyushu University of Japan
in 1996. He has been a professor
at Northeastern University of China
since 1996. He is a senior member
of the CCF, and a member of the

ACM, IEEE. His research interests include database theory
and technology, distributed and parallel systems, embedded
software, and network information security.

Yue Kou received her Ph.D. de-
gree in computer software and the-
ory from the College of Information
Science and Engineering, Northeast-
ern University of China in 2009. She
is an associate professor of North-
eastern University of China. She is
a member of the CCF and ACM.
Her research interests include Web
search, Web mining, and dataspace.

Tie-Zheng Nie received his
Ph.D. degree in computer software
and theory from the College of In-
formation Science and Engineering,
Northeastern University of China,
Shenyang in 2009. He is an associate
professor of Northeastern University
of China. He is a member of the CCF
and ACM. His research interests in-
clude data quality and data integra-
tion.

