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Abstract Exploring local community structure is an appealing problem that has drawn much recent attention in the
area of social network analysis. As the complete information of network is often difficult to obtain, such as networks of
web pages, research papers and Facebook users, people can only detect community structure from a certain source vertex
with limited knowledge of the entire graph. The existing approaches do well in measuring the community quality, but they
are largely dependent on source vertex and putting too strict policy in agglomerating new vertices. Moreover, they have
predefined parameters which are difficult to obtain. This paper proposes a method to find local community structure by
analyzing link similarity between the community and the vertex. Inspired by the fact that elements in the same community
are more likely to share common links, we explore community structure heuristically by giving priority to vertices which have
a high link similarity with the community. A three-phase process is also used for the sake of improving quality of community
structure. Experimental results prove that our method performs effectively not only in computer-generated graphs but also
in real-world graphs.
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1 Introduction

Researchers have paid much attention to analyz-
ing the large complex networks, such as Facebook
networks[1-2], web page networks[3], and academic
networks[4]. These networks are commonly modeled
as a graph containing m vertices and n edges. Find-
ing community structure can be regarded as explor-
ing subgraphs where vertices are densely connected
among themselves and loosely connected to other
vertices[5]. With the knowledge of the whole graph,
subsets can be detected by using techniques such as
hierarchical clustering[6], spectral clustering[7-8], parti-
tioned clustering[9], correlation-based clustering[10-11]

and ranking-based algorithms[12-13].
However, many real-world networks, i.e., social net-

work, World Wide Web, share the common feature
that the complete structure of the network is often

unavailable since the entire network is too large and
too dynamic[14]. Restricted by this confinement, we
should try to explore community structure from limi-
ted accessible region of a graph. Many researchers
have proposed several local methods that use partial
knowledge of the network to discover the local commu-
nity with a certain source vertex[15-20]. Several met-
rics for local community structure have also been pre-
sented in some work[16-17,19]. Combined with the ad-
vantage of these quality metrics, the existing algorithms
have made great improvement in producing a more pre-
cise and complete community. Meanwhile, some work
has also been issued to reduce the complexity of this
task[18]. Nevertheless, these existing methods suffer in
one or more ways. For instance, methods proposed in
[16, 18] depend much on predefined parameters which
are hard to obtain; methods in [16-18] are sensitive
to the source vertex’s position and their results may
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contain many outliers; method in [19] puts a strict lim-
itation in agglomerating new vertices so that an inte-
grated community is hard to be explored.

In this paper, we present a method that mainly de-
pends on link similarity between the vertex and commu-
nity to explore local community. This method searches
the potential vertices in a specific sequence so as to
help improve the accuracy. Meanwhile, our method
is a self-adaptive three-phase algorithm that includes
adding suitable vertices into the community and re-
moving unqualified vertices from the community wit-
hout any help of predefined parameters. Moreover, the
third phase of our algorithm removes possible outliers
so as to guarantee that we can finally get a strong
community[21-22]. Experimental results convince that
our three-phase method using link similarity performs
effectively not only in computer-generated graphs but
also in real-world graphs.

This paper is organized as follows. Section 2 defines
the local community detection problem and reviews the
existing methods. In Section 3, we describe the idea of
link similarity and analyze progresses of our algorithm.
Section 4 shows our experimental results and Section 5
concludes the paper.

2 Preliminaries

2.1 Problem Definition

Problem definition of local community detection is
first and formally proposed by Clauset in [16]. Genera-
lly, we define local community detection problem as fol-
lows: Given an undirected network G = (V, E) where V
represents the set of vertices in the graph and E the set
of edges, we have perfect knowledge of the connectivity
of some set of vertices, i.e., the known local community
of the graph, which is denoted as C. Necessarily, a set of
vertices N that are adjacent to vertices in C but do not
belong to C can be partially known (note “partially”
means that the complete connectivity of any vertex in
N is unknown). Moreover, we define the shell vertex
set as region S, where any vertex v ∈ S has at least one
neighbor in N . See Fig.1(a). Let assume that the only
way to gain further knowledge about G is to choose one
vertex from N and merge it into C, thus the additional
unknown vertices may be added to N . The task of this
problem is to constitute a local community C from a
single source vertex by this one-vertex-at-a-time step.

2.2 Related Work

We have reviewed several effective approaches to ex-
plore local community structure. These methods are

Fig.1. (a) Local community structure. C is the community that

has been explored; S is the region composed of shell vertices; N is

the set of known vertices which are in the neighborhood of com-

munity C. Vertices in N are agglomerated into community C one

by one. (b) Vertex v and community C share some same links.

In this figure, LSC(v) (link similarity of v defined in Subsection

3.1) equals to 0.714.

presented below in the sequence of publication date.
Clauset has defined the local modularity R in or-

der to solve the local community detection problem[16].
This metric mainly focuses on the connectivity of ver-
tices in S:

R =

∑
ij Sijδ(i, j)∑

ij Sij
, (1)

where δ(i, j) is 1 when either vi ∈ s and vj ∈ C or
vi ∈ C and vj ∈ S , and is 0 otherwise; Sij is 1 when ver-
tices i and j are connected and is 0 otherwise. Clauset’s
algorithm always chooses the vertex which results in
the largest ∆R as the one that is inserted into C. How-
ever, this approach asks for predefined parameter that
is used to determine the size of C. Meanwhile, its result
is influenced by the source vertex.

LWP algorithm is an improved method which mainly
promotes the stopping criteria[17]. It defines another
form of local modularity M which uses the idea of weak
community. The local modularity M is:

M =
1
2

∑
ij Aijθ(i, j)∑

ij Aijλ(i, j)
, (2)

where θ(i, j) is 1 if both vertices i and j are in subgraph
C, and 0 otherwise; λ(i, j) is 1 if only one vertex is in
subgraph C, and 0 otherwise; Aij is 1 when vertices i
and j are connected, and 0 otherwise. This algorithm
has both an addition step and a deletion step. Vertices
will be added or removed from C if and only if it can
cause an increase in M . This algorithm turns out to
result in high recall but low accuracy.

Bagrow used Mout proposed in LWP as a measure of
community quality[18]. He also defined the “outward-
ness” of a vertex to determine which vertex should be
agglomerated into the community. However, the stop-
ping criteria of this algorithm also depend on an arbi-
trary parameter which controls how “strong” the com-
munity should be.
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Chen et al. have presented an alternative method to
discover local communities, which aims at reducing out-
liers and improving detection accuracy[19]. A new mea-
sure of local community structure called L was also pro-
posed to help optimize the community hierarchy. Due
to its strict criteria in agglomerating vertices, this al-
gorithm can hardly obtain a comparatively integrated
community structure.

Some variations of this problem have also been dis-
cussed in recent years. The studies presented in [21]
and [22] mainly discuss how to explore local commu-
nity in bipartite networks, while work in [23] and [24]
focuses on how to detect community structure from a
set of source vertices.

In the topic of global community structure detec-
tion, some other novel methods have also emerged re-
cently. Su et al.[10] and Kriegel et al.[11] discussed the
correlation-based clustering method for community de-
tection. Liu et al.[12] and Hotho et al.[13] solved this
problem using ranking-based algorithms. In [25], an
information theoretic approach was presented.

In this paper, we only discuss the problem of detect-
ing local community structures from a certain source
vertex in a partially-known network.

3 Improved Local Community Detection
Method

Local community detection approaches are restricted
by two limitations[16-20]. One is that only a small part
of the vertices can be known by us, and the other is that
only one vertex can be agglomerated into the commu-
nity at one step. Limited by these two confinements,
we propose an algorithm focusing on the feature of link
similarity. Notations appeared in this section were de-
fined in Subsection 2.1.

3.1 Link Similarity

The algorithm we propose is quite easy to imple-
ment. Firstly, we define the link similarity LSC(v) of
vertex v ∈ N from community C:

LSC(v) =
|(Γ (C)

⋃
C)

⋂
Γ (v)|

|Γ (v)| =
|(N ⋃

C)
⋂

Γ (v)|
|Γ (v)| ,

(3)
where Γ (C) is the set of adjacent vertices of C and Γ (v)
is the set of neighbors of v. Γ (C) actually equals to N .
Intuitively, we can regard the link similarity of a vertex
as the ratio of the number of common links shared by
the vertex and the community to the number of neigh-
bors the vertex owns. As a result, LSC(v) gets the
maximum value of 1 when its neighbors are either in
C or N . The minimum value of LSC(v) is 1/(|Γ (v)|)
since any v ∈ N has at least one adjacent vertex that

belongs to C. It is easy to understand that the ver-
tex sharing more common neighbors with community
C is more likely to be a member of C. See Fig.1(b).
In our algorithm, the vertex having the largest value
of LSC (v) will be agglomerated into community C at
each step.

Link Similarity method works due to the reason that
it can help to find out a stable community structure as
soon as possible. Actually, this method can be regarded
as a heuristic method. Instead of searching potential
vertices in an arbitrary manner, our approach is capa-
ble of locating the position of the community by giving
priority to vertices having a high link similarity with
the community. Consequently, a more integrated and
precise community can be obtained since it is extended
from an initially stable community structure. With-
out this stable structure, an algorithm is more likely
to miss its direction in merging new vertices, hence a
comparatively bad result may be returned.

This method also has actual meanings in real-world
networks. Take citation network for example. Two dif-
ferent papers focusing on the same field will definitely
cite some same work. So we can predict that two pa-
pers sharing a lot of same references are more likely to
be in the same cluster. Similarly, we can also derive the
conclusion that a paper belongs to a certain field if it
cites a lot of common papers with the work in the field.
This conclusion still holds in the case of social network.
Intuitively, two persons belonging to the same commu-
nity will certainly share a lot of friends, even if the two
guys do not know each other. After discover a small
community containing only two intimate-related guys,
we can gradually use this conclusion to detect a larger
community.

3.2 Measure of Quality and Stopping Criteria

To evaluate the quality of a community structure,
several metrics have been introduced, including local
modularity R proposed in [16] and M proposed in [17].
R focuses on the shell vertex set S to evaluate the
quality of the discovered local community C, while M
depends on the “internal edges” inside and “external
edges” outside community C to evaluate quality. The
experiments in Section 4 show that local modularity M
proposed in LWP algorithm is good enough for our al-
gorithm. Some other metrics may also work well with
our algorithm such as local modularity L presented in
[19], but L may be too strict. Meanwhile, we prefer to
choose a simpler one. Detailed experimental analysis
will be shown in Section 4.

Our algorithm keeps on agglomerating new vertices
into the community until no vertex’s agglomeration into
the community can result in increment of M . If the
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source vertex is removed from community in the opti-
mization phase presented in Subsection 3.3 below, our
algorithm will stop immediately and return a result that
no community is found for the source vertex.

3.3 Three-Phase Algorithm

Our algorithm consists of three phases: the greedy
agglomeration phase, the optimization phase, and the
trimming phase. In the agglomeration phase, we sort
the vertices in N according to their link similarity in
descending order, and then determine whether to ag-
glomerate them into the community according to the
stopping criteria. In the optimization phase, all the
vertices in S will be judged to determine whether we
should remove them from the community. These two
phases continue until no vertex can be agglomerated
into the community. If the source vertex is removed
from the community in the optimization phase, then
we stop the algorithm and determine that no commu-
nity exists for this algorithm.

After these two phases, a trimming phase is per-
formed in order to remove the outliers. The trimming
phase examines whether each vertex i in region S has
more neighbors inside C than outside:

kin(i) > kout(i), (4)

where kin denotes the number of edges inside commu-
nity C and kout denotes the number of edges between
community C and region N . Vertices that do not satisfy
(4) will be removed from C. This process guarantees
that a strong community[26-27] can be finally explored.

The summary of our algorithm is shown in Fig.2.
Local modularity M implemented in Fig.2 is computed
as (2).

The computation of ∆M for each vertex v in the net-
work G in either agglomeration phase or optimization
phase can be done quickly according to (5):

∆M =





xkout + (x− y)kin

(kout − x + y)kout
,

in agglomeration phase,
−xkout − (x− y)kout

(kout + x− y)kout
,

in optimization phase,
(5)

where x represents the number of edges that will be
added or removed from C because of the agglomera-
tion or removal of vertex v, and y is the number of
edges which connect v and a vertex outside C. It is
easy to find out that the degree of v equals to x + y.

For the purpose of achieving a better efficiency, we
built a max-heap of vertices in N sorted by their link

Input: An undirected network G and a source vertex p0

Output: A local community containing source vertex v0

Add source vertex v0 to C and S, add v0’s neighbors to N

Local modularity M = 0

Build heap H for vertices in N by link simularity LSc(v)

in descending order

Do

While H is not empty Do

Find vertex p such that LSc(v) is maximum

Compute ∆M for v

If ∆M > 0 Then

Add v to C and remove v from N

Update S, M

Do

For each v ∈ S Do

Compute ∆M for v

If ∆M > 0

Remove v from S and C

Add v to N

Update M

If v = v0 return “no communitry”

Until no vertex is removed from S and C

Update S, N and H

Until no new vertex is inerged into C

For each v ∈ S Do

If kin(t) > kout(i)

Remove v from C

If source vertex v0 is in C

Return C0

Else Return “no community”

Fig.2. Local community detection algorithm using link similarity.

similarity. Hence, extracting the vertex with maximum
link similarity will only cost O(log |N |). And it also
takes O(log |N |) to insert a new vertex into the heap.
Note that the heap should be rebuilt after agglomera-
tion or removal.

It is worth noticing that some existing approaches
also have multi-phase process[17,19-20]. However, our
algorithm is stricter and simpler in the optimization
and trimming phases. Firstly, we only check vertices
in region S instead of those in community C to opti-
mize the community since vertices in the boundary of a
community is more likely to be removed from the com-
munity. Secondly, we stop our algorithm as soon as the
source vertex is removed from the community. Thirdly,
we ensure that our result is a strong community by per-
forming the trimming phase.

4 Experiments and Results

In our experiments, we compare the results of dif-
ferent methods. Following is the description of these
labels we use to denote each of these algorithms:
• Clauset. This is a basic algorithm of [16]. Note

that we improve its stopping criteria by detecting
changes in local modularity R.
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• LWP. This is a two-phase algorithm proposed in
[17] using local modularity M .
• Bagrow-TLS. This algorithm is presented in [18].

It uses trailing least-squares stopping criterion.
• Chen. This method is also a two-phase algorithm

using local modularity L proposed in [19].
• Local Core. This algorithm is the most recently

proposed method we can find. It is a three-phase algo-
rithm proposed in [20].
• LS with M . This method is the version of our al-

gorithm using link similarity with local modularity M .
• LS with R. This method is the other version of our

algorithm using link similarity with local modularity R.

4.1 Datasets

We perform experiments using one computer-
generated graph and one real-world dataset.

Computer-Generated Graph. We use the computer-
generated GN benchmark graph to validate our
algorithm[28]. This graph is composed by 128 vertices,
which are equally divided into four groups consisting
of 32 vertices. Each vertex has a constant degree of
16. The possibilities of links between vertices in the
same group are larger than those between vertices in
different groups. Assume each vertex has zin neighbors
in the same group and zout neighbors in the different
groups. Then we have zin + zout = 16. This benchmark
graph is tested in [16, 19-20].

NCAA Football Network. This dataset describes
a network of National Collegiate Athletic Association
(NCAA) Football Bowl Subdivision during regular sea-
son 2006[29]. This network contains 787 football games
between 115 university football teams from 11 commu-
nities. Notably, 61 school teams are from lower divi-
sions and do not belong to any community. Each uni-
versity in a community plays more games with those in
the same community. Lower division teams play only
a few games. We transform this dataset into a graph
containing 115 vertices and 787 edges. In this graph,

61 vertices can be regarded as outliers. Similar datasets
have also been used in some of the previous work[19-20].

Cora Citation Network. This is a large-scale net-
work about computer science research papers and their
citations[30]. It consists of more than 17 000 vertices
with about 77 000 edges representing the citation rela-
tionship. Papers in this network can be classified into
10 different research fields with 70 sub-categories.

4.2 Evaluation

The evaluation method we use is quite simple: met-
rics precision, recall and F -score, that are quite fre-
quently used in many areas such as statistics, informa-
tion retrieval and machine learning[31-33]. Some other
papers focusing on community detection problem also
adopt these metrics[19-20]. Precision is the fraction of
correctly classified vertices in the community and re-
call is the ratio of the number of correctly classified
vertices to the total number of vertices that should be
agglomerated into the community. F -score is the har-
monic mean of precision and recall:

F = 2× precision× recall
precision + recall

. (6)

A well-performed algorithm should get high precision,
recall and F -score at the same time.

4.3 Experimental Result

4.3.1 Results on Computer-Generated Graph

Results pertaining to precision, recall and F -score
as a function of zout on the computer-generated bench-
mark graph are shown in Fig.3. We perform over 500
realizations of the computer-generated graph. For the
purpose of clarity, only data series with zout 6 7.0 are
shown in the figure.

As the result shows, our algorithm with local modu-
larity M achieves best in both precision and recall. The
precision and recall of our algorithm are almost 1 when

Fig.3. (a) Precision as a function of zout. (b) Recall as a function of zout. (c) F -score as a function of zout.
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zout is less than 5. In other words, our algorithm can
extract exactly the full community structure when zout

is no larger than 5. Meanwhile, our algorithm with local
modularity R works relatively well but its performance
is not quite stable. We also notice that all these al-
gorithms are ineffective to detect community structure
when zout is larger than 6.

4.3.2 Results on NCAA Dataset

We next focus on results obtained on NCAA network
dataset. Seven different methods listed in the begin-
ning of this section are all performed on this dataset.
Table 1 shows the precision, recall, F -score and number
of outliers detected for all comparison methods. Fig.4
shows the chart comparing the results of different al-
gorithms according to each of three evaluation metrics
respectively.

Table 1. Results of Precision, Recall, F -Score and

Number of Outliers Detected for NCAA Dataset

Method Precision Recall F -Score No. Outlier

Clauset 0.5123 0.8366 0.6267 0

LWP 0.6182 1.0000 0.7623 0

Bagrow-TLS 0.2632 0.8557 0.3756 0

Chen 0.7213 0.8175 0.7633 1

Local Core 0.4982 1.0000 0.6349 49

LS with M 0.9696 0.9924 0.9794 54

LS with R 0.9752 1.0000 0.9853 54

Fig.4. Comparison of precision and recall together with F -score

for different methods on NCAA dataset.

When detecting the community structure in this
dataset, our algorithm will give priority to the vertices
sharing more links with the explored community. This
process can help to find out a stable community struc-
ture as soon as possible. Consequently, a more inte-
grated and precise community can be obtained. The
trimming phase in our algorithm also guarantees that
outliers in the community can be removed. As shown

in Fig.4, our algorithm with either local modularity M
or local modularity R has comparatively high value of
precision, recall and F -score; meanwhile, 54 out of 61
outliers are detected by our algorithms. This experi-
ment also points out the disadvantage of other exist-
ing methods. On the one hand, although Local Core
method can effectively detect 49 out of 61 outliers, its
precision is not ideal, leading to an unsatisfactory F -
score. On the other hand, although LWP method can
achieve best in recall value, its precision rate is not very
good. Meanwhile, no outlier can be detected by this
method. This result clearly demonstrates that LWP
method ignores the confusion of outliers. The perfor-
mance of Chen algorithm is relatively good; however,
its strict policy in controlling community density does
not result in a very high F -score.

4.3.3 Results on Cora Dataset

Experiments on Cora help convince the scalability
of our algorithm. Although Cora provides us with sub-
category labels, we cannot arbitrarily adopt these la-
bels to evaluate the algorithms’ effectiveness. This is
because the clustering granularity using sub-category
labels are still too large for the local community. An
intuitive example is that papers on the topic about so-
cial network analysis are not likely to cite those focus-
ing on sequential data analysis, although both topics
are under the data mining sub-category.

To solve this problem, we try to manually check key-
words of every paper in the discovered community since
the keywords of a paper can directly represent its topic.

Due to lack of space, we present discovered local
communities for only one paper (ID 66563), which is
chosen as the source vertex. The keywords of this pa-
per are genetic algorithms and genetic programming.
Experimental results are shown in Table 2. The sec-
ond column in the table shows the number of commu-
nity members with keywords of genetic algorithms or
genetic programming, while the third column presents
the number of community members with other kinds of
keywords.

Table 2. Algorithm Comparison on Cora Dataset

Method “genetic algorithms” & Others

“genetic programming”

Clauset 7 0

LWP 71 4

Bagrow-TLS 23 0

Chen 7 0

Local Core 132 17

LS with M 75 1

LS with R 53 1
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While all the algorithms detect useful local com-
munities, our algorithm with local modularity M re-
turns a relatively better community, since the size of
the community is comparatively large and its members
are generally focusing on the topic about genetic al-
gorithms and genetic programming, which are the key-
words of the source vertex.

5 Conclusions

Exploring local community structure is becoming an
appealing problem since perfect knowledge of real-world
network is usually inaccessible. In this paper, we pro-
posed an improved method to detect local community
structure. Our algorithm mainly takes advantage of
link similarity between the vertex and the community.
A greedy agglomeration phase, an optimization phase
and a trimming phase are included in our algorithm.
Compared with other multi-phase algorithms, our al-
gorithm implements comparatively easier and stricter
stopping criteria for the purpose of simplifying and op-
timizing our algorithm. Experimental results show that
our algorithm can discover local community better than
other existing methods both in computer-generated
benchmark graphs and in real-world networks.

One possible direction for future research is to detect
local community structure in directed graphs since this
kind of graph contains potentially more useful informa-
tion. To the best of our knowledge, most of existing ap-
proaches to exploring local community structure simply
ignore edge direction so as to transform directed graphs
to undirected graphs. For future work, we are planning
to analyze local community structure in directed graph
using similar approaches based on link similarity.
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