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Abstract This paper investigates the performance and the results of an evolutionary algorithm (EA) specifically designed
for evolving the decision engine of a program (which, in this context, is called bot) that plays Planet Wars. This game, which
was chosen for the Google Artificial Intelligence Challenge in 2010, requires the bot to deal with multiple target planets,
while achieving a certain degree of adaptability in order to defeat different opponents in different scenarios. The decision
engine of the bot is initially based on a set of rules that have been defined after an empirical study, and a genetic algorithm
(GA) is used for tuning the set of constants, weights and probabilities that those rules include, and therefore, the general
behaviour of the bot. Then, the bot is supplied with the evolved decision engine and the results obtained when competing
with other bots (a bot offered by Google as a sparring partner, and a scripted bot with a pre-established behaviour) are
thoroughly analysed. The evaluation of the candidate solutions is based on the result of non-deterministic battles (and
environmental interactions) against other bots, whose outcome depends on random draws as well as on the opponents’
actions. Therefore, the proposed GA is dealing with a noisy fitness function. After analysing the effects of the noisy fitness,
we conclude that tackling randomness via repeated combats and reevaluations reduces this effect and makes the GA a highly
valuable approach for solving this problem.
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1 Introduction

Bots [1] are autonomous agents that interact with
a human user or with other bots within a computer
program. In this paper we are interested in bots as
elements of modern videogames, where they run au-
tomated tasks to compete (they could be an enemy
player) or cooperate with the human player in order to
increase the challenge of the game, thus making their
intelligence one of the fundamental parameters in the
videogame design[2].

Bots apply artificial intelligence (AI) tools and tech-
niques and are used as enemies or teammates in several
types of videogames, such as strategy, fight, racing or
platform games, but they are more commonly within
the First Person Shooter (FPS) games scope[3-5], where
they are usually designed as opponents of the human

player. However, this paper deals with real-time stra-
tegy (RTS) games, which are a sub-genre of strategy-
based videogames in which the contenders control a set
of units and structures that are distributed in a playing
arena. A proper control and a sound strategy and tac-
tics for handling these units are essential for winning
the game, which happens after the game objective has
been fulfilled: after eliminating all enemy units, obv-
iously, but also when certain points or game objectives
have been reached.

A typical RTS gives the player the possibility to cre-
ate additional units and structures during the course
of the game, usually at a cost in resources that must
be gathered via the creation or exploitation of those
structures. For instance a game will feature mines
from where gold can be extracted and then used to cre-
ate barracks from where new units are built. Another
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usual feature is their real-time nature, i.e., (which is
explicit in its denomination, real-time strategy games),
the player is not required to wait for the results of
other players’ moves as in turn-based games. Com-
mand and ConquerTM, StarcraftTM, WarcraftTM and
Age of EmpiresTM are some examples of RTS games.

Two levels of AI are usually considered in RTS
games[6]: the first one, interpreted by a Non-Playing
Character (NPC), which is also a bot, makes decisions
over the whole set of units (workers, soldiers, machines,
vehicles or even buildings); the second level is devoted
to implementing the behaviour of every one of these
small units. These two levels of actions, which can
be considered strategic and tactical, make them inher-
ently difficult; furthermore, this difficulty is increased
by their real-time nature (usually addressed by con-
straining the time that each bot can use to make a
decision) and also by the huge search space that is im-
plicit in its action.

Google chose a (“simple”) game of this type for their
AI Challenge 2010[7] (as well as for the 2011 competi-
tion). In this contest, real time was sliced in one second
turns, with players receiving the chance to play sequen-
tially. However, actions happen at the simulated same
time, thus becoming a trait of the particular implemen-
tation and not a feature of the game itself.

One of the techniques usually applied for optimis-
ing the bots’ behaviour in videogames and specifi-
cally in the RTS scope are the evolutionary algorithms
(EAs)[8-10].

EAs[11] are a class of probabilistic search and optimi-
sation algorithms gleaned from the model of darwinistic
evolution. EAs include several subtypes, depending on
the data structure that is preferently used for represent-
ing solutions — GAs, evolution strategies and genetic
programming to name a few — but the main features
are common to all of them: a population of possible
solutions (individuals) of the target problem, a selec-
tion method that favours better solutions and a set of
operators that act upon the selected solutions. After
an initial population is created (usually randomly), the
selection and operators are successively applied to the
individuals in order to create new populations that re-
place the older one. This process guarantees that the
average quality of the individuals tends to increase with
the number of generations. Eventually, depending on
the type of problem and on the efficiency of the EA,
the optimal solution may be found.

The present work describes in depth a previously in-
troduced evolutionary approach[12] for generating the
decision engine of a bot that plays Planet Wars (or
Galcon[13]), the RTS game that was chosen for the
above referred competition. The decision engine was
implemented in two steps: first, a set of parameterized

rules that model the behaviour of the bot was defined
by a human player (after playing and analysing seve-
ral matches); the second step of the process applied a
genetic algorithm (GA)[14] for evolving these parame-
ters off-line (i.e., not during the match, but prior to the
game battles).

The quality (fitness) of each set of rules in the popu-
lation is evaluated by playing the bot against predefined
opponents, being a pseudo-stochastic or noisy function,
since the results for the same individual evaluation may
change from time to time, yielding good or bad val-
ues depending on the battle events and on the oppo-
nent’s actions (their behaviour, and even our bot’s is
non-deterministic).

In the experiments (an extension of those conducted
in [15]), we show first how the set of rules evolve towards
better bots; then, an efficient player is returned by the
GA. Several experiments have been conducted to ana-
lyse the issue of the cited noisy fitness in this problem.
The experiments show its influence, but also the good
behaviour of the implemented mechanisms to deal with
it: reevaluation of all the individuals (even those who
remain between generations), and evaluation consider-
ing five matches (instead of just one) in five different
and representative maps (defined to model a huge range
of possible combats). So the algorithm yields good in-
dividuals even in these conditions.

This work (as previously commented) is an exten-
sion of two previous ones[12,15] which respectively in-
troduced the algorithms and set the principles of the
noisy fitness function, with some preliminary experi-
ments and results. In the present paper the algorithms
are deeply defined and analysed with additional experi-
ments (such as generated individuals performance or a
histogram-based study). Moreover, the noisy nature of
the problem and also of the fitness function is widely
explained and studied, conducting more complete ex-
periments (fitness dealing comparisons, tendency study
in more representative bots) and yielding a wider set of
conclusions.

The paper is structured as follows: The following
section reviews related approaches to the design of the
behavior of bots in similar game-based problems. Sec-
tion 3 addresses the problem by describing the Planet
Wars game. A brief introduction to GAs is presented
in Section 4. Section 5 presents the method, termed
GeneBot, starting from the initial approach, detail-
ing the finite state machine and the parameters which
model its behaviour, and then the GA used to evolve
the strategies. The experiments and results are de-
scribed and discussed in Section 6. Finally, the con-
clusions and future lines of research are presented in
Section 7.
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2 State-of-the-Art

During the last years videogames have become one of
the biggest sectors in the leisure industry; some games
cost more to develop than blockbuster movies. Most of
the companies concentrate their investments in increas-
ing the graphical quality of the games, as a measure to
ensure a best-seller product, instead of innovating in
challenging the player skills. But nowadays, computers
have a higher processing power and the user is hardly
astonished by the graphical component of a game. So,
the players have turned their attention to other aspects
of the game. In particular, they mostly request op-
ponents exhibiting intelligent behaviour, or just better
human-like behaviours[16].

However games AI research has presented an expo-
nential grown in parallel, mainly starting with the
improvement of FPS Bot’s AI with DoomTM or
QuakeTM [2] by the beginning of the 1990s, and fol-
lowing with the most famous environment inside this
kind of games, Unreal TournamentTM [3-5]. Nowadays,
this research area is one of the most profiting in the
computational sciences, and the companies are getting
interested in these advances.

Inside this scope, most of the research has been
conducted on relatively simple games such as Super
Mario[17], Pac-Man[18] or Car Racing Games[19], being
many competitions devoted to choosing the best bot
playing in each of them. In addition there are other
competitions for more complex games (such as RTSs).
An example could be the Starcraft AI Competition[20].

Looking at the RTS games research area, they
present an emergent component[21] as a consequence
of the usual two levels of AIs: the units, which behave
in many different (and sometimes unpredictable) ways,
and the global controller. This issue makes them in-
teresting for the scientific community. There are many
research problems involving the AI for RTSs, includ-
ing among others planning in an uncertain world with
incomplete information, learning, opponent modelling
and spatial and temporal reasoning[8,22].

However, again the reality in the industry is that
in most of the RTS games, the Non-Playing Character
(NPC or bot) is basically controlled by a fixed script
(i.e., a pre-established behaviour independent of inputs)
that has been previously programmed (following a finite
state machine or a decision tree, for instance). Once the
user has learnt how such a game will react, the game
quickly loses its appeal. In order to improve the users’
gaming experience, some authors such as Falke et al.[23]

proposed a learning classifier system that can be used to
endow the computer with dynamically-changing strate-
gies that respond to the user’s strategies, thus greatly

extending the games playability.
A typical problem that the researchers can found

is that in many RTS games, traditional artificial in-
telligence techniques fail to play at a human level be-
cause of the vast search spaces that they entail. In this
sense, Ontano et al.[24] proposed to extract behavioural
knowledge from expert demonstrations in form of indi-
vidual cases. This knowledge could be reused via a case-
based behaviour generator that proposes advanced be-
haviours to achieve specific goals. In order to deal with
these problems in the implementation of RTS games,
algorithms and techniques such as multi-agent based
methods[25], have been applied.

With respect to EAs, they have been widely used in
this field[9,26], but the problem is they usually require
considerable computational time and thus cannot be
normally used in on-line games. The most successful
proposals for using EAs in games correspond to off-line
applications[27], that is, the EA works (for instance, to
improve the operational rules that guide the bot’s ac-
tions) before the game is executed (played), and the
results or improvements can be used later during the
game. Through off-line evolutionary learning, the qua-
lity of bots’ intelligence in commercial games can be
improved, and this has been proven to be more effective
than opponent-based scripts. Another approach in the
EAs environment in the co-evolution which has been
widely applied in the RTS scope uses co-evolutionary
algorithms[10,28-29], since there are many benefits at-
tempting to build adaptive learning AI systems which
may exist at multiple levels of the game hierarchy and
co-evolve over time. In these cases, co-evolving strate-
gies might be not only opponents but also partners ope-
rating at different levels[30]. Other authors proposed
using co-evolution for evolving team tactics[31]. How-
ever, the problem is how tactics are constrained and
parametrised and how the overall score is computed.
In other terms, the authors in [32] evolved the strate-
gies to follow in next turns. Finally, another research
line[33] shows how EAs can be used to evolve a whole
game (constraints, rules and map).

In the present work, EAs are also used, since an
off-line GA is applied to improve a parametrised be-
haviour model (set of rules), inside a “simple” RTS
named Planet Wars. This way, the decision engine of a
bot for that game is built, and can be followed later in
the (on-line) matches. Moreover, this work performs a
complete analysis on the difficulties that the individual
evaluations present, due to the non-deterministic be-
haviour of the opponents considered in the combats in-
volved in the evolutionary process, and thus, the varia-
bility in the fitness function. The work also proposes
and tests some mechanisms for dealing with this effect.
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3 Planet Wars Game

The Google AI Challenge (GAIC)[9] is an AI
competition in which the participants create bots to
compete against each other. The game chosen for
2010’s competition, Planet Wars, is the object of the
study presented in this paper. For this game, we pro-
pose to design the behavioural engine of a bot and GAs
to optimise its efficiency. Planet Wars is a simplified
version of the game Galcon[14], aimed at performing
bot’s fights. The Google’s contest version of the game
involves two players.

A Planet Wars match takes place on a map that
contains several planets, and each one of them with a
number assigned that represents the quantity of star-
ships that the planet is currently hosting (see Fig.1). At
a given time step, each planet hosts a specific quantity
of starships that may belong to the player, the opponent
or may be neutral (i.e., they belong to no player). Own-
ership is represented by a colour, being blue assigned to
the player, red to the enemy and grey to neutral star-
ships. In addition, each planet has a growth rate that
indicates how many starships are generated during each
round action and then added to the fleet of the player
that owns the planet.

Fig.1. Simulated screen shot of an early stage of a run in Planet

Wars. White planets belong to the player (blue colour in the

game), dark grey belong to the opponent (red in the game), and

light grey planets belong to no player. The triangles are fleets,

and the numbers (in planets and triangles) represent the star-

ships.

The objective of the game is to defeat all the
opponent’s planets. Although Planet Wars is an RTS

game, this implementation has transformed it into a
turn-based game, in which each player has a maximum
number of turns to accomplish the objective. At the end
of the match (after 200 actions, in Google’s Challenge),
the winner is the player owning more starships; if a
player is completely eliminated before that, the other
wins, obviously.

Each planet has some properties:
• X and Y coordinates, which is its position in the

map.
• Owner’s PlayerID.
• Number of Starships, which are on it. This is the

required number of starships to conquest the planet.
• Growth rate, which indicates how the starships in

the planet are multiplied each turn.
Players send fleets to conquer other planets (or to re-

inforce its own), and every fleet also has a set of proper-
ties:
• Owner’s PlayerID.
• Number of starships flying together.
• Source PlanetID.
• Destination PlanetID.
• Total trip length.
• Number of turns remaining until arrival.
A simulated turn is one-second long. This is the

maximum time for a bot to perform its actions.
Another singularity of the competition (i.e., a prob-

lem restriction) is that the bot is not allowed to store
any kind of information about its former actions, the
opponent’s actions or the state of the game (i.e., the
game’s map) to use in the next turn. This constraint
is defined by the problem features and the competition
rules. Following them, each bot is invoked in every turn
independently, so the only way of preserving knowledge
would be writing it in a file, which is strictly forbidden
by the competition rules. In short, in every one-second
time step, the bot must deal with an unknown map, as
if it was a new game. This constraint makes the de-
velopment of the bot an interesting challenge, since the
impossibility of knowing in advance which actions have
been successful or not in the past, or learning from the
other player actions, makes it impossible to apply com-
plex method that needs a training period and learning
from examples.

In fact, each autonomous bot is implemented as a
function that takes as input the list of planets and fleets
(the current status of the game), each of which with its
features’ values, and outputs a text file with actions
to perform. In each simulated turn, the player must
choose where to send fleets of starships, departing from
one of the player’s planets, towards other planets in the
map. This is the only action that the bot is allowed to
perform. The fleets may need more than one time step
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to reach destination. When a fleet reaches a planet, it
fights against the enemy’s (or neutral) forces assigned
to that planet (losing one starship for each one of oppo-
nent’s starships on the planet) and, in the case its fleet
outnumbers the enemy’s units, the player takes the con-
trol of the planet with the remaining starships. If the
planet already belongs to the player, then the incoming
units are added to the current fleet. In each time-step,
the forces in the planets owned by the player (i.e., every
planet except the neutral ones) are increased according
to each planet’s growth rate.

Therefore, the goal is to initially design and then
evolve a function that, according to the state of the
map in each simulated turn (input) returns a set of ac-
tions to perform in order to fight the enemy, conquer
its resources, and, ultimately, win the game.

The above-referred constraints of the Google Chal-
lenge (a bot is not allowed to store information and each
time-step is limited to one second) make it difficult to
implement an on-line approach, that is, an evolution-
ary algorithm that is started and yields a result at each
turn. Therefore, the described EA (a GA, in this case),
is executed before the game and, once a satisfactory bot
is found, the solution (the bot’s set of rules and parame-
ter values) is considered to play the game. Next section
will give a brief introduction to the GA metaheuristic.

4 Introduction to Genetic Algorithms

A genetic algorithm[14,34] is a type of evolutionary
algorithm which evolves a population of candidate so-
lutions to a problem towards optimal (local or global)
points of the search space by recombining parts of the
solutions to generate a new population. The decision
variables of the problem are encoded in strings or vec-
tors with a certain length and cardinality. In GAs’ ter-
minology, these strings are referred to as chromosomes,
where each string position is a gene and its values are
the alleles. The alleles may be binary, integer, real-
valued, etc., depending on the codification (which in
turn may depend on the type of problem).

The “best” parts of the chromosomes (or building-
blocks) are guaranteed to spread across the population
by a selection mechanism that favours better (or fitter)
solutions[35]. The quality of the solutions is evaluated
by computing the fitness values of the chromosomes;
this fitness function is usually the only information
given to the GA about the problem.

A standard GA’s procedure goes as follows. First, a
population of chromosomes is randomly generated. All
the chromosomes in the population are then evaluated
according to the fitness function. A pool of parents (or
mating pool) is selected by a method that guarantees
that fitter individuals have more chances of being in

the pool — tournament selection[14], fitness proportion-
ate selection, also known as roulette-wheel selection[34]

and stochastic universal sampling[13] are just some of
the possible selection methods. Then a new population
is generated by recombining the genes in the parents’
population. This is usually done with a crossover opera-
tor (1-point crossover, uniform crossover, or BLX-α[36]

(for real-coded chromosomes), amongst many propo-
sals that can be found in evolutionary computation lite-
rature) that recombines the genes of two parents and
generates two offspring according to a crossover proba-
bility pc that is typically set to values between 0.6 and
1.0 (if the parents are not recombined, they are copied
to the offspring population).

After the offspring population is complete, the new
chromosomes are mutated before being evaluated by
the fitness function. Mutation operates at gene level,
randomly changing the allele with a very low probabi-
lity pm (for instance, pm is usually set to 1/l in many
binary GAs, with l being the chromosome length).

Once the evaluation of the newly generated popu-
lation has been performed, the algorithm starts the
replacement of the old population. There are several
techniques for replacement, that is, for combining the
offspring population with the old population in order
to create the new population. Generational replace-
ment, for instance, replaces the old population by the
offspring. A steady-state strategy will replace a frac-
tion (typically, two individuals) of the old population by
the best individuals in the offspring population. Some-
times, an e-elitism strategy is used, i.e., the best e chro-
mosomes from the old population are copied without
mutation to the new population. The remaining indi-
viduals are selected according to any method.

This process goes on until a stop criterion is met.
Then, the best individual in the population is retrieved
as a possible solution to the problem. Algorithm 1
shows the pseudo-code of a standard GA.

Algorithm 1. Standard Genetic Algorithm sGA()

Initialize population (P )

while not termination condition do

Select individuals P ′ from P

Recombine individuals P ′ to generate offspring popu-

lation O

Mutate individuals in O

Evaluate population O

Replace all (or some) individuals in P by those in O

end while

Population size is the main bottleneck for a GA. One
of the most important issues that must be addressed
when starting to design or tune a GA is to ensure an
adequate supply of raw building-blocks. That is, if one
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supplies it with an initial population that is too small,
the algorithm will converge very often to local optima;
too big and the computational effort increases beyond
indispensable. Besides population, the GA practitioner
must tune a few more parameters: mutation probabi-
lity, crossover probability, selective pressure, and oth-
ers, depending on the type of the GA. However, a simple
GA with these parameters is very efficient on a wide
range of problems. Another important feature to set
is the evaluation (or fitness) function, which is usually
determined depending on the problem properties, but
which should be analysed and well-defined in order to
get a good indicator of the individuals’ quality. It is
usually easy to define if the problem has a determini-
stic nature, but sometimes it could be difficult when
there is any stochastic component in the evaluation.

In this paper, we propose a GA with real-coded indi-
viduals, and crossover and mutation operators adapted
to this codification. The population size has been set
after systematic experimentation; moreover, the fitness
function has been defined having in mind the noisy na-
ture of the problem evaluation function, which consists
in performing battles between the individual to evalu-
ate and a sparring enemy, since it depends on the non-
deterministic opponent’s behaviour. This function tries
to avoid this effect in order to find good individuals in
any case. The considered mechanisms for dealing with
this issue will be introduced in Section 5.

5 GeneBot: A Genetic Approach for Winning
the Planet Wars Game

In Section 3 we explained that the main constraint
in the environment is the limited processing time avai-
lable to perform the correspondent actions (1 second).
In addition, another important constraint states that
no memory is allowed, that is, the bot cannot main-
tain a register of the results or efficiency of previous
actions. These restrictions strongly limit the design
and implementation possibilities for a bot, since many
metaheuristics are based on a memory of solutions or
on the assignment of payoffs to previous actions in or-
der to improve future behaviour, and most of them
are quite expensive in running time; running an EA
in each time-step of 1 second, for instance, or a Monte
Carlo method[37], is almost impossible. Besides, only
the overall result of the strategy can be evaluated. It is
not possible to optimise individual actions due to the
lack of feedback from one turn to the next, as we men-
tioned before.

Those reasons led us to the definition (previously
proposed in [12]) of a set of rules which models the
on-line (during the game) bot’s AI. The rules have
been formulated by a human player (after playing seve-

ral matches in Galcon and analysing them), and are
strongly dependent on some key parameters, which ul-
timately determine the behaviour of the bot.

Anyway, there is only one type of action: move
starships from one planet to another. The nature of
this movement, however, will be different depending on
whether the target planet belongs to oneself or the en-
emy. As the action itself is very simple, the difficulty
lies in choosing which planet creates a fleet to send
forth, how many starships will be included in it and
what will the target planet be. The main example of
this type of behaviour is the Google-supplied baseline
example, which we will call GoogleBot; the behaviour of
this bot will be explained next, followed by our first at-
tempt at defeating this bot, which we call AresBot (de-
scribed in Subsection 5.2). Finally, we will explain the
main mechanisms governing the bot described in this
paper, called GeneBot 5.3, and previously presented
in [12].

5.1 GoogleBot: A Basic Bot for Playing Planet
Wars

The development kit of GAIC includes an example
of bot, the so-called GoogleBot. This bot is quite sim-
ple, but it is designed to work well independently of the
map configuration, so it may be able to defeat bots that
are optimised for a particular kind of map, for instance,
those configured to work well for situations in which en-
emy bases are far away (or the other way round).

GoogleBot works as follows. For a specific state of
the map, the bot seeks for the planet it owns that hosts
most of the starships and uses it as the base for the at-
tack. The target will be chosen by calculating the ratio
between the growth-rate and the number of starships
for all enemy and neutral planets. It waits until the ex-
peditionary attack fleet has reached its target. When
it lands, it goes back to attack mode, selecting another
planet as base for a new expedition.

In spite of its simplicity, the GoogleBot manages to
win enough maps if its opponent is not good enough
or is geared towards a particular situation or configura-
tion. In fact the Google AI Contest recommends that
any candidate bot should be able to win the GoogleBot
every time in order to have any chance to get in the
hall of fame; this is the baseline to consider the bot as
a challenger, and the number of turns it needs to win
is an indicator of its quality.

Next we will show our first initial design of a com-
petent challenger for GoogleBot.

5.2 AresBot: The First Approach

As previously said, GoogleBot has a simple
behaviour (for instance there is no movement of troops
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from one planet to another which might need some more
to defend it). Moreover, attacks start in a single planet
at one time; even if the player owns two planets with the
same amount of troops, it will attack just one target.
Besides that, at any particular moment, the options for
it are just attacking or waiting, wasting the time for
making other possible actions.

The first step in this research was to design a new
hand-coded strategy for the Google AI Challenge that
was better than the one scripted in the GoogleBot.

This approach, which was named AresBot, works as
follows. At the beginning of a turn, the bot tries to find
its own base planet, decided on the basis of a score func-
tion. The rest of the planets are designated colonies.
Then, it determines which target planet to attack (or to
reinforce, if it already belongs to it) in the next turns
(since it can take some turns to get to that planet).
If the planet to attack is neutral, the action is known
as expansion; while, if the planet is occupied by the
enemy, the action is called conquest. The base planet
is also reinforced with starships coming from colonies;
this action is called tithe, a kind of tax that is levied
from the colonies to the imperial see. The rationale for
this behaviour is first to keep a stronghold that is dif-
ficult to conquer by the enemy, and at the same time
is easily to create a staging base for attacking the en-
emy. Furthermore, colonies that are closer to the target
than to the base also send fleets to attack the target in-
stead of reinforcing the base. This allows starships to
travel directly to where they are required instead of ac-
cumulating at the base and then being sent. Besides,
once a planet is being attacked it is marked so that it
is not targeted for another attack until the current one
has finished; this can be done straightforwardly since

each attack fleet includes its target planet in its data
structure.

The internal flow of AresBot’s behaviour with these
states is shown in Fig.2.

A set of parameters (weights, probabilities and
amounts to add or subtract) has been included in the
rules that model the bot’s behaviour (shown in Fig.2).
These parameters have been adjusted by hand, and
they totally determine the behaviour of the bot. Their
values and meaning are:
• titheperc: percentage of starships which the bot

sends (regarding the number of starships in the planet).
• titheprob: probability that a colony sends a tithe

to the base planet.
• ωNS-DIS: weight of the number of starships hosted

at the planet and the distance from the base planet to
the target planet; it is used in the score function of tar-
get planet. It weights both the number of starships and
the distance instead of two different parameters since
they would be multiplied and will act as just one as it
is.
• ωGR: weight of the planet growth rate in the target

planet score function.
• poolperc: proportion of extra starships that the bot

sends from the base planet to the target planet.
• supportperc: percentage of extra starships that the

bot sends from the colonies to the target planet.
• supportprob: probability of sending extra fleets

from the colonies to the target planet.
Each parameter takes values in a different range, de-

pending on its meaning, magnitude and significance in
the game. These values are considered in expressions
used by the bot to take decisions. For instance, the
function that assign a score/cost to a target planet p is

Fig.2. Diagram of states governing the behaviour of AresBot and GeneBot, including the parameters that will be evolved. These

parameters are set by hand in AresBot, and evolved for GeneBot.
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defined as (following a structure-based notation for p):

Score(p) =
p.NumStarships × ωNS-DIS ×Dist(base, p)

1 + p.GrowthRate × ωGR
,

(1)
where ωNS-DIS and ωGR are weights related to both the
number of starships and distance to the target planet,
and to the growth rate respectively. base, as explained
above, is the planet with the maximum number of star-
ships, p is the planet to evaluate, and Dist(base, p)
means the distance between base and p. The divisor
is added 1 to avoid a zero division.

This score is considered as a cost, so the chosen
planet should be the one with the minimum value for
this function. Once the target enemy planet is identi-
fied, a particular colony can provide a part of its star-
ships to the base planet. Moreover, if the distance be-
tween the colony and the target planet is less than the
distance between the base and the target planet, there
is a likelihood that the colony also sent a number of
troops to the target planet.

Once tithe and attack fleets from the colonies are
scheduled, the remaining starships from the base planet
are sent to attack the target. If it is in an expansion
mode, the planet will not generate starships. There-
fore, and since the neutral planets do not increase its
number of starships, enough troops will be sent to con-
quer the target planet with a certain number of extra
units, since the neutral planets do not increase its num-
ber of starships. On the other hand, if it is trying to
conquer a planet, the bot estimates the number of star-
ships (grouped in fleets) required for the task.

This bot already had a behaviour more complex than
GoogleBot, and was able to beat it in 99 out of 100
maps; however, it needed lots of turns to beat it; this
means that faster bots or those that developed a stra-
tegy quite fast would be able to beat it quite easily.
That is why we decided to perform a systematic explo-
ration of the values for the parameters shown above, in
order to find a bot that is able to compete successfully
(to a certain point) in the google AI challenge.

5.3 GeneBot: A Genetically Optimised
AresBot

The main idea in this work (as in previous ones) is to
perform an offline parameter optimisation, by applying
a genetic algorithm (GA) to the set of parameters that
rule AresBot (explained in Subsection 5.2), so that the
resulting bot, called GeneBot, is the result of an opti-
misation process.

Therefore, the objective is to find the parameter val-
ues that maximise the efficiency of the bot’s behaviour,
and study the relative importance of each of them in
the bot’s AI modelling.

The described GA uses a floating point array to
codify all parameters described in the previous hand-
coded version, and follows a generational [35] scheme
with elitism (the best solution always survives). The
genetic operators include a BLX-α crossover[36] (with
α equal to 0.5), very common in this kind of chromo-
some codification to maintain the diversity, and a gene
mutator which mutates the value of a random gene
by adding or subtracting a random quantity in the
[0, 1] interval. Each operator has an application rate or
probability (0.6 for crossover and 0.02 for mutation).
These values were set according to what is usual in the
literature and tuned up by systematic experimentation.

The selection mechanism implements a 2-
tournament [38], where two randomly chosen individuals
compete for being chosen as one of the parents of the
next population. Some other mechanisms were consi-
dered (such as roulette wheel), but eventually the best
results were obtained for this one, which represents the
lowest selective pressure. The elitism has been imple-
mented by replacing a random individual in the next
population with the global best at the moment. The
worst is not replaced in order to preserve diversity in
the population.

The evaluation of one individual is performed by
setting the correspondent values in the chromosome as
the parameters for GeneBot’s behaviour, and placing
the bot inside five different maps to fight against a
GoogleBot. These maps were chosen for its significance
and can be described as follows:
• Bases towards the middle of the map, and the best

targets between them. This map is shown in Fig.3.
• Very few and widely spread planets, bases away

from each other.

Fig.3. One of the maps used to train the bots. The bot planet

is shown in green, bottom center, with number 55; the enemy

planet is shown in red, has the same number as a label and is

placed at the top center. The rest of the brown planets are neu-

tral: they do not attack or grow more starships, but of course

the number of present starships is offset against the number of

attacking ones.
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• Bases apart from each other, with planets away
from bases in the corners of the map.
• Bases as far apart as possible, with planets crowd-

ing the center of the map.
• The last map is similar to the first, but planets are

in the corners of the map instead of the center.
These maps represent a wide range of situations, and

it was considered that if a bot was able to beat Google-
Bot in all five maps, and also in a minimum amount of
turns, it would have a high probability of succeeding in
the majority of “real” battles.

The bots then fight five matches (one in each map).
The result of every match is non-deterministic, since it
depends on the opponent’s actions and the map con-
figuration, conforming a noisy fitness function, so the
main objective of using these different maps is dealing
with it, i.e., we try to test the bot in several situations,
searching for a good behaviour in all of them, but in-
cluding the possibility of yielding bad results in any
map (by chance). In addition, there is a reevaluation
of all the individuals every generation, including those
who remain from the previous one, i.e., the elite. They
are mechanisms implemented in order to avoid in part
the noisy nature of the fitness function, trying to obtain
a real (or reliable) valuation of every individual.

The performance of the bot is reflected in two val-
ues: the first one is the number of turns that the bot
has needed to win in each arena (WT), and the second
is the number of games that the bot has lost (LT). In
every generation the bots are ranked considering the LT
value (being better the lower this number is); in case
of coincidence, the WT value is also considered, so the
best bot is the one that has won every single game; if
two bots have the same LT value, the best is the one
that needs less turns to win. Thus the fitness associated
with an individual (or bot in this case) could be con-
sidered as the minimum aggregated number of turns
needed for winning the five battles.

A multi-objective approach would, in principle, be
possible here; however, it is clear that the most impor-
tant thing is to win the most games, or all in fact, and
then minimise the number of turns; this way of ranking
the population can be seen as a strategy of implement-
ing a constrained optimisation problem[39]: minimise
the number of turns needed to win provided that the
individual is able to win every single game.

Thus the fitness associated with an individual (or
bot in this case) could be considered as the minimum
aggregated number of turns needed for winning the five
battles.

Finally, in case of a complete draw (same value
for LT and WT), 0 is returned, meaning that no one
has won.

The source code of all these bots can be found at:
https://forja.rediris.es/svn/geneura/Google-Ai2010.

6 Experiments and Results

In order to test the GA described in Subsection 5.3,
several experiments and studies have been performed.
First of all, the experimental setting includes the pa-
rameters used in the algorithm (obtained through sys-
tematic experimentation), which can be seen in Table 1.

Table 1. Parameter Setting Considered

in the Genetic Algorithm

Number of Generations 20.00

Number of Individuals 200.00

Crossover Probability 0.60

α 0.50

Mutation Probability 0.02

Replacement Policy 2-individual elitism

GeneBot approach has been used to evolve the ini-
tial set of bots’ behaviour parameters (those of Ares-
Bot), and 10 runs have been performed, in order to
calculate average results with a certain statistical con-
fidence. Due to the high computational cost of the eval-
uation of one individual (around 40 seconds), a single
run of the GA takes around two days with this con-
figuration. The commented evaluation is performed,
as previously stated, by playing in five representative
maps. Besides, Google provides 100 example/test maps
to check the bots, so they will be used to evaluate the
value of the bots once they (their parameters) have been
defined. The following subsections describe each one
of the studies developed for proving the value of the
presented method, including a complete fitness study
showing its noisy nature and the effectiveness of the
implemented mechanisms for dealing with this feature
of the problem.

6.1 Parameter Optimisation

In the first experiment, the parameters which de-
termine the bot’s behaviour have been evolved (or im-
proved) by means of a GA, obtaining the so-called
GeneBot. The algorithm yields the evolved values
shown in Table 2, where Best GeneBot and Average
GeneBot are the best bot and the average (of the 10
best bots) obtained using GeneBot.

Looking at Table 2 the evolution of the parameters
can be noted. If we analyse the new values for the best
bot of all the 10 executions, it can be seen that the best
results are obtained by strategies where colonies have a
low probability of sending tithe, titheprob, to the base
planet (only 0.28 or 0.07 in average value). In addition,
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Table 2. Initial Behaviour Parameter Values of the Original Bot (AresBot), and the Optimised Values (Evolved by a GA)

for the Best Bot and the Average (of the 10 Best Bots) Obtained using the Evolutionary Algorithm (GeneBot)

titheperc titheprob ωNS-DIS ωGR poolperc supportperc supportprob

AresBot 0.100 0.500 1.000 1.000 0.250 0.500 0.900

Best GeneBot 0.034 0.289 0.662 0.079 0.711 0.451 0.476

Average GeneBot 0.333±0.24 0.071±0.11 0.592±0.16 0.460±0.27 0.759±0.05 0.492±0.16 0.504±0.24

those tithes send (titheperc) just a few of the hosted star-
ships, which probably implies that colonies should be
left on its own to defend themselves, instead of supply-
ing the base planet. Initially in Aresbot tithe parame-
ters were designed to take low values, because a big
tithe percentage with a high probability would mean a
high movement of fleets, which would imply a big deple-
tion of the base planet defence against enemies. These
values (percentage and probability) have been evolved
independently in GeneBot which, as a result of evolu-
tion, has been discovered that the best values are even
lower.

On the other hand, the probability for a planet to
send starships to attack another planet, supportprob,
is quite high (0.47 or 0.5 in average), and the propor-
tion of units sent, supportperc, is also elevated, showing
that it is more important to attack with all the availa-
ble starships than wait for reinforcements. Related to
this property is the fact that, when attacking a tar-
get planet, the base also sends a large number of extra
starships (71.1% or 75.9% in average of the hosted star-
ships) (poolperc). Finally, to define the target planet to
attack, the weight of the number of starships hosted
in the planet, ωNS-DIS, is much more important than
the weight of the growth range ωGR, but also consid-
ering the distance as an important value to take into
account.

One fact to take into account in this work is that
even as this solution looks like a simple GA (since it
just evolves seven parameters) for a simple problem,
it becomes more complicated due to the noisiness and
complex fitness landscape; that is, small variations in
parameter values may imply completely different be-
haviours, and thus, big changes in the battle outcome.
This feature of the fitness function for this problem,
and how we solve it, is studied in the next subsection.

6.2 Noisy Fitness Study

In a pseudo-stochastic environment as this is, it is
important to test the stability of the evaluation func-
tion, i.e., check if the fitness value is representative
of the individual quality, or if it has been yielded by
chance. This factor is based in the variance of a sin-
gle match which mainly depends on the opponent’s
behaviour (cannot be predicted). Thus, if the enemy

bot performs good actions (as expected), our own bot
could be evaluated with a reliable criterion and evolved
to fight against good enemies; however if the enemy
presents a strange or unexpected behaviour (a bad be-
haviour), for instance choosing a target planet which
cannot be conquered by itself, sending more starships
than it owns, the bot being evaluated could win by
chance. In this case one considered as a good bot might
not perform well when it fights against a challenging en-
emy. Of course, this is an intrinsic effect to the problem
we are dealing.

In order to avoid this random factor a reevaluation
of the fittest individuals has been implemented, even
if they survive for the next generation, continuously
testing them in combat. In addition (and as previ-
ously commented), the fitness function performs five
matches in five representative maps for calculating an
aggregated number of turns, which ensures (in part)
strongly penalising an individual if it gets a bad result.

Firstly it is important to note that the number of
turns required by a bot to win in a map is the most im-
portant factor of the two measured by the fitness, since
there is a 200-turn restriction for winning the game,
thus making the second factor rather a restriction, as
said above. The bot must also beat GoogleBot in every
map for having any kind of chance in the challenge.

In the first turns the two opponents (bots) handle
the same number of starships, so getting an advantage
in a few turns implies the bot knows what to do, and it
is able to accrue many more starships (by conquering
ship-growing planets) fast. If it takes plenty of turns,
the actions of the bot have some room for improvement,
and it would even be possible (if the enemy is slightly
better than the one issued by Google as a baseline) to
be defeated. That is why the number of turns is con-
sidered when assigning the fitness to the bot; the faster
it is able to beat the test bot, the better chance it will
have to defeat any enemy bot. It should be also re-
membered that this number of turns is an aggregation
of the number of turns needed to beat GoogleBot in
five different (and representative) maps, that is, every
bot is run five times in every evaluation, as previously
stated. The first study in this line is the evolution of
fitness along the generations. Since the algorithm is a
GA, it would be expected that the fitness is improved
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in every generation. To prove it, the evolution vs the
number of aggregated turns needed to win in the al-
ready mentioned five maps is shown in Fig.4.

Fig.4. Fitness evolution. The graphs show the complete execu-

tion of the best bot (best execution), the distribution of the best

individuals (fitness) in every run, and the average of the best in

10 runs: as the evolution progresses (number of generations in-

creases), the aggregated number of turns needed to win on five

maps decreases (on average) on the three cases; however, since

the result of combat, and thus the fitness, is not totally deter-

ministic, it can increase from one generation to the next.

This graph shows how fitness tends to improve,
that is, how the number of turns required for winning
decreases with the number of generations. Such be-
haviour is even clearer when looking at the line that
shows the average values. Even so, there are decre-
ments in all the functions, since the outcome of games
has a random component which is reflected in the fit-
ness value. This evolution is expected when dealing
with a GA.

A second experiment has been conducted in this line.
Ten runs of the algorithm have been performed, but
in this case the mechanisms applied for dealing with
the noisy fitness nature have not been considered, that
is, the evaluation of every individual is performed just
playing one game against an opponent (instead of five),
and this battle is placed in just one map (instead of five
different), randomly chosen among the five representa-
tive ones to avoid specialised bots in that map.

The aim of this study is to prove the highly noisy
landscape of the individuals evaluation, which trans-
forms the fitness function into a noisy one, and which
should be dealt with for a better performance (as we
have done in our algorithm by means of (elitist) individ-
uals reevaluation and an evaluation function conside-
ring five matches in five different maps).

The evolution of the fitness values in this case can
be seen in Fig.5.

As it can be seen in the figure that there are marked

Fig.5. Fitness evolution (no noisy fitness treatment). The graphs

show the whole run of the best bot (best execution), the distribu-

tion of the best individuals (fitness) in every run, and the average

of the best in 10 runs. The trend is to reduce the number of turns

needed to win in the three graphs, but there are big oscillations

due to the non-deterministic results of every combat (just one

per evaluation).

fitness variations between generations. If one compares
the graphs with those shown in Fig.4, it can be no-
ticed that the good performance of the noise avoiding
mechanisms (reevaluation, five matches, and five dif-
ferent maps per evaluation) included in the new GA
approach, drastically reducing this effect. Obviously
the fitness values are lower when noise in evaluation
is not addressed, because it corresponds to the turns
needed for winning one combat (not an aggregation of
five as in the proposed algorithm).

Once the value of the noise treatment mechanisms
has been proved (at least in part), we conduct some
other experiments considering this approach for the
GA.

The next study in this scope tries to show the fitness
tendency or stability, that is, if a bot is considered as
a good one (low aggregated number of turns), it would
be desirable that its associated fitness remains being
good in most battles, and the other way round: if the
bot is considered as a bad one (high aggregated num-
ber of turns). We are interested in knowing whether
the fitness we are using actually reflects the ability of
the bot in beating other bots. It could be considered
as a measure of the robustness of the algorithm.

Fig.6 shows the fitness associated with four diffe-
rent GeneBots when fighting against the GoogleBot 100
times (battles) in the five representative maps. They
have been chosen randomly among all the bots (in all
the generations) in the 10 runs, selecting one with a
very good fitness value (around 550 turns), named Win-
nerBot, and another bot with a very bad fitness value
(around 2 600 turns), called LoserBot. In addition, two
mean bots, named PromisingBot and UnpromisingBot,
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Fig.6. Fitness tendency of four different and random individuals (bots) in 100 different battles, everyone composed by 5 matches in the

representative maps, against the GoogleBot. The upper ones are a very good bot, WinnerBot, and a rather good one, PromisingBot,

according to the main term of their fitness function (the aggregated number of turns). The lower graphs correspond to two bots

considered as bad, LoserBot, or unpromising, UnpromisingBot, looking at their high aggregated number of turns consumed in the

battles. A victory is considered if the bot wins in the 5 matches.

having rather good and bad fitness, respectively, have
been considered.

As it can be seen, both WinnerBot and LoserBot
maintain their levels of fitness in almost every battle,
winning most of them in the first case, and losing the
majority in the second case. In addition, both of them
win and lose battles in the expected frequency, appear-
ing some outlier results due to the stochastic nature of
these fights (as stated they strongly depend on the op-
ponent decisions). PromisingBot and UnpromisingBot
show a similar and expected (or desirable) behaviour,
i.e., the first one mainly gets victories, while the other
one loses frequently, but in a lower percentage than
the previous bots in the two cases. Moreover, both
bots present sometimes a fitness behaviour with more
spread values surrounding the average, i.e., a noisier
performance.

The next subsection is devoted to proving the good
behaviour of the evolved bots (the parameters, in fact),
and thus the good performance of the algorithm in this
task.

6.3 Comparison of Generated Bots

In this study three bots will be considered: the
initial and hand-coded AresBot, the best GeneBot
among those evolved (Best GeneBot), and a bot whose

parameters are composed by the average values of the
best individuals (Average GeneBot) see the parameter
values in Table 2). They have been tested considering
100 different battles, one in each of the example maps
provided by Google, where they have fought against the
standard GoogleBot. The results are shown in Table 3.

Table 3. Results after 100 Battles between Each One

of the Bots and the Standard GoogleBot

Number of Turns Victories

Average and Min Max

Std. Dev.

AresBot 217±157 49 1 001 93

Best GeneBot 203±131 43 741 99

Average GeneBot 251±202 38 1 001 91

Note: The number 1001 arises if the battle exhausts the maxi-

mum number of turns without winner.

These preliminary results show that Best GeneBot
attains a good performance, winning all the battles ex-
cept one, which is a draw according to the Max value
for the number of turns (1 001). AresBot and Average
GeneBot perform in a similar way, showing the latter
a smaller number of turns, but a worse average in this
value.

Considering again that the number of turns is the
main term of the fitness function, an analysis of the
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turns required by the bots to beat GoogleBot in the
100 test arenas has been performed, using the same
bots as in the previous study. It can be seen in Fig.7.

Fig.7. Histogram of the number of turns needed to win, measured

for the 100 example maps in the Google AI Challenge kit.

This figure shows that most battles (around 60%)
end in about 200 turns, with all bots achieving simi-
lar results, but with Best GeneBot beating the others.
AresBot, in general, is better than Average GeneBot,
not exceeding the 600 turns in its worst games, while
Average GeneBot and even Best GeneBot turned out to
need many turns in some cases, sometimes going over
800 turns and even 1 000; those are usually games that
failed with a draw and finished by exhaustion of the
maximum number of allowed turns.

Finally, we have tested the value of the three bots by
making them fight in pairs, considering again the same
100 battle maps (one match per battle). Through this
experiment we could decide which is the best approach
and prove the utility of the GA application to optimise
the initial bot, getting a better opponent than a hand-
coded and expert knowledge-based one. The results of
each of these fights are shown in Fig.8.

It can be seen that Best GeneBot outperforms the
other two, being a much better fighter than AresBot,
and quite better than the average approach. This bot
performs well regardless of the stage or the enemy. Ave-
rage GeneBot beats AresBot, clarifying its value in the
comparison with the hand-coded approach.

One could think that the best evolved bot should
win all the battles, but the maps provided from the
Google competition are balanced, in the sense that
some of them have been implemented for being advan-
tageous for just one of the contestants (and the other
way round), so in some of these situations, the bot in
the worse position is not able to win. Moreover, some
of the maps are better-suited for one specific strategy,
which could not be the one adopted by the evolved bot.

The inclusion of Average GeneBot tries to show that
the good behaviour yielded by the evolved bots has not
been arisen by chance in the best individual, but it is
also present in the average results, which means that
the algorithm works in evolving the bots, since the ob-
tained individuals (in average) are much better than
the initial one and also the baseline GoogleBot.

As an additional study 100 battles, consisting of five
matches every one, have been performed, bringing face
to face the best bots yielded in each run of the present
algorithm against the best bots obtained by the algo-
rithm without the noisy fitness dealing mechanisms.
This way, a figure similar to the previous ones has been
created, showing in each cell the colour of the winning
bot in every battle (it wins in 3 out of 5 matches). Each
of the matches is held in one of the commented repre-
sentative maps. The results of these fights are shown
in Fig.9.

Fig.8. Results of 100 battles (of just one match) in all the provided maps for three different bots. Every cell corresponds to a battle

numbered as the correspondent column + row. Best GeneBot is clearly the winner, beating both AresBot and Average GeneBot. The

latter seems to be a better fighter than the hand-coded one. (a) Best GeneBot vs AresBot. (b) Best GeneBot vs Average GeneBot.

(c) Average GeneBot vs AresBot.
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Fig.9. Results of 100 battles involving the best 10 bots obtained

by the algorithm which deals with noisy fitness (columns), and

the best 10 bots yielded by the algorithm without this treatment

(rows). Each battle consists in 5 matches (in the 5 representative

maps). The colour of the cell means the victory of the correspon-

dent bot in 3 out of 5 matches.

As it can be seen in the figure, the bots obtained by
the new algorithm (which deals with the noisy nature of
fitness) perform much better than those obtained with
the simpler version, winning almost twice as many com-
bats. This means that, (five evaluations and five rep-
resentative maps) the problem of noisy evaluations is
being correctly and effectively addressed.

6.4 Bot vs Bot Analysis

Finally, a study concerning the behaviour of several
GeneBots has been performed to establish the validity
of the function we have used to evaluate fitness. The
participants in this experiment have been divided in
four categories (A, B, C, D) as can be seen in the up-
per of Fig.10.

Ten individuals in each category were selected, one
per execution, and battles including all the bots were
performed (every one in the five representative maps).
Fig.10 shows the battle results.

As it can be seen in the figure, the graph compounds
a very symmetric matrix of victories, where better in-
dividuals win over the worst ones, at least in general.
Moreover, battles in the same category show that indi-
viduals have almost the same chance to win.

The results prove that the set of obtained parame-
ter values for the individuals, and also the number of
turns to win as (main) fitness measure, have a strong
influence on the performance of the bot. This way, in-
dividuals with lower fitness can hardly win the fittest
ones and the other way round. However, it also proves

the noisy nature of fitness, with the chance of the worst
bot beating the best bot non-zero.

The resulting GeneBot was presented to the AI
Challenge 2010 finishing in the 1 454th position (won 9,
lost 7), around the top-30% bots. It won the combats in
which it performed many fleet movements to the oppo-
nent’s base planet. In addition it was successful if the
bot attacked the enemies from several origin planets.
The target planet selection method seemed to be hard
to predict by the enemies. It lost the matches where
the chosen target planet was wrong (they changed its
status during the movement of fleets if it took more
than one turn). The original AresBot started in the
2 000 position during all the initial phase (we just can
send one of the bots), in which several matches were
performed, meaning a very good improvement due to
the GA application.

7 Conclusions and Future Work

The Google AI Challenge 2010 was an interna-
tional programming contest where game-playing pro-
grams (bots) fought against others in an RTS game
called Planet Wars. This paper shows how evolution-
ary algorithms (EAs), can be applied to the design of
this type of bots, and how designed bots can obtain
good results in a real-world challenge by submitting
them to the competition. Within the constraints that
we placed on the evolution of the bot, we have proved
that genetic algorithms can improve the efficiency of a
hand-coded bot (AresBot), winning more battles in a
lower number of turns. Besides, from the parameters
that have been evolved, we can draw some conclusions
to improve overall strategy of hand-designed bots; re-
sults show that it is important to attack planets with
almost all available starships, instead of keeping them
for future attacks, or that the number of starships in a
planet and its distance to it, are two criteria to decide
the next target planet, much more important than the
growing rate.

In addition, the presence of noisy fitness, i.e., the
evaluation of one individual may strongly vary from
one generation to the next due to the non-deterministic
opponents’ behaviour, has been studied in several ex-
periments. In order to deal with it, the described GA
has implemented some mechanisms, such as an evalua-
tion function consisting in repeated matches in diffe-
rent (and representative) maps, and a reevaluation of
all the population per generation (even the elite). The
experiments compare the algorithm with and without
these mechanisms, concluding that the algorithm which
applies them performs better, and yields results which
correctly address this disadvantage, being quite robust.

In general, the improvement to the original AresBot
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Fig.10. Bot vs bot. Massive GeneBot battle, every category includes 10 bots which fight against the rest (including a copy of itself)

in 5 representative maps. A bot wins a battle if it beats the opponent in 3 out of 5 matches. Upper tables summarise the category

descriptions, and the percentage of wins of each category against the others for a better visualisation.

offered by the algorithm could seem small from the
purely numeric point of view; Best GeneBot is able to
win some more maps where AresBot was beaten, and
the aggregated number of turns is just a 10% better.

However, it has been proved in the experimental sec-
tion that this small advantage confers some leverage to
win more battles, which in turn, will increase its rank-
ing in the Google AI challenge. This indicates that an
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evolutionary algorithm holds a lot of promise in op-
timising any kind of behaviour, even a parametrised
behaviour such as the one programmed in GeneBot; at
the same time, it also shows that when the search space
is constrained by restricting it to a single strategy, no
big improvements should be expected.

However, a lot of work remains to be done, e.g., to
compete in next year’s challenge, to explore all the
possibilities the genetic evolution of bot’s behaviour
can offer. As future work, following the present work,
some other mechanisms for dealing with the noisy na-
ture of the fitness function (such as pre-sampling or the
consideration of a noise threshold) will be studied. On
another line we intend to develop a dynamic algorithm
for modifying the parameters on-line (for instance, to
improve the planet’s defences when enemies are more
aggressive, or vice-versa). In addition, a deeper study
with different types of AI bots and maps will be per-
formed, evolving for instance complex rule-based bots,
or using other available bots for training and testing
ours, obtaining a higher improvement. The baseline
strategy will also have to be reassessed. Since it is based
on a certain sequence of events, it can only go as far as
that strategy. Even with the best parameters avail-
able, it could easily be defeated by other strategies. A
more open approach to strategy design, even including
genetic programming as mentioned by the other partic-
ipants in the forum, is a promising approach.

In the evolutionary algorithm front, several improve-
ments might be attempted. For the time being, the bot
is optimised against a single opponent; instead, several
opponents might be tried (the three described in these
papers, for instance), or even other individuals from the
same population, in a co-evolutionary approach. An-
other option will be to change the bot from a single
optimised strategy to a set of strategies and rules that
can be chosen also using an evolutionary algorithm. Fi-
nally, a multi-objective EA will be able to explore the
search space more efficiently, although in fact the most
important factor is the overall number of turns needed
to win.
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