
Li Y, Zhang YQ, Liu YQ et al. MPFFT: An auto-tuning FFT library for OpenCL GPUs. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 28(1): 90–105 Jan. 2013. DOI 10.1007/s11390-013-1314-8

MPFFT: An Auto-Tuning FFT Library for OpenCL GPUs

Yan Li1,2 (李 焱), Student Member, CCF, ACM, Yun-Quan Zhang1,∗ (张云泉), Member, CCF, ACM, IEEE
Yi-Qun Liu1,2 (刘益群), Student Member, CCF, ACM, Guo-Ping Long1 (龙国平), and Hai-Peng Jia3 (贾海鹏)

1Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
3School of Information Science and Engineering, Ocean University of China, Qingdao 266000, China

E-mail: liyan08@iscas.ac.cn; zyq@mail.rdcps.ac.cn; {liuyiqun.jlu, longguoping, jiahaipeng95}@gmail.com

Received November 18, 2011; revised September 25, 2012.

Abstract Fourier methods have revolutionized many fields of science and engineering, such as astronomy, medical imaging,
seismology and spectroscopy, and the fast Fourier transform (FFT) is a computationally efficient method of generating a
Fourier transform. The emerging class of high performance computing architectures, such as GPU, seeks to achieve much
higher performance and efficiency by exposing a hierarchy of distinct memories to software. However, the complexity of
GPU programming poses a significant challenge to developers. In this paper, we propose an automatic performance tuning
framework for FFT on various OpenCL GPUs, and implement a high performance library named MPFFT based on this
framework. For power-of-two length FFTs, our library substantially outperforms the clAmdFft library on AMD GPUs
and achieves comparable performance as the CUFFT library on NVIDIA GPUs. Furthermore, our library also supports
non-power-of-two size. For 3D non-power-of-two FFTs, our library delivers 1.5x to 28x faster than FFTW with 4 threads
and 20.01x average speedup over CUFFT 4.0 on Tesla C2050.

Keywords fast Fourier transform, GPU, OpenCL, auto-tuning

1 Introduction

The fast Fourier transform (FFT) is one of the most
critical computational kernels which has broad appli-
cability across a wide range of disciplines in audio sig-
nal processing, image processing, spectral methods for
solving partial differential equation (PDE) and so on.
Many algorithms have been proposed for solving FFT
efficiently since 1965[1]. However, the FFT is only a
good starting point if an efficient implementation exi-
sts for the architecture at hand, and optimizing mem-
ory accesses and scheduling computational operations
for the FFT on modern platforms is a serious challenge.

The gap between processor performance and mem-
ory latency has increasingly widened over the last
decade. The resulting increased complexity of mem-
ory systems to ameliorate this gap has made it increas-
ingly harder for compilers to optimize arbitrary code
within an acceptable amount of time. Although GPUs
are promising platforms for general-purpose high-
performance computing, the state-of-the-art numerical

libraries suffer tremendously from the new memory de-
sign and organization. We have to explicitly orches-
trate efficient data transfers among massive threads
from memory hierarchy to processing elements. Man-
aging data locality in GPUs requires trade-offs in per-
formance, code complexity and optimization effort. Ac-
cordingly, its programming complexity poses a signifi-
cant challenge to programmers.

Due to the fast product cycles in hardware develop-
ment and the complexity of today’s execution environ-
ments, evolution of hardware technology is not accom-
panied with innovative software technology that makes
the computational capability of the hardware unavail-
able to scientists and engineers. It gets more and more
complicated to design algorithms that are able to uti-
lize modern computer systems to a satisfactory degree.
Algorithms which were optimized for a specific architec-
ture several years ago, fail to perform well on current
and emerging architectures. Software automatic tuning
is considered to be the most promising paradigm that
will meet such a demand of software technology.
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There has been significant progress over the last
decades on FFT in the development of auto-tuning
technique and many FFT libraries have been built on
CPUs and GPUs. On the GPU side, high performance
vendor FFT libraries are provided, such as CUFFT①

on NVIDIA GPUs, clAmdFft② on AMD GPUs, and
several other research FFT libraries[2-5]. Although the
researches they did demonstrated significant perfor-
mance improvement against prior state-of-the-art FFT
algorithms on GPUs, they just took the NVIDIA GPU
into account and ignored the AMD GPU. Hence all
the developed libraries are not cross-platform adaptive.
Furthermore, there has been a substantial body of work
on FFT, but most of it is not extended to non-power-
of-two size.

The major contributions of our work can be summa-
rized as follows. First, an auto-tuning framework to op-
timize 3D FFT algorithms on multiple platforms with
OpenCL is proposed. To the best of our knowledge,
it is the first auto-tuning framework for FFT support-
ing AMD GPUs. Second, a high performance library
named MPFFT based on the framework is implemented
and analyzed. Last but not least, the differences of
features of architectures between AMD and NVIDIA
GPUs that affect program performance are enumera-
ted. Our analysis and structured memory optimization
techniques are based on the Kronecker product that
captures the memory access pattern and other perfor-
mance effects of major GPU microarchitecture features
in our library. Furthermore, it can also account for the
differences in the underlying hardware and program-
ming language constructs of these two platforms.

The remainder of the paper is organized as follows.
Section 2 presents the background and motivation. Sec-
tion 3 elaborates the proposed auto-tuning framework
on GPUs. Section 4 illustrates the performance results
and analysis of our library in detail. Section 5 discusses
the related work. Section 6 provides conclusions and
future implications for this work.

2 Background and Motivation

In this section, we provide a brief overview of the
GPU architecture and OpenCL programming model.
Our auto-tuning framework is constructed based on this
model and well-suited to AMD and NVIDIA GPUs.
Furthermore, FFT algorithms with their representa-
tions we used as well as the motivation of our work
are presented.

2.1 OpenCL Programming Model

OpenCL (Open Computing Language)[6-7] is an

open royalty-free standard for general purpose hetero-
geneous parallel programming across CPUs, GPUs and
other processors, giving software developers portable
and efficient access to the power of these processing
platforms. OpenCL consists of a programming lan-
guage used to write computational kernels that execute
on compute devices, and runtime API functions used
to coordinate executions of the kernels, configure and
manage OpenCL objects. Vendor-specific implemen-
tations of OpenCL are provided by almost all major
CPU and GPU vendors, in particular NVIDIA, AMD,
Intel and IBM. These implementations allow for using
OpenCL with a limited set of devices types.

Fig.1(a) shows an overview of the GPU architec-
ture and thread execution model in OpenCL. OpenCL
provides a framework for coordinating parallel compu-
tation across heterogeneous processors, and a cross-
platform programming language with a well specified
computation environment. It is similar in style to
the single program multiple data (SPMD) parallel pro-
gramming model. The OpenCL platform consists of a
host processor connected to multiple compute devices,
and the devices are most easily defined as a collection of
compute units (CUs), each containing multiple proces-
sing elements (PEs) of which the functionality equals to
streaming processor core (cuda core in Fermi architec-
ture) in NVIDIA GPU or stream core in AMD GPU.
The PE executes the computation commands submit-
ted from an OpenCL application. All PEs within a CU
execute a single stream of instructions as single instruc-
tion multiple data (SIMD) or as SPMD.

An OpenCL application consists of a host program
which executes on the host processor and kernels that
are functions for being accelerated on compute de-
vice using OpenCL API. The host program provides
command-queue for performing computation in-order
or out-of-order on the PEs, and also defines a multi-
dimensional abstract index space. Each point within its
index space is associated with an execution instance of
the kernel, which is defined as work-item. Work-items
are further grouped as work-groups. Work-items in a
work-group execute concurrently on the PEs of a sin-
gle CU, and all work-items in a work-group can coop-
erate, whereas work-items from different work-groups
cannot. Furthermore, they are grouped into multiple
warps, which are the granular multi-threading schedul-
ing units. A warp is conceptually equivalent to a wave-
front in AMD GPUs. If work-items within a wave-
front/warp diverge, such as branching, all execution
paths are executed serially. This phenomenon is called
thread divergence[8] which would degrade the perfor-
mance greatly.

①http://developer.nvidia.com/cuda/cufft, Sept. 2012.
②http://developer.amd.com/libraries/appmathlibs/pages/default.aspx, Sept. 2012.
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Fig.1. Overview of the OpenCL framework and GPU architectures. (a) OpenCL programming model. (b) Differences of architecture

between AMD and NVIDIA GPU.

Different architectures among the underlying plat-
forms pose various challenges in memory optimization
and parallelism management, resulting in different per-
formances. The architectures of the NVIDIA and AMD
GPU are shown in Fig.1(b). The NVIDIA GPU em-
ploys a scalar architecture in the sense that computa-
tion and memory operations are not necessarily exe-
cuted in a vector fashion. The thread execution model
is called single instruction multiple threads (SIMT).
Nonetheless, due to its simplicity, it is easier for appli-
cation and game developers to program. Furthermore,
global memory coalescing and bank conflict avoidance
in the local memory access are the key optimization
to achieve high memory bandwidth and high perfor-
mance. The AMD GPU architecture is a bit different.
In each block of six stream processing units, four are
identical, the 5th carries different FP/INT arithmetic
functions, and the 6th keeps things in check. Essen-
tially, each block of five stream processors (ignoring

the special unit) is comparable to one NVIDIA stream
processor. Accordingly, the major difference is proba-
bly that AMD GPU is vector-based, whereas NVIDIA
GPU is scalar-based. Because of AMD GPU’s architec-
ture, developers have a tougher time programming to
take full advantage of every stream processor on board.
Furthermore, the benefits of vectorization far overweigh
the penalties of local memory bank conflicts in AMD
GPUs, whereas the benefits from vectorization are limi-
ted in NVIDIA GPUs[9].

2.2 FFT Algorithms

In fact, the FFT algorithm is reported to be one of
the top ten algorithms in the 20th century. A consider-
able research effort has been devoted to optimization of
FFT codes over the past four decades. The algorithm
presented by Cooley and Tukey[10] reduces the algo-
rithm complexity of computing the näıve DFT (discrete
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Fourier transform) from O(n2) to O(n log n), which is
viewed as a turning point for applications of the Fourier
transform.

The DFT of a sequence x = x0, . . . , xn−1 is defined
in summation form as follows:

yj = DFT Nx =
n−1∑

k=0

ωjk
N xk, (1)

where k ∈ [0, n− 1] and ωN = e
−2iπ

n .
DFT can be represented in many different forms.

The butterfly is extracted from a signal flow graph
implementing an FFT algorithm for simplicity. In this
paper, we adopt Kronecker product to design and im-
plement FFT algorithms. The property of the forma-
lism facilitates verification of the correctness in the code
generation. Furthermore, it assists us with implemen-
ting the GPU kernel and optimize its performance.

If A is an m×n matrix and B is a p×q matrix, then
the Kronecker product A by B is an mp × nq matrix
denoted by A⊗B and defined by

A⊗B = [aijB]i,j (2)

with A = [aij ]i,j .
The direct sum of A and B is an (m + q)× (n + s)

matrix denoted by A⊕B and defined by

A⊕B =
(

A 0
0 B

)
, (3)

where the 0’s denote blocks of zeros with appropriate
size.

The mathematical identities for FFT algorithms can
be obtained by referring to [11-13]. Historically, FFT
algorithms were obtained by applying breakdown rules
recursively. The rule we use is expressed in (4), and
it is applied to exhibit the parallel Kronecker product
structure which leads to the so-called 6-step or parallel
FFT algorithm. The more detailed description of FFT
algorithms and their variants can be found in [1, 11,
14], and the notation we use here mostly coincides with
the notation in [11-12].

DFT n2n1 =Ln2n1
n2

(In1 ⊗DFT n2)L
n2n1
n1

·
T n2n1

n1
(In2 ⊗DFT n1)L

n2n1
n2

. (4)

The twiddle factor matrix, denoted by T n1n2
n1

, is the
diagonal matrix (abbreviated as diag):

T n1n2
n1

=
n2−1⊕
i=0

n1−1⊕
j=0

ωij
n1n2

=
n2−1⊕
j=0

diag(1, ωj
n1n2

, . . . , ωj(n1−1)
n1n2

) (5)

and moreover, the notation Lmn
n denotes the stride per-

mutation which indicates that a vector of size mn is
reordered by loading into n segments at stride n.

2.3 Motivation

The programming models and interfaces in tradi-
tional graphics processors were highly specialized and
limit the ability of developers to map general-purpose
applications to these platforms. With the advent of
CUDA[15] and OpenCL, researchers now have the pro-
gramming and architectural features to quickly port
programs to a platform with a massively parallel, GPU-
based coprocessor[16-17]. However, the amount of effort
required to maximize the performance of applications
on GPU architectures is relatively large. Due to re-
source restrictions and the threading model of the GPU,
the optimization space can also be discontinuous[18].
Chasing performance gains through manual tuning be-
comes a complex and time-consuming process that is
neither scalable nor portable. Automatic performance
tuning or auto-tuning is a promising and viable ap-
proach to address the limitations of manual tuning. In
recent years, it has emerged as an effective approach
to tune scientific kernels for both multi-core processors
and GPUs. It can handle the increasing complexity in
GPU computation and memory subsystems effectively.
Recent research has demonstrated that GPUs can sig-
nificantly accelerate the performance of FFTs as com-
pared to CPUs. Nukada and Matsuoka[3] used auto-
tuning for optimizing 3D FFT performance on GPUs,
but their approach has limited search space and is un-
likely to be efficient for arbitrary FFT configurations.
Yuri Dotsenko et al.[4] presented a complete FFT frame-
work to optimize an FFT library for arbitrary dimen-
sions and sizes.

However, the methodology of auto-tuning tech-
niques in MPFFT is very different from all the above-
mentioned work. We employ two-stage adaptation
methodology in different levels, namely installation
time and runtime. At installation time, there is a code
generator that could automatically generate FFT code
for arbitrary size called by GPU kernel. The code gene-
rator also could generate high optimized code for GPU
kernel according the auto-tuning techniques at runtime.
Hence MPFFT is more adaptive to various styles of ar-
chitecture. The framework of MPFFT is fully discussed
in the following sections. Furthermore, both of the li-
braries they developed are not cross-platform adaptive.
The intent of our work is to model the GPU organiza-
tion and features for constructing an auto-tuning per-
formance model of FFT on the GPU architecture. Our
model is well-suited both on AMD and NVIDIA GPUs.
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2.4 Mapping FFTs to GPUs

Due to the various features of different architec-
tures, many variants of FFT algorithms and their
implementation are required. The explicit digit rever-
sal permutations required by the Cooley-Tukey algo-
rithm are avoided in the Stockham auto-sort algorithm
(shown in (6)) by changing the permutations across
stages[4,11,19]. The transformations of 4-D arrays which
illustrate the Stockham algorithm are shown in Fig.2.
The row-column algorithm is yielded by applying the
definition of 2D DFT and properties of Kronecker pro-
duct ((7)). Higher-dimensional DFT algorithms are de-
rived similarly.

DFT N =
n∏

i=1

(DFT ni
⊗ IN/ni

)(T mini
ni

⊗ I li)·

(Lmini
ni

⊗ I li),

l1 = 1, li+1 = nili,mi =
N

li+1
, (6)

DFT m×n =(Im ⊗DFT n)(DFT m ⊗ In)

=(Im ⊗DFT n)Lmn
m (In ⊗DFT m)Lmn

n .
(7)

Fig.2. Stockham FFT algorithm using 4-D partitioning

(A B C D). The partition being transformed in each stage is

shown in red. Untransformed partitions are shown in italicized

bold and transformed partitions in gray.

For a given size and certain dimensional FFT, we
first partition it into multiple dimensions without vio-
lating on-chip resource usage, i.e., the amount of local
memory and the number of registers used by a ker-

nel along with other hardware limits. To begin with,
the threads load data from global memory to registers
for computing FFT along one dimension, then multi-
ply with twiddle factors and shuffle data for the subse-
quent transforms along other dimensions through local
memory. Finally, the results are written back to global
memory.

Fig.3 illustrates how to compute large-size FFT on
the GPU. The factorization and computation for local
memory is also similar to it. Assume that the input size
is 16 M, the library factorizes it according to the value
#T because the size is larger than #L. We use term #T
to indicate the threshold for multi-dimensional decom-
position in the global memory while term #L stands for
the maximum size supported in the local memory. If
#T equals 512, then 16M = 512× 512× 64. Hence the
library needs to factorize 512 and 64 along each dimen-
sion. Sequently, the code generator module generates
multiple GPU code versions based on these various fac-
torizations. Then the library employs the search algo-
rithm to prune the search space. Furthermore, if the
called codelet size is too small, each thread executes
several batched FFTs to improve the occupancy of re-
sources on the CU.

3 Auto-Tuning Framework

GPUs have recently become popular as general com-
puting devices due to their relatively low costs, mas-
sively parallel architectures, and improving accessibi-
lity provided by programming environments such as the
CUDA and OpenCL framework. There are two levels of
parallelism to be extracted to exploit parallelism at the
thread block level and the thread level for GPUs. Fur-
thermore, GPUs have a deep memory hierarchy needed
to be orchestrated explicitly. Effectively exploiting both
GPU computational resources and memory bandwidth
is critical to achieve peak per-node performance. Hence
we employ a two-stage adaptation methodology to map
FFT algorithms to the GPU architecture and memory
hierarchy, as shown in Fig.4. At installation time, the
codelets library consists of many small size DFTs that

Fig.3. Overview of the workflow for computing large-size FFT.
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Fig.4. Overview of the adaptive optimization framework for our FFT algorithms. (a) Framework of our MPFFT framework. (b) Block

diagram of code generator module.

are generated by a lightweight code generator mod-
ule named clfftgen. The codelets are straight-line code
which deliver optimal performance by reducing the
number of register usage, operations, precomputation
of constants and so on. The optimal FFT’s factori-
zation and performance are obtained by exploring the
optimization space at runtime. The proposed frame-
work is fully described in the following subsections.

3.1 Code Generator Module

The base components of MPFFT library are its
codelets, which are long blocks of highly optimized
straight-line codes. At runtime, the given FFT prob-
lem will be factorized until the size is small enough to
be directly computed by a codelet. Thus, a large FFT
problem is computed by a series of codelets which are
composed in a specific way, and the codelets library
plays a critical role in MPFFT’s performance. Since
it is very tedious and complicated to implement and
tune the codelets by hand when the transform size is
larger than 5, we choose an automatic code generation
approach. Our code generator is a special-purpose FFT
compiler, which produces the codelets automatically

from a simple script file at installation time. Similar
to UHFFT[26] and FFTW’s[20] code generator, clfft-
gen consists of four components: initializer, optimizer,
scheduler and unparser. The overall framework of clfft-
gen is given in Fig.4(b). The function of each compo-
nent is described in detail as follows.
• Initializer. The main work of initialization is to

produce an internal representation of the codelet in the
form of an expression list, or an expression directed
acyclic graph (DAG). For the given parameters, the
best algorithm and factorization policy is chosen to
reduce the number of floating-point operations. The
DAG is produced according to well-known FFT al-
gorithms: mixed-radix, split-radix, prime factor, and
rader. In fact, clfftgen is able to produce codelet of ar-
bitrary size.
• Optimizer. In most cases, the minimal number of

arithmetic operations means the least execution time.
The optimizer applies local rewriting rules to each node
of DAG, mainly to do some arithmetic optimizations,
such as constant folding (multiplications by 0 or 1, adds
by 0, multiplications and adds of two constants), com-
mon subexpression elimination, and so on.
• Scheduler. All large-size FFT transforms are solved
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by factorizing them into smaller transforms. Those
smaller transforms correspond to simple function type
nodes in the DAG. According to target system’s spe-
cific parameters, we can set the nesting depth of blocks,
which determines whether to unfold the inner block to
the outer. The efficiency of generated code depends
greatly on register usage. Enhancing the blocking of
codelet can reduce the number of temporary variables,
which will improve register’s usage. Without violating
the constraints of data dependency, the scheduler ap-
plies a topological sort of the DAG, then transforms
the DAG to an equivalent expression list, whose node
corresponds to an instruction exactly.
• Unparser. According to the sorted expression list,

the unparser is to translate them to straight-line code
without any branch and jump. The generated code of
clfftgen is implemented totally with built-in float2 data
type in OpenCL, thus it can run on any machine which
enables OpenCL programming. For improving perfor-
mance, we define each codelet as a macro to avoid extra
overhead of function call. Take size 12 as an example,
the chosen factorization policy and its codelet code are
shown in Fig.5

Fig.5. Size 12 and its factorization in codelets library.

Fig.6 describes the performance of codelets library
generated by our code generator module on ATI 5 850
with 64 threads per work-group in the GPU kernel. The
performance of a codelet is dominated by the number of
registers in a CU as the size increases. Larger radices
reduce the total number of iterations and temporary
variables required to combine the smaller size FFTs,
which in turn consume more on-chip resources, espe-
cially excessive use of registers. Due to high register
pressure, there is substantial performance degradation
when the size is larger than 16. Accordingly, we define
the maximum base radix as 16, and any size larger than
it would be split.

Fig.6. Performance of codelets library on ATI 5850.

3.2 Runtime Module

At runtime, the initialization module first accepts
the required parameters. Some parameters come from
the input, such as DFT length, dimension, batch size,
transform direction and complex data format (planar or
interleaved storage), and others are derived from micro-
benchmarks, such as the amount of banks interleaved
in local memory and register file capacity. Then it con-
structs many FFT plans and each represents a factori-
zation for the given transform size. The runtime code
generator produces GPU kernels to be executed in the
next step. Subsequently, the search module evaluates
the performance of executed plans to select the optimal
plan. Furthermore, we provide an empirical value for
the performance of a given size. While the performance
of the evaluated plan is below that value, the search en-
gine would change some parameters in the initialization
stage, such as work-group size, work-group number and
the maximum radix in a plan, then repeats aforemen-
tioned process. The optimal parameters can be assem-
bled by iteratively compiling and evaluating the various
plans. Finally, the search module generates the perfor-
mance data that contains the information of all eva-
luated plans besides the selected plan and reuses it in
the later sessions. The detailed memory access pattern
and optimization techniques in the code generator are
presented in the following subsections, and the search
algorithm in the runtime module is also specified.

N =
n∏

k=1

nk, N(k) = n1n2 . . . nk,

P (k) =
k−1∏

j=1

nj , R(k) =
n∏

j=k+1

nj . (8)

3.2.1 Implementation of FFT Kernels

Assume that N -point FFT is computed by n FFT
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kernels with radix nk as shown in (8).
For each fixed 1 6 i 6 n,(6) consists of three

computational steps listed as below.

A1 : x1 7→ (Lmini
ni

⊗ I li)x,

A2 : x2 7→ (T mini
ni

⊗ I li)x1,

A3 : x3 7→ (DFT ni
⊗ IN/ni

)x2. (9)

We describe how to map the formula (Lmini
ni

⊗ I li)
to a GPU kernel. The input vector x is regarded as an
mi × ri (ri = ni × li) matrix stored in the row-major
layout. The effect of this stride permutation on x is to
perform the following reordering:

x =




a0 . . . ani
− 1

...
. . .

...
a(mi−1)ni

· · · amini−1




A1−→




a0 . . . a(mi−1)ni

...
. . .

...
ani−1 · · · amini−1


 , (10)

where ai denotes the elements of x with indices from il i
to (il i + li− 1). The output matrix x1, of size ni×mi,
is the transposed matrix of x. According to its defini-
tion, T mini

ni
is a diagonal matrix of size mini and thus

(T mini
ni

⊗ Ili) is also a diagonal matrix of size N , with
each diagonal element repeated Ili times. Accordingly,
step A2 simply scales x with powers of the primitive
root of unity ω. On the other hand, step A3 is a list of
basic butterflies with stride size N/ni.

3.2.2 Global Memory Access Pattern

With so many parallel threads accessing memory si-
multaneously, effective utilization of the memory hier-
archy has significant impact on performance. Global
memory is an off-chip memory space with latencies on
the order of hundreds of cycles. To improve bandwidth
of global memory, the memory controller will coalesce
accesses to multiple data into a single memory transfer
if the accessed data has spatial reuse within the size of
a memory transfer.

The requirements for coalesced access are diffe-
rent across devices of different compute capabilities in
NVIDIA GPUs (refer to [15] for detailed information),
and this architectural features affect optimization deci-
sions. The Tesla C2050 is based on the new Fermi ar-
chitecture (show in Fig.1). Compared with older GPUs,
Fermi introduces more banks in local memory (32 banks
vs 16 banks), 64 KB on-chip configurable local memory
and L1 cache (48KB vs 16 KB), more coalescing threads
(32 threads vs 16 threads) and fast atomic memory ope-
rations with ECC memory support. Those new fea-
tures are incorporated into the optimization through
the parametrization of the algorithm. Concurrent ker-
nel execution is not applicable to FFT because of data
dependency among the computation in each dimension.
Fermi’s newly added L1 and L2 caches are not really
helpful for FFT because of FFT’s highly irregular and
non-repeating data access pattern.

We evaluate the performance of global memory
copies with different strides and offsets, and the result is
shown in Fig.7 (the word accessed by a thread is 8-byte

Fig.7. Performance comparison of global memory copies with various strides and starting address offsets on GPUs. (a) ATI 5850 GPU.

(b) ATI 6870 GPU. (c) Tesla C1060 GPU. (d) Tesla C2050 GPU.
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wide). It is observed that unaligned starting addresses
and non-unit strides across threads lead to significant
degradation in performance. As shown in Fig.8, we
also estimate the efficiency of data transfers with diffe-
rent vector types on both AMD and NVIDIA GPUs.
For NVIDIA GPUs, the vector types that achieve peak
performance are char4, short4, int2, float2 and dou-
ble1. Global memory instructions support reading or
writing 1-, 2-, 4-, 8-, 16-byte wide words[24] and the size
of vector data type that is larger than 16-byte, such as
double4, float8 and short16, has extremely poor perfor-
mance.

Due to not taking memory access alignment into
account, the performances of short and char vector
types are also very poor. Fig.8(a) and Fig.8(b) shows
that there are few performance differences in all vector
lengths except char1, char2 and short1 on AMD GPUs.
There are two independent memory paths between the
compute units and the memory on AMD GPUs, namely
fastpath and completepath respectively. When a kernel
has atomic operations or sub 32-bit data transfers, the
kernel will use the completepath. The maximum bus
utilization between the shader unit and the memory
unit for the completepath is 25% compared to the 100%
for the fastpath [25]. Consequently, the global memory
access efficiency of char1, char2 and short1 is very low.

The formulas that specify the data access from
global memory at the beginning and store back the
results at the end are LN

N/n1
and LN

n1
respectively.

Each work-item deals with one of N/n1 and n1 seg-

ments respectively, accesses each point of data at the
stride N/n1 and n1. The symbols and their defini-
tions are listed at Table 1. If 128 byte/(N/N(1) ×
sizeof (accessed word)) < 1 or the multiplicative pro-
duct of the number of work-items in a work-group and
sizeof (accessed word) is less than 128 byte, the accessed
region will not satisfy the above coalescing require-
ments. The local memory is used to rearrange data
properly for assisting coalesced access. Furthermore, if
coalesce width|(N/n1) or coalesce width|n1 is satisfied,
the accesses will be properly aligned.

3.2.3 Local Memory Access Pattern

In GPUs, large interleaved local memory is used for
inter-thread communication within a work-group. Be-
cause of the interleaved design of memory banks, multi-
ple threads fetch or store concurrently with unit stride
operates at full speed, since each word resides on a di-
fferent bank. Namely, any memory load or store of n
addresses that spans n distinct memory banks can be
served simultaneously, yielding an effective bandwidth
that is n times as high as the bandwidth of a single
bank.

To avoid bank conflicts, CW consecutive threads are
required to access different banks. Tesla C2050 (Fermi
architecture) has 32 banks with 4-byte width, and local
memory accesses are issued per warp (CW = 32) not
half-warp (CW = 16) in GPUs prior to Fermi architec-
ture, such as Tesla C1060 with just 16 banks. However,

Fig.8. Comparison of global memory bandwidth efficiency with different vector types. (a) ATI 5850 GPU. (b) ATI 6870 GPU. (c)

Tesla C1060 GPU. (d) Tesla C2050 GPU.
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Table 1. Symbols and Their Definition

Symbol Definition GPU

Tesla C1060 Tesla C2050 ATI 6870 ATI 5850

accessed word Word size of each thread accessed (byte)

| Divisible (if b = 3a, then a|b)
CW Work-item size issued in a local memory accesses 16 32 16 16

coalesce width Work-item size requested in a global memory access 16 32 16 16

bank num Bank size in a local memory 16 32 32 32

workgroup size Work-item size in a workgroup

workgroup num Workgroup size in a kernel

L Stride permutation, L
mini
ni

S Stride permutation, S
mini
mi

= L
mini
ni

threadId Thread Id

#T Threshold for multi-dimensional decomposition

in the global memory if the size is larger than #L

#L Maximum size supported in the local memory,

such as 2 048, 4 096.

CW is just a quarter-wavefront (CW = 16) on both
ATI 5850 and 6870 with 32 banks. The feature that
each thread can access two banks simultaneously bene-
fits the vector-based applications on its platforms.

Each thread loads one data from every P (k)×R(k)
nk-tuple sub-array to compute nk-point FFT and stores
back to local memory. The formula to store the re-
sults in local memory is SN

N/nk
= (LN

N/nk
)−1 (Ta-

ble 1 shows the definitions of all symbols). The in-
dices are threadId + N/nk × r (r ∈ [0, nk), threadId ∈
[0, N/nk − 1)). The indices are consecutive, and if the
size of work-group is larger than N/nk, the kernel com-
putes multiple FFTs at a time. We need to partition the
multiple batches FFT in work-items using local memory
for exchanging data. Bank conflicts will arise if nk is
power-of-two, and the problem can be solved by insert-
ing appropriate padding. Ip(k)⊗L

nkR(k)
R(k) is the formula

to load the data from local memory for computing nk-
point FFT and P (k)⊗ nk ⊗R(k) indicates the indices
for fetching data along the nk dimension. The threads
read one R(k)-tuple vector with R(k) stride while skip-
ping R(k) × (nk − 1) elements. This may suffer from
bank conflicts, and the code generator inserts padding
after every R(k)× (nk−1) elements to deal with them.

Tmin(N) =
{

0, if N = 1,

min(Tmin(N/ni) + T (ni)), if ∀ni|N.
(11)

3.2.4 GPU Kernel Generated in the Runtime

Fig.9 presents the sample of final kernel executed
on GPUs. Among the low-level optimization tech-
niques, we highlight loop unrolling, constant propa-
gation, branching and divergence. Constant propaga-
tion can avoid unnecessary arithmetic instructions, es-
pecially when computing padding functions, and the

controlling condition is configured to align with CW .

Fig.9. GPU kernel for size 8 from code generator in the runtime.
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Besides those techniques, we also maximize the use
of build-in functions, such as native sincos and mad,
where possibly we also use bit-wise operations to imple-
ment integer multiply, divide, and modulus for power-
of-two radices.

3.2.5 Runtime Search

The space of FFT schedules consists of algorithms
and their factorizations. The size of the search space
depends on the number of codelets present in the li-
brary. Fig.10 shows the search space of the 16-point
FFT. Each of the eight branches of the tree repre-
sents a possible factorization for computing FFT. In a
naive empirical search scheme, the best schedule has the
smallest execution time out of all the possible factor-
izations after executing the factorizations for the given
size. However, the time required to exhaustively search
an exponential space of factorizations may be quite
large. Furthermore, the exhaustive search scheme is
also costly in terms of the workspace requirement. To
avoid the drawbacks of an exhaustive search scheme,
we take advantage of the recursive structure of the FFT
to avoid re-evaluating common subsequences (branches
with identical strides) in the factorization tree. The
optimal substructure of the problem is reused to chara-
cterize it in a recursion, given by (11). The cost of a
codelet T (ni) is represented by its execution time with
appropriate input and output strides. The costs of eva-
luated subsequences for specific strides are stored in a
lookup table.

Fig.10. Search space for FFT of size 16.

We use dynamic programming to evaluate the tree of
factorizations in a bottom up fashion. The best factori-
zation can be found by selecting the module that yields
the Tmin(N) for computing the FFT. The pseudo-code
of the search scheme is given in Fig.11. Compared
with our hand-tuning FFT, the auto-tuned library de-
livers higher performance using the heuristic algorithm
to search the optimal schedule. Fig.12 shows that there
is a significant rise in performance by using our auto-
tuning technique.

void Search(N, is, os)

begin

if S ← TableLookup (N, is, os) then return S;

S ← ∅;

mincost ← MAX INT ;

foreach ri ∈ {module library} do

if ri = N then S ← ri;

else S ← Search (N/ri, is, os) + ri;

cost ← Evaluate (S);

if cost = mincost then

TableInsert (S, N, is, os, cost);

mincost ← cost ;

end

end

return TableLookup(N, is, os);

end

Fig.11. Search algorithm for the optimal FFT factorization.

Fig.12. Performance improvement using auto-tuning technique.

4 Performance Results and Analysis

In this section we estimate the performance of our
FFT library on different GPUs. Our library sup-
ports both in-place and out-of-place FFT computa-
tion, batched execution for all dimensional FFTs, and
the maximum batch size is limited by global memory.
To validate our methodology, the performances of our
library are compared with those of FFTW 3.2.2 on
all host CPUs, CUFFT 4.0.1 on NVIDIA GPUs and
clAmdFft 1.4.182 on AMD GPUs. No planning or pre-
calculation is needed for our library and the twiddle
factors are computed on the fly. Meanwhile, our library
assumes that data resides entirely within GPU memory
and the auto-tuning framework does not account for
memory transfers and out-of-core FFT computations.

Experiments are conducted to evaluate our approach
for out-of-place complex to complex FFTs on these
platforms with different GPUs which are shown in Ta-
ble 2 and Table 3 in detail. For a three dimensional
(3-D) FFT with the total size N = Nx ×Ny ×Nz and
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Table 2. Evaluation Platforms

Platform CPU RAM (GB) GCC Linux GPU GPU SDK OpenCL

System 1 AMD Phenom II X4 940 with 0.8GHz 8 4.3.3 Ubuntu 9.04 ATI HD 5850 ATI SDK 2.4 1.1

System 2 Two Intel Xeon X5472 with 3.0 GHz 16 4.4.5 Ubuntu 10.10 Tesla C1060 NVIDIA SDK 4.0.1 1.1

System 3 Two Intel Xeon X5550 with 2.66 GHz 16 4.4.5 Ubuntu 10.10 Tesla C2050 NVIDIA SDK 4.0.1 1.1

System 4 Two Intel Xeon X5550 with 2.66 GHz 16 4.5.2 Ubuntu 11.04 ATI HD 6870 ATI SDK v2.5 1.1

Table 3. Configuration of the GPUs

GPU Clock Rate PE CU Peak Perf. Memory Bus Width Peak BW Registers Local Memory Driver

(GHz) (GFlops) (GB) (bits) (GB/s) per CU (K) (KB)

ATI HD 5850 0.73 288 18 2 088 1.0 256 128.0 16 32 8.80

Tesla C1060 1.30 240 30 933 4.0 512 102.0 16 16 280.13

Tesla C2050 1.15 448 14 1 030 3.0 384 144.0 16 48 280.13

ATI HD 6870 0.90 224 14 2 016 1.0 256 134.4 16 32 11.70

Note: PE: processing element, CU: compute unit, Peak Perf.: peak performance of single floating-point, BW: bandwidth.

with execution time of t seconds, its performance is cal-
culated in GFlops defined by the following equation.

GFlops =

5NxNyNz(log2 Nx + log2 Ny + log2 Nz)× 10−9

t
.
(12)

Fig.13 shows the performance results of 1D batched
FFT of size 2N on these platforms and our automatic
performance tuning OpenCL FFT library is called
MPFFT. The performance of our library is 1.5 to 4

times the performance of clAmdFft library, closes to
CUFFT library, and 6 to 18 times the performance of
FFTW library with four threads. Many bank conflicts
of local memory accesses in clAmdFft library result in
suboptimal performance, for example, the percentage
of GPU time that local memory is stalled by bank con-
flicts in the library reaches to 24.7% on ATI 5 850 by
profiling the program when FFT size is 1 024 with 1 024
batches and the value of that in our library is 0. For
the size larger than what can be computed using local
memory FFT, global transposes for data synchroniza-
tion are needed which result in launching more kernels.

Fig.13. Performance of 1D FFTs on GPUs. (a) ATI 5850 GPU. (b) ATI 6870 GPU. (c) Tesla C1060 GPU. (d) Tesla C2050 GPU.
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For these sizes, n is decomposed and we choose an ap-
propriate larger base radix for local memory compu-
tation according to (4) for amortizing the cost of the
increased memory access. When N is larger than 210

on ATI 5850, 29 on Tesla C1060 and 212 on Tesla C2050,
the performance begins to degrade respectively because
of the limited local memory capacity and the register
numbers. In that case, N is divided into several smaller
sizes using global memory to exchange data, resulting
in multiple kernels are generated during the runtime.
Hence, the latency from global memory access leads
to the performance decreases. Furthermore, when the
size is larger than 4 096 with multiple batches, the ex-
ecution of clAmdFft library on ATI 6 870 fails, so the
performance is not shown in Fig.13(b).

The performance of batched 2D FFT of sizes N1×N2

on these four platforms are presented in Fig.14. For
multidimensional FFTs, we use row-column FFT algo-
rithm to compute each dimension with multiple batches
using (7). Due to the increased number of transpose
operations and stride accesses, it is crucial to use the co-
alesced memory access and bank-conflict free to maxi-
mize efficient memory bandwidth. Our auto-tuner can
effectively discover the hotspot by analyzing the beha-
vior of memory access, then inserts appropriate padding
to avoid reduced bandwidth. Further, a higher occu-

pancy is obtained through increasing the computation
ratio in each thread without registers and local mem-
ory overflowed to hide the cost of communication. As
shown in Fig.14, the performance of our 2D FFT on ATI
5850 is 1.5 to 36.81 times the performance of clAmdFft
library, and the average performance speedup achieved
up to 2.6x over clAmdFft, 15.27x over FFTW with
4 threads. Moreover, we achieve average 2.4x, 8.33x
maximum speedup over clAmdFft on ATI 6870, and
6.52x over FFTW with 8 threads. On NVIDIA GPU,
including Tesla C1060 and C2050, the overall perfor-
mance is comparable to CUFFT library in less than
10%. In addition, the results outperform CUFFT on
Tesla C1060 when the FFT size is large enough, such
as 2 048× 2 048.

Fig.15 presents the performance comparison of 3D
FFTs of size N1 ×N2 ×N3. Our 3D FFT achieves an
average of 1.81x on ATI 5850 and 1.37x on ATI 6870
over clAmdFft library. Meanwhile the overall perfor-
mance is within 90% of CUFFT 4.0 on two NVIDIA
GPUs. Furthermore, Fig.16 shows that our library also
supports non-power-of-two sizes, and the performance
of our 3D FFT with those sizes on ATI 5850 is 1.5 to
28 times over that of FFTW with 4 threads, 20.01x
average speedup over CUFFT on Tesla C2050, 31.87x
average speedup over CUFFT on Tesla C1060.

Fig.14. Performance of 2D FFTs on GPUs. (a) ATI 6870 GPU. (b) ATI 5850 GPU. (c) Tesla C1060 GPU. (d) Tesla C2050 GPU.



Yan Li et al.: An Auto-Tuning FFT Library for OpenCL GPUs 103

Fig.15. Performance of 3D FFTs on GPUs.

Fig.16. Performance of non-power-of-two FFTs.

5 Related Work

FFT is one of the most widely used algorithms for
scientific and engineering computation especially in the
fields of signal processing, image processing and data
compression. Several FFT libraries on CPUs with au-
tomatic performance tuning have been proposed, e.g.,
FFTW[20-21], SPIRAL③[22-23] and UHFFT④[26-28].
Automatic tuning in FFTW is performed in two di-
fferent levels, namely installation time and runtime. At
installation time, the code generator generates highly
optimized straight-line FFT code blocks called codelets.
At runtime, the pre-generated codelets are assembled
in a plan to compute large FFT problem size. The
methodology of auto-tuning techniques in the UHFFT
is similar to FFTW. SPIRAL is a program generation
and optimization system which generates optimized

codes for Digital signal processing (DSP) transforms.
It employs 3-stage adaptation methodology to adapt
to various styles of architecture. In the first stage,
the mathematical rules and identities have been used
for the formula generator in virtue of a special pur-
pose pseudo-mathematical language called SPL (Sig-
nal Processing Language) to expand and optimize the
FFT formula to a given transform. Then, the optimized
SPL formula is translated into source code on a specific
platform. Finally, the source code is compiled and eva-
luated to generate the best code by guiding the code
generation process.

Graphics processors traditionally have high specia-
lized programming models and interfaces that limit the
ability of developers to map general-purpose applica-
tions to these platforms with a massively parallel. The
advent of CUDA and OpenCL have led to decrease the
complexity of programming on GPUs, and there has
been growing research in exploring auto-tuning tech-
niques for improving performance of algorithms such as
SpMV (Sparse Matrix-Vector Multiplication), GEMM
(General Matrix Multiply) and FFTs on CUDA GPUs,
and moreover, several studies have been conducted
to optimize the performance manually. Nukada and
Matsuoka[3] presented an auto-tuning algorithm for op-
timizing 3D FFT algorithms on CUDA GPUs. Their
algorithm optimizes the number of threads and resolves
bank conflicts on local memory especially. However,
the larger size of FFTs may leads to suboptimal per-
formance as a result of restricting the search space
severely. Yuri Dotsenko, Sara S.Baghsorkhi, et al.[4]

also presented an auto-tuning framework for automa-
tically generated optimized FFT kernels by pruning

③http://www.spiral.net/index.html, Sept. 2012.
④http://www2.cs.uh.edu/∼ayaz/uhfft/, Sept. 2012.
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heuristics significantly to reduce the optimization
search space. Although the work they did demon-
strated significant performance improvement against
prior state-of-the-art FFT algorithms on GPUs, they
just took the NVIDIA GPU into account and ignored
the AMD GPU. Hence the libraries they developed were
not adaptive to various GPU platforms. Furthermore,
there has been a significant body of work on FFT, but
most of the work is not extended to non-power-of-two
sizes.

6 Conclusions and Future Work

In this paper, we have presented an automatic per-
formance tuning framework for generating optimized
FFT kernels, and the framework is well-suited to both
AMD and NVIDIA GPUs. Our library named MPFFT
(Massively Parallel FFT) based on this framework was
implemented and achieves a high performance. For
power-of-two length FFTs, our library achieves an ave-
rage speedup of 1.3x for 1D FFT, 2.6x for 2D FFT and
1.57x for 3D FFT on ATI 5850, 1.6x for 1D FFT, 2.4x
for 2D FFT, and 1.37x for 3D FFT on ATI 6870 over
clAmdFft 1.4. The overall performance is within 90%
of CUFFT 4.0 on Tesla C1060 and Tesla C2050. Fur-
thermore, our library also supports non-power-of-two
sizes. For 3D non-power-of-two FFTs, our library deliv-
ers 1.5x to 28x times faster than FFTW with 4 threads
and 20.01x average speedup over CUFFT 4.0 on Tesla
C2050. Our analysis and structured memory optimiza-
tion techniques are based on the Kronecker product,
which captures the memory access pattern and other
performance effects of major GPU micro-architecture
features in our library. Meanwhile it can also account
for the differences in the underlying hardware and pro-
gramming language constructs of these two platforms.

As future prospects, we intend to apply the frame-
work on other OpenCL devices, such as Cell, APU and
Intel processors with Sandy Bridge architecture, and
continue to optimize the performance of our FFT li-
brary. We also plan to integrate other existing adaptive
approaches to our framework to benefit well from the
power of these techniques, and construct a novel perfor-
mance model with data training or machine learning to
attain a good trade-off between performance and search
time. Finally, we would like to extend our library for
datasets that do not fit into GPU memory.
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